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1   Introduction 
 
One of the main results of Twentieth-century Cognitive Psychology is that, despite the overall 
impressive abilities of people to sense, remember, and reason about the world, our cognitive 
abilities are extremely limited in well-characterized ways.  In particular, psychologists have found 
that people grapple with scarce attentional resources and limited working memory. Such limitations 
become salient when people are challenged with remembering more than a handful of new ideas or 
items in the short term [20,28], recognizing important targets against a background pattern of items 
[5,26], or interleaving multiple tasks [6,26].    
 
These results indicate that we cannot help but to inspect the world via a limited spotlight of 
attention. As such, we often generate clues implicitly and explicitly about what we are selectively 
attending to and how deeply we are focusing.  Given constraints on attentional resources, it is no 
surprise that communication among people relies deeply on attentional signals.  Psychologists and 
linguists studying communication have recognized that signaling and detecting attentional states lies 
at the heart of the fast-paced and fluid interactions that people have with one another when 
collaborating or communicating [2,7].  Attentional cues are central in decisions about when to 
initiate or to make an effective contribution to a conversation or project. Beyond knowing when to 
speak or listen in a conversation, attention is critical in detecting that a conversation is progressing.  
More generally, detecting or inferring attention is an essential component of the overall process of 
grounding—converging in a shared manner on a mutual understanding of a communication [1].   
 
The findings about our limited attentional resources—and about how we rely on attentional signals 
in collaborating—have significant implications for how we design computational systems and 
interfaces.  Over the last five years, our team at Microsoft Research has explored, within the 
Attentional User Interface (AUI) project, opportunities for enhancing computational systems and 
applications by treating human attention as a central construct.  As an organizing principle, we 
consider attention as a rare commodity—and critical currency—in reasoning about the information 
awareness versus disruption of users [12].  We have also pursued the use of attentional cues as an 
important source of rich signals about goals, intentions, and topics of interest [10,15].  We seek to 
build systems that sense, and share with users, natural signals about attention to support 
conversations and other forms of fluid mixed-initiative collaborations with computers [24].  Moving 
to considerations of computational efficiency, an assessment of a user’s current and future attention 
can be employed to triage computational resources. Investigations in this realm include selective 
allocation of resources in rendering graphics via relying on models [14,16] or on direct observations 
[21] of visual attention, and in guiding precomputation and prefetching [11] with forecasts of future 
attention.  Finally, although there is a rich history of prior work on attention from cognitive 
psychology, we have found that there is much we do not yet understand. Thus, beyond pooling 
results from prior psychological studies, we need to continue to perform user studies that adapt or 
extend prior results on attention and memory from cognitive psychology to human-computer 
interaction [3,4,18,19]. 



 
We will describe several principles and methodologies at the heart of research on integrating 
models of attention into human-computer interaction.  Then, we shall review representative efforts 
that illustrate how we can harness these principles in attention-sensitive messaging and mixed-
initiative interaction applications.   
 
2   Models of Attention and Decision Making under Uncertainty 
 
How might we access and use information about a user’s attention?  To be sure, subtle clues about 
attention are often available, and a number of these clues can be taken as direct signals about the 
attentional status of users.  For example, sensing patterns of simple gestures such as the touching 
and lifting of a device in different settings can relay important evidence about attention that can be 
exploited in a number of exciting ways [8].  Moving to higher-precision sensing, several researchers 
have pursued the use of gaze-tracking systems, and have used signals about the focus of visual 
attention in a variety of applications [17,25,27].  As gaze sensors grow in reliability and decrease in 
cost, we are seeing the evolution of devices that recognize when and how they are interrogated by 
the spotlight of visual attention. 
 
Nonetheless, we may often be uncertain about a user’s attentional focus and workload in light of 
observations, and about the value of alternate actions in different contexts.   Thus, we turn to 
models that can be harnessed to reason about a user’s attention and about the ideal attention-
sensitive decisions to take under uncertainty.  Such models and reasoning can unleash new 
functionalities and user experiences.   
 
We have constructed by hand and learned from data Bayesian models that can be viewed as 
performing the task of an automated “attentional Sherlock Holmes,” working to reveal current or 
future attention under uncertainty from an ongoing stream of clues.  Bayesian attentional models 
take as inputs sensors that provide streams of evidence about attention and provide a means for 
computing probability distributions over a user’s attention and intentions.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. High-level decision model considering a user’s attentional focus and workload as a 
random variable, influenced by the observed state of several sensors. 

 



Perceptual sensors include microphones listening for ambient acoustical information or utterances, 
cameras supporting visual analysis of a user’s gaze or pose, accelerometers that detect patterns of 
motion of devices, and location sensing via GPS and analysis of wireless signals.  However, more 
traditional sources of events can also offer valuable clues.  These sources include a user’s online 
calendar and considerations of the day of week and time of day. Another rich stream of evidence 
can be harvested by monitoring a user’s interactions with software and devices. Finally, background 
information about the history of a user’s interests and prior patterns of activities and attention can 
provide valuable sources of information about attention. 
 
To build probabilistic attentional models with the ability to fuse evidence from multiple sensors, we 
leverage the results of accelerated research over the last fifteen years on representations for 
reasoning and decision making under uncertainty. Such work has led to inferential methods and 
representations including Bayesian networks and influence diagrams—graphical models that extend 
probabilistic inference to considerations of actions under uncertainty. Algorithms have been 
developed which enable us to compute probability distributions over outcomes and expected 
utilities of actions from these graphical representations.  
 
Figure 1 displays a high-level influence diagram representing sensor fusion and decision making in 
the context of a user’s attention under uncertainty.  As portrayed in the figure, a set of variables 
(oval nodes) representing sensed evidence influence a random variable representing a user’s 
attentional status which, in turn, influences the cost and benefits and overall expected value of 
alternate actions or configurations. Decisions (rectangular node) about ideal computer actions take 
into consideration the costs and benefits, given uncertainty about a user’s attention.  In the end, the 
expected utility (diamond-shaped node) is influenced by the action and the costs and benefits.  
 
We extend such a high-level, pedagogical view by constructing richer models that contain 
additional intermediate variables and key interdependencies among the variables.  Also, as both 
devices and people are immersed in time, we move pointwise considerations of the state of 
variables, to build higher-fidelity temporal attentional models that represent the flow of time. We 
have employed dynamic Bayesian networks and Hidden Markov Models for representing and 
reasoning about states of attention and location over time.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A temporal attentional model, highlighting key dependencies (dashed arcs) between 
variables in adjacent time slices. 
 

 



 
Figure 2 displays two adjacent time slices of a temporal attentional model.  Such a model provides a 
probability distribution over a user’s workload and task that was developed for an application that 
provides selective filtering of messages and communications to users.  In this case, the status of 
attention includes approximately twenty discrete states.  
 
3   Economic Models of Attention and Information 
 
As we can all attest from personal experiences, computers today have little awareness of the value 
and costs of transmitting messages and alerts to users.  Research on the Notification Platform 
project has centered on formulating economic principles of attention-sensitive notification—and on 
implementing a cross-device alerting system based on these principles.  The Notification Platform 
system modulates the flow of messages from multiple sources to devices by performing ongoing 
decision analyses.  These analyses balance the expected value of information with the attention-
sensitive costs of disruption.  As highlighted in Figure 3, the system serves as an attention-savvy 
layer between incoming messages and a user, taking as inputs sensors that provide information 
about a user’s attention, location, and overall situation. 
 
The design of the Notification Platform was informed by several earlier prototypes exploiting 
context-sensing for identifying a user’s workload, including the Priorities system [12,13].  Priorities 
employs classifiers that predict the urgency of incoming email. The classifiers are trained with 
sample messages, either obtained via explicit training or by automatically drafting data sets by 
observing a user’s interaction with an email browser.  Priorities also observes a user’s patterns of 
presence at a desktop computer based on time of day, and infers the time until a user will review 
unread messages.  The system computes an expected cost of delayed review for each incoming 
message. This cost is considered, along with a cost of interruption based on activity sensing and 
calendar information, in automated decisions about if and how to alert and relay information to a 
user about email, tasks, and appointment reminders in mobile and desktop settings.   
 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The Notification Platform is a cross-device messaging system that continues to balance 
the costs of disruption with the value of information from multiple message sources, using a 
probabilistic model of attention and ongoing decision analyses about ideal message handling.  
. 
 
The Notification Platform uses a decision-analytic model for cross-device alerting about 
information from multiple message sources. The analyses consider a user’s attention and location 
under uncertainty, as well as the fidelity and relevance of potential communication channels.  We 
developed a distributed architecture that executes over multiple devices.  Figure 4 displays a 
schematic view of the architecture of the Notification Platform.  Standard interfaces and metadata 

 



schemas allow users to subscribe different sources of information and devices to a Notification 
Manager/ At the heart of the Notification Manager is a Bayesian attention model and decision 
analysis which accesses clues about attention and location from sensors via a module we refer to as 
a Context Server.   
 
The context server accesses several states and streams of evidence, including a user’s appointments 
from Microsoft Outlook, events about device presence and activity, an analysis of ambient acoustics 
in the room, and a visual analysis of pose using a Bayesian head-tracking system.  Key abstractions 
from the evidence, such as voice trace detected, task completion occurred within 5 seconds, single 
application focus, head-tracked—looking away from display, and meeting away from office—ending 
in 10 minutes, are posted to a volatile store called the Context Whiteboard which is continually 
updated by incoming evidence.  The Context Whiteboard is contacted for updated information 
every couple of seconds by the Bayesian attentional model in the Notification Manager.   
 

        
 
Figure 4. Constellation of components of the Notification Platform.  Sources and devices are 
subscribed to the Notification Manager via a set of standard interfaces.  The Notification Manager 
accesses sensor findings from multiple devices to deliberate about information value, attention, and 
the best channel and alerting modality.   
 
The Notification Manager’s decision analysis weighs the expected costs and benefits of alerting a 
user about messages coming into the system’s Universal Inbox.  In computing the costs of 
disruption, the decision model considers the probability distribution over a user’s attentional state 
and location in several places in its analysis, including the cost of disruption associated with 
different alerts for each device, the availability of different devices, and the likelihood that the 
information will reach the user when alerted in a specific manner on a device.   
 
The ongoing expected-utility analysis is performed in accordance with a user’s preferences, stored 
in a profile. These include assertions about the cost of disruption for each alert modality, 
conditioned on users being in different attentional states. As an example, for the case of a desktop 
computer, the system makes available a set of display alternatives as the product of different visual 
displays of the alert (e.g., thumbnail, full-alert display) and several auditory cues (e.g., no auditory 

 



clue, soft chime, louder alert). The placement of the alert with regards to the current focus of visual 
attention or interaction is also considered.  
 
Figure 5 captures the deliberation of the Notification Platform about incoming messages.  The 
system computes the expected value of receiving an alert as the difference between the value of 
alerting the user now and the value that will be obtained by reviewing the alert later.  Given 
probability distributions over a user’s attention and location inferred from its sensors, Notification 
Platform iterates over all alerting and display modalities for each device with an expected-utility 
analysis to decide if, when, and how to alert a user.  As represented by the metaphor of a narrowing 
funnel in Figure 5, the system considers, for each device and modality, the loss in fidelity of 
information transmitted. In addition, the system considers the likelihood that an alert will be 
received, given inferred probability distributions over the attention and location of the user. This 
reliability of transmission is represented metaphorically in the figure as the chance that a message 
will make it through a slot in a spinning disk.  In the end, the attention-sensitive costs of disruption 
are subtracted from estimates of the value of alerting, yielding a net value of alerting a user for each 
channel and alerting modality.  The channel and modality with the highest expected value is 
selected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Graphical depiction of cost-benefit analyses in the Notification Platform.  The attention-
sensitive costs of disruption and value of information are considered, along with the losses due to 
decreased fidelity (narrowing funnel) and transmission reliability (spinning slotted disk) associated 
with the use of each alerting modality of all subscribed devices.   
 
Figure 6 displays several aspects of the behind-the-scenes functioning of the Notification Platform. 
A context palette displays current findings drawn from sensor sources. Several views into the 
decision analysis are displayed, including inference about the time-varying attention of the user.  At 
the current time, the user is inferred to be most likely in a state named high-focus solo activity, 
which has competed recently with low-focus solo activity, conversation in office, and other less 
likely states. The Universal Inbox displays messages from several sources, including email, instant 
messaging, breaking news, and stock prices.  Messages have also been received from DocWatch, an 
agent subscribed to by the user that identifies documents of interest for the user. Each message is 
annotated with the best device and alerting policy, and the associated net expected dollar value of 
relaying the messages with that channel and mode is indicated.  As portrayed in the inbox, it is 
worthwhile passing on to the user two instant messages. Other alerts are in the red, as the cost of 

 



disruption dominates the net value of information. In this case, the ideal alerting mode and channel 
for an instant message is determined to be a visual notification in a large format coupled with an 
audio herald at the user’s desktop system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. View of portion of the Notification Platform’s reasoning. At run time, information from 
multiple sensors is posted to the Context Whiteboard and fused to infer the user’s attentional status 
and location. Multiple notifications are sorted by net expected value and the channel and alerting 
modality with the highest expected utility is selected 
 
Ongoing research on the Notification Platform project includes the refinement of preference 
assessment tools to ease the task of encoding preferences. Currently, users can adjust sliders to 
change a set of predefined defaults on costs of interruptions.  Another key area of work centers on 
using machine learning for building probabilistic models of attention, location, and cost of 
disruption from data. Results from machine-learning efforts have been applied to refine the 
Notification Platform [13,22]. 
 
As highlighted in Figure 7, we have also been working to make small devices aware of the 
attentional status and location of users—and either reporting local sensor information to the central 
Notification Manager or performing local notification management and related services based on 
the inferred attention [8].  This research includes the challenges of embedding and leveraging 
multiple perceptual sensors on small devices, including GPS, 802.11 signal strength, accelerometers, 
infrared proximity detectors, and touch sensors. Part of this work has explored opportunities for 
developing devices, such as cell phones that behave with more insight about their disruptiveness by 
considering coarse models of attention [9]. 
 
Additionally, we are continuing to pursue psychological studies of disruption.  Formal studies of the 
costs of disruption began with the early work of Ovsiankina [23] and Zeigarnik [29] nearly seventy-
five years ago. The rich body of work in this realm includes studies on memory, problem solving, 
and overall task efficiency in the face of disruptions.  More recent work includes efforts by our team 
[3,4] and other groups [e.g., 18,19] to probe the influence of notifications of various types and 
saliencies on the efficiency and satisfaction with performing a variety of computer tasks. The 



psychological studies and results complement the mathematical models; the economic models 
provide a principled, flexible foundation which can integrate costs uncovered by user studies as 
parameters considered in expected-utility decision making. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Sensing PDA, outfitted with multiple perceptual sensors, including proximity, motion, and 
touch sensors.  In the background, accelerometer signals are displayed showing the motion 
fingerprint of a user walking while looking at the device. 
 
 
4   Attention, Initiative, and Interaction 
 
In another area of research, we have investigated the use models of attention to enhance the 
robustness and fluidity of human-computer collaboration.  Some of this work focuses on the 
recognition of attentional cues as coordinative signals in mixed-initiative interaction with computing 
devices.  In mixed-initiative interaction, both users and computers take turns in contributing to a 
project or an understanding [10]. The turn taking of conversational dialog is a prototypical example 
of mixed-initiative interaction.  Psychologists have found that people having conversations with one 
another rely on attentional cues to signal when a contribution is going to be offered or has been 
accepted [2].  We have sought to endow computers with an analogous ability to recognize and emit 
signals to guide the nature and timing of contributions and clarifications in support of mixed-
initiative interaction.   
 
DeepListener [15] and Quartet [24] represent efforts in mixed-initiative interaction to incorporate 
attention in spoken language systems.  Both systems tackle what we have referred to as the speech-
target problem: When a computer with an open microphone and speech recognizer hears an 
utterance, how is it to recognize that it is being addressed when there are other people or listening 
devices in a room?  DeepListener and Quartet explicitly address this challenge with probabilistic 
models that infer the likelihood that they are the target of speech.   
 
DeepListener uses a model of attention and intention to guide clarification dialog in a spoken 
command and control setting. The system considers its uncertainty about whether it is the target of 
speech, what it has heard, and the likelihood of different intentions.  The system continues to make 
expected-utility decisions about carrying out actions in the world, or about how it should approach 
users, if necessarily, to clarify their intentions before taking actions. These decisions take into 
consideration the utilities of alternate dialog actions and the stakes of the world actions.   
 
DeepListener shares its attention and availability by gracefully changing the colors and intensities 
of an attentional lens that glows on its control panel, and via gestures and thoughts of an animated 
agent that it renders.  These affordances provide cues that assist with conversational turn taking.   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Reasoning about the target of speech and clarification dialog. DeepListener first makes an 
expected utility decision to quietly share its thoughts about the possibility that it is the target of an 
utterance. Given additional recognitions, it goes ahead to seek clarification, and finally executes an 
action for the user. 
 
Figure 8 displays a situation where DeepListener has heard an utterance that was first directed 
elsewhere in a noisy environment.  After analyzing a new utterance a bit later, the system engages 
the user in a clarification dialog, and then invokes a desired action.  
 
Quartet operates with a continuous speech recognition system, and incorporates a richer model of 
attention under uncertainty. It examines keyboard events, an analysis of the content and the 
coherence of natural language parsing, and visual pose analysis to ascertain the attentional status of 
the user and system with regards to the establishment, maintenance, and disruption of attention 
between the user and system [24].  Quartet couples speech recognition to a natural language 
processor. The system continues to attempt to parse the noisy utterances that it has recognized in 
speech to infer a user’s intentions within focused contexts.  Figure 9 shows Quartet listening to a 
user talking about the system rather than speaking to the system.  In this case, Quartet is being used 
as an assistant to control via voice commands the navigation of slides displayed in a presentation.  
Utterances directed to Quartet about navigation arise intermittently during the more dominant 
stream of ongoing utterances associated with the presentation.  In this example, the user is talking 
about the computer, and, based on a fusion of the user’s language and visual pose, Quartet infers 
that the user is likely speaking to someone else. 
 
Our ongoing research on mixed-initiative and spoken language systems is focusing on several 
challenges, including the use of sensed or inferred attention to provide clues about a user’s 
intentions, the content and context at hand, and the nature and ideal timing of appropriate 
contributions. This work includes using sensed or inferred attention to inform speech recognition 
systems about the specific microcontexts being addressed with utterances.  Such narrowing of the 
spotlight of analysis can be useful for enhancing recognition as it can enable spoken dialog systems 
to swap in appropriate language models and semantics, and scope of possible actions. Also, robust 
solutions to the speech-target problem promise to influence significantly the overall sociology of 
human-computer interaction, by allowing users to interact with multiple devices and people in their 
proximity with speech and gestures in a manner similar to the way that people interact with one 
another.   
 
In another realm of innovation, computers with an ability to track and to understand attentional 
patterns among people engaged in conversations can provide new kinds of services and facilities. 
For example, methods for identifying visual attention among participants in a conversation can be 
used to automate the control of cinematography, and to capture, organize, and understand a group 
meeting or videoconference [27].  Thus, beyond enhancing human-computer interaction, sensing 

 



and reasoning about attention promises to enhance the way we communicate and collaborate with 
one another. 
 
5   Conclusion 
 
We described efforts to endow computing systems with the ability to sense and reason about human 
attention. After reviewing some background on the nature and importance of attention in cognition 
and discourse, we discussed methods for inferring attention from multiple streams of information, 
and for leveraging these inferences in decision making under uncertainty.  Then, we presented 
illustrative applications of the use of attentional models in messaging systems and in mixed-
initiative interaction. Research on the use of models of attention in computing systems is still in its 
youth.  We expect that continuing refinement of methods for recognizing, reasoning, and 
communicating about attention will change in a qualitative manner the way we perceive and work 
with computers.  
 

 
 
 
 
Figure 9. Quartet in action.  Quartet’s partial recognition is displayed at the top of the display.  The 
system’s beliefs about the attentional status of the user, with regards to initiating, maintaining, or 
breaking out of conversational dialog, is represented as a dynamically changing probability 
distribution. 
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