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Modelling Splines and GAMs with SAS 
Part 1. Splines for Interpolating and Smoothing 
• Intro and Motivation 
• Splines and Basis Functions 
• Penalized/Smoothing Splines 
• Thin Plate Splines 
• Connection with Mixed Models 

 

Part 2. Generalized Additive Models (GAMs)  
• Intro and Preliminaries 
• Effective Degrees of Freedom (EDF) and Hypothesis Testing 
• Partial Residuals 
• Two examples 

 

Table 1.  Comparison of Features and Capabilties of SAS/STAT 9.1.3 
Procedures for Penalized/Smoothing Spline Fitting 

 

Conclusion 
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Intro – Part 1 
• Part 1 deals with the situation where there is one 

dependent variable (y) and at least one independent 
variable (x) 

• Relationship appears to be nonlinear 

• Parametric form of relationship is not intuitively obvious 
or required 

• Goal is to find function that can either interpolate points 
or fit a smooth curve or surface through them 

• Higher order (≥ 4) polynomials are flawed due to 
undesired oscillation of interpolated fit between data 
points – Runge’s phenomenon (Carl David Tolmé Runge) 
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“The dataset” 
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Runge’s Phenomenon 

-0.4

0.0

0.4

0.8

1.2

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

5th order polynomial 
 

5/29/2012 5 
Peter Ott, Forest Analysis and Inventory 

Branch, BC Ministry of FLNRO 



Splines 

Splines – piecewise polynomials 

 
• Want to represent nonlinear f (or at least something very 

close to it) as a linear combination of basis functions:  

 

 

• Seen them before with multiple regression – the polynomial 
basis: 
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Polynomial basis 
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Splines 

• Spline consists of sections of a polynomial 
joined together at pre-specified knots 

 

• Value of y is usually equal at knot so curve is 
continuous, and sometimes first, second and 
higher order derivatives (WRT x) may also be 
equal 
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Truncated Power Function (TPF) basis 
example #1: Linear Spline Basis 

Say we set-up 3 knots...         and     then 
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TPF basis example #1: Linear Spline Basis 
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proc transreg data=whatever; 

 model identity(y)=pspline(x / degree=1 

knots=-0.66667, 0, 0.66667); 

 output out=pred predicted 

coefficients; 

title ‘Linear tpf spline with 3 knots'; 

run; 
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TPF basis example #2: Cubic Spline Basis 

 

 
 

In general, the truncated power function (TPF) spline basis functions of degree q are: 
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TPF basis example #2: Cubic Spline Basis 
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proc transreg data=whatever; 

 model identity(y)=pspline(x / degree=3 

knots=-0.66667, 0, 0.66667); 

 output out=pred predicted 

coefficients; 

 title 'Cubic tpf spline with 3 knots'; 

run; 
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TPF basis example #2: Cubic Spline Basis 
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proc transreg data=whatever; 

 model identity(y)=pspline(x / degree=3 

knots= -0.75, -0.5, -0.25, 0, 0.25, 0.5, 

0.75); 

 output out=pred predicted coefficients; 

 title 'Cubic tpf spline with 7 knots'; 

run; 
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General TPF basis 
 

Can make these by hand, or use proc transreg or the effect statement in SAS 9.3*: 
 

 

proc transreg data=whatever design; 

 model pspline(x / degree=3 knots= -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75); 

 id y; 

 output out=tpfsplineout; 

 title 'getting cubic TPF basis functions'; 

run; 

 

data tpfsplineout; 

 set whatever; 

 array b{7} b1-b7; 

 array knot{7} (-0.75 -0.50 -0.25 0 0.25 0.5 0.75); 

 do i=1 to 7; 

    if x <= knot[i] then b[i]=0; 

    else b[i]=(x-knot[i])**3; 

 end; 

 title 'getting cubic TPF basis functions'; 

run; 

 

effect spl_x=spline(x / knots= -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75); 

 
*The effect statement is available in these SAS 9.3 procedures: hpmixed, glimmix, glmselect, 

logistic, orthoreg, phreg, pls, quantreg, robustreg, surveylogistic, surveyreg 
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General TPF basis 

At this point, two things should (hopefully!) be 
obvious: 

1. Could fit these in any software that fits linear 
models (e.g. proc glm, proc reg, proc 
quantreg, proc glmselect, etc.) 

2. A predictive equation is available, although 
not very pretty 
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Cubic B-Spline Basis 
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proc transreg data=whatever; 

 model identity(y)=bspline(x / degree=3 

knots= -0.75, -0.5, -0.25, 0, 0.25, 0.5, 

0.75) / details; 

 output out=pred predicted coefficients; 

 title 'Cubic B-spline basis regression 

spline with 7 knots'; 

run; 
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proc transreg data=whatever design; 

 model bspline(x / degree=3 knots= -0.75, 

-0.5, -0.25, 0, 0.25, 0.5, 0.75); 

 output out=bsplineout; 

 title 'getting cubic b-spline basis 

functions'; 

run; 

 



Knot number and placement 

• Placement where there is data, evenly spaced along x, or along 
quantiles of x  
 

• Number and placement of knots may have dramatic effect on fit 
and smoothness. Lots of work in this area and it’s hard to know the 
optimum number. 
 

• In general, the placement is not as critical to model fit as the 
number of knots   
 

• Splines we have looked at so far are called regression splines or 
interpolating splines. We will now discuss penalized splines or 
smoothing splines – which involve a penalty for wiggliness. 
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Penalized (Smoothing) Splines 
Instead of estimating parameters by minimizing the sum of 
squares, add a penalty for wiggliness: 
 
 
 
where           is an unknown parameter that controls the 
wiggliness or roughness 
 
           results in an unpenalized regression spline 
           results in a straight-line estimate of f(x) 

 
How to choose   ? Want smoothing spline to capture signal 
but not the noise. 
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Generalized Cross Validation (GCV) 

 

• Choose      that yields the lowest GCV score: 

 

 

 where                                    and     is a          matrix describing 

the relationship between the coefficients of the basis 

functions in the penalty term (i.e.                               ). 
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Generalized Cross Validation (GCV) 
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proc gam data=whatever; 

 model y=spline(x) / method=gcv; 

 output out=pred_gam predicted; 

 title 'Penalized cubic spline'; 

run; 
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Thinplate Splines (Duchon 1977) 

 Forget about knots and basis functions for a 
second...   

Say we just want a function to minimize:  

                                        or 

 

For example, if d=2: 
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Thinplate Splines 

  

Solution to this problem is a function that relies 
on radial basis functions and function passes 
through data without knots. 

  

d=1: 

 

d=2: 

 

     where 
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Thinplate Splines 

• Still need to estimate    , usually via GCV 
 

• Original derivation was for  
 

• Works great but computational cost is high, especially with more 
than one predictor.  Number of free parameters is equal to the 
number of unique predictor combinations. 
 

• For this reason often see knot-based approximation, which looks 
very similar to smoothing spline with radius basis functions 
 

• Only one smoothing penalty (    ), so wiggliness must be isotropic, 
and scale of predictors must be chosen carefully 
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Thinplate splines 
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GCV w/ tpspline Approx w/ glmmix

proc tpspline data=whatever; 

 model y = (x); 

 output out=pred1 pred std coef; 

 title 'Thin plate spline'; 

run; 

 

proc glimmix data=whatever;  

 model y = x / s dist=normal 

link=identity; 

 random x / type=rsmooth; 

 output out=pred_smooth 

pred=predicted; 

title ‘Approx thin plate spline'; 

run; 
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Connection with Mixed Models 

• Smoothing splines can be cast as mixed models, where the 
basis functions that do not depend on the knots are the fixed 
effects, and the ones that are functions of the knots are the 
random effects  

 

• TPF (cubic) with d=1:  

 
• Knot based radial with d=1: 

 

 

 

 

5/29/2012 25 
Peter Ott, Forest Analysis and Inventory 

Branch, BC Ministry of FLNRO 

     
  


 random

33

2

3

1

fixed

32 ,,,,,,,1


 Kxxxxxx 

   



random

33

2

3

1

ixed

,,,,,1 K

f

xxxx  



Connection with Mixed Models 

• The resulting variance component associated 
with the ‘knot effects’ is equal to                         
(recall that q is the degree of the basis), so we 
can estimate the     ’s and     simultaneously  

 

• Can add other effects, error structures, any 
other embellishments do-able with mixed 
models 
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Connection with Mixed Models 
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proc transreg data=whatever design; 

 model pspline(x / degree=3 nknots=15); 

*lots of knots; 

 id y; 

 output out=tpfsplineout; 

 title 'getting cubic TPF basis 

functions'; 

run; 

 

proc mixed data=tpfsplineout; 

 model y=x_1 x_2 x_3 / s 

outp=predicted; 

 random x_4-x_18 / type=toep(1) s; 

 title 'Penalized cubic spline'; 

run; 
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Intro – Part 2 (GAMs) 

A GAM is a generalized linear model that involves a sum of 
smooth functions (e.g. penalized splines) as its linear 
predictor: 

 

 

 

 
Given a      for each smooth component, estimate 
parameters by maximizing penalized log-likelihood 
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Effective Degrees of Freedom (EDF) 
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The influence or hat matrix for a GAM is: 
 
 
 

 
Similar to classical multiple regression, this           matrix  has some 
interesting features: 

• it is idempotent:  
• it is diagonal elements are bounded: 
• it is a projection matrix: 
•                        indicates the cost of projection  
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Comparing Gam Models 

Inference is generally approximate and relies on: 
• Models being compared are ‘nested’ 

• Asymptotic distributional assumptions 

• The      are known, i.e. must condition inference on chosen 
values for penalized splines 

 

Deviance-based tests utilize ΔEDF  and either χ2 (e.g. 
Poisson, binomial) or F (e.g. normal, gamma) statistics 

 

Mixed model tests include likelihood ratio and Wald-type F 
statistic 
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Partial Residuals 

• How to graphically depict the relationship 
between the dependent variable and each 
independent variable, given that other 
independent variables are also in the model? 

• Luckily, most GAMs are additive on the scale 
of the link function: 
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Partial Residuals 

• For the normal model where                  . The partial 
residual for     is the leftover variation not accounted for 
by     : 
 
 
 

• For non-normal models, the partial residual for     is: 
 
 

• In either case, the fitted component that explains this 
variation is just:  
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𝑟 1𝑖 = 𝑦𝑖 −  𝛽 0 + 𝑓 2 𝑥2𝑖 + ⋯+ 𝑓 𝑝 𝑥𝑝𝑖    

= 𝑦𝑖 − 𝑦 𝑖 + 𝑓 1 𝑥1𝑖  

= 𝑒 𝑖 + 𝑓 1 𝑥1𝑖  

𝑟 1𝑖 =  𝑦𝑖 − 𝜇 𝑖 𝑔
′ 𝜇 𝑖 + 𝑓 1 𝑥1𝑖  



Two Examples 

• Example 1. Showcase of partial residuals for 
normal errors and assessing the effect of 
different additive components (Proc Gam) 

• Example 2. Testing whether two curves are 
different (Proc Mixed), using a variable 
coefficient model 
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Example 1. Analysis of Deviance 

Variable Removed Deviance DF ΔDeviance ΔDF F P 

x4 198.95 15.09 182.33 6.15 318.76 2.09E-92 

x1 68.82 17.53 52.19 3.71 151.19 1.02E-48 

x2 53.41 12.45 36.78 8.79 44.97 7.05E-39 

x3 37.77 9.71 21.14 11.53 19.71 1.49E-25 

None (full model) 16.63 21.24 0.093 
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Example 1. Partial Residuals and fitted components for GAM 
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Example 2. GAMM fit of variable coefficient model 

5/29/2012 
Peter Ott, Forest Analysis and Inventory 

Branch, BC Ministry of FLNRO 
36 

 

0

10

20

30

40

50

60

-6 -4 -2 0 2 4 6

y

x

Pred C Pred F



SAS/STAT Procedure 

Capability GAM TPSPLINE TRANSREG GLIMMIX MIXED 

Additive 

smoothers 

allowed? 
     

Unpenalized 

spline do-able? 
model / df= ; 

model / df= ; 

model / lognl0 = -10; 

pspline, 

bspline, 

smooth( / sm=0),  

sspline(  / sm=0)  

Put basis functions in model 

statement (instead of: 

random / type=rsmooth) 

Put basis functions in 

models statement instead 

of random statement 

Provides EDF?   * = n-df(res)  
Variable 

coefficient model 

do-able? 

Manually create 

new sets of x  
model y = class(groop / 

zero=none) | smooth(x / 

sm=50 after);** 

Random x / type=rsmooth 

group=groop ; 

Manually code basis 

functions 

GCV do-able? 
model / method = 

gcv;  *** NA NA 

Default λ df=4 GCV 
sm = 0 (for smooth and 

sspline) 

Estimated via mixed model 

theory 

Estimated via mixed 

model theory 

How to output 

smooth 

predictions 

Score dataset and 

statement 

Score dataset and 

statement 

Pad input data with 

additional x and missing y 

Pad input data with 

additional x and missing y 

Pad input data with 

additional x, their 

corresponding basis 

functions, and missing y 

Built-in basis 

functions 

TPF (cubic), radial 

(bivariate only) 
radial 

TPF (cubic), 

B-spline 

Radial (knot based approx), 

B-spline* 
None**** 

Knot Control  NA 

bspline or pspline(x / 

knots=low to high by incr). 

No knot control for smooth 

& sspline*** 

random x / type=rsmooth 

knotmethod=data(knotty) ; 

Only via manually coded 

basis functions 

Partial residuals 

obtainable?  
Only for special case 

of one univariate 

smoother in model 
 

Only for special case of one 

smoother in model 

Only via manually coded 

basis functions 

Table 1.  Comparison of Features and Capabilities of SAS/STAT 9.1.3 Procedures for Penalized/Smoothing Spline Fitting   

 

 

 

* Feature available in vers. 9.2 and 9.3 
**For vers. 9.2 and 9.3, the syntax has changed slightly to: model y = class(group / zero=none) * smooth(x / sm=50); 
***Since vers. 9.2 pbspline is available, knot number and placement is customizable, and λ can be determined based on either CV, GCV, AIC, AICc, or SBC  
****In vers. 9.3, although the Effect statement cannot be used in proc mixed, it will work in proc hpmixed 



Conclusion 

• Splines are powerful tools for interpolation and curve fitting when 
no parametric form is needed 

• TPF and radial basis functions are simple enough that getting 
predictive equation and other features (e.g. derivatives, peaks, etc.) 
is do-able 

• Inference of nonlinear predictor variables is possible using GAMs 
(and GAMMs) built from smoothing splines  

• GAMMs (proc mixed & glimmix) offer tremendous modelling 
flexibility 

• Partial residuals are recommended to assess additive model 
adequacy and fit 

• Newer SAS/STAT releases are adding features for fitting and testing 
smoothing splines, GAMs, and GAMMs. Hopefully this continues!   
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