

Commercial Aviation

Modern ARINC 743B DO-229D and DO-253C GLSSU Solutions For Retrofit

Presented to

AEEC

March 2010

The Classic Retrofit Challenge

- Financial:
 - Operating budget year financing
 - ROI payback: 1-2 years max
 - Investment usually comes from reduced fuel budget: save enough on gas in 1-2 years to pay off the investment in the avionics.
- Retrofits make sense when the avionics bring new capability measurable in better fuel economy at a reasonable retrofit cost to airframes with long lives ahead.
- Retrofit aircraft equipage assumptions:
 - GNSS with or without inertial navigation
 - Minimal or no FMS modifications
 - Retrofit solution must <u>"bolt-on" solution, not a gut and re-equip</u>

What do these Terms have in Common?

ADS-B DO-229D

SBAS

RNP0.1

GBAS

ARINC 743B

Integrity

LPV TSO-C145c Beta-3

CAT-I

DO-253C

Gagan

SA-Aware

99.999% Availability

EGNOS

TSO-C146 Delta-4

Airbus A-350 LPV!

GLS

Primary Means of Navigation Worldwide

TSO-C161a/C162a

CAT-I/II/III

Autoland

NextGen

Some Answers:

- All are "added" features
 - Enabled through augmented GPS receivers & integrated with aircraft operation
 - Provide substantial new benefits to air transport operators
 - but which are <u>not</u> generally supportable by 1st gen GPS receivers, of which there are thousands in current airline service, even if updated as "SA-Aware"...
 - Positioned to take advantage of the "Next Gen" Airspace
- The ARINC 743B Characteristic captures the current GPS L1 receiver augmentations:
 - SBAS enabled navigation and LPV
 - GBAS GLS
 - All in one ARINC 743B GPS receiver (+ VDB receiver).
- The GPS L1 signal remains to be fully exploited: it remains to exploit SBAS&LPV + GBAS GLS in an all-in-one receiver as a total navigation and approach solution.
- The ARINC 743B Characteristic allows growth to an expanded GNSS receiver with essentially the same aircraft interface.
 - Equipment impact: the GPS receiver & antenna will probably be replaced as a minimum.
 - Remark: an expanded GNSS may bring additional benefits to commercial aviation, but these need better definition.

Focus on Augmented GPS: SBAS/GBAS Receivers

- Non-Augmented GPS receivers do not have the required integrity-availability-continuity to support the transition to a performance-based navigation infrastructure
 - Shift from ground-based to satellite-based services
 - Eventually navaids like VOR and NDB will be "divested"
 - NAS-wide services for enroute, terminal and approach, including backup for approach and landing, are all GNSS based
- With SBAS augmentation:
 - By far the most accurate, highest integrity navigation system there is with Primary Means Navigation (not so with a SA-Aware only Rx)
 - Enhances RNAV, RNP navigation & RNP SAAAR (RNP0.1)
 - Meets ADS-B requirements (position integrity & velocity with FOM)
 especially in the terminal area
 - LPV, CAT-I equivalent available today
- With GBAS augmentation:
 - GLS CAT-I today, but no Federal Acquisition Program for LAAS
 - CAT-II/III in future, being worked, using GPS L1 only.

Capability of an ARINC 743B Receiver

- Is self-contained and focuses only on GNSS navigation and approach capability (does not drag around classical receivers such as VOR, ILS, etc...) as part of its characteristic.
- Accounts for DO-229D, SBAS Navigation and LPV
- Accounts for DO-253C, GBAS GLS
- Enables RNP0.1 (RNP SAAAR) & Primary Means of Navigation
- Address ADS-B position & velocity outputs, including ADS-B operations in the <u>Terminal Phase of Flight</u>
- Address retrofit aircraft cost effectively
- Allows for growth to new GNSS and augmentations without significant impact to aircraft or systems.

SBAS/GBAS ARINC 743B Receiver

- GBAS and SBAS combined in one receiver
- New approach connector is defined for Alternate Form Factor GLSSU receiver
 - Glide Slope and Localizer look-alike guidance, identical to ILS provided on ILS look-alike bus
 - Provides DME look-alike, identical to DME provided on DME lookalike bus
 - Retain existing ILS, displays, FMS, and avionics in general
 - add "bolt-on" GPS/SBAS navigation & SBAS/GBAS approach solution
 - Has built-in digital High Integrity Switch to intercept ILS and DME busses and replace with GLSSU derived LOC/GS and DTG
 - Rectilinear guidance also provided as required by GBAS MOPS for both GBAS and SBAS approaches on GLS bus
 - Fresh 10 Hz navigation & approach data provided on GLS bus for flexibility to compute guidance on other equipment

SBAS/GBAS Navigation Receiver

Primary Means Navigation with SBAS

- SBAS receiver uses SBAS differential GPS data, and integrity information to:
 - ✓ Produce a more accurate navigation solution
 - ✓ Produce a better integrity (smaller HIL, HPL) and much better availability
- RNP0.1 Integrity >= 99.999% under SBAS coverage
- RNP0.3 Integrity = 100% under SBAS coverage
- Coverage is entire SBAS satellite footprint (continental)
- SA-Aware when not under SBAS coverage
- Certification is TSO-C145c for navigation, TSO-C146c for approach guidance, may have both
- In general, C145c equipment performs as well as or outperforms C196 (SA-Aware) equipment.

Better Local Area Navigation with GBAS

- GBAS receiver uses GBAS differential GPS data and integrity information to:
 - ✓ Produce a more accurate navigation solution
 - ✓ Produce a better integrity (smaller HIL, HPL) and much better availability
- Coverage limited to 23 nmi operational radius defined by VDB link budget
- LAAS TSO-C161a + base a certification, one of: TSO-C129a, TSO-C145c, or TSO-C196

Impact of SBAS + GBAS on Aircraft <u>Navigation</u> Interface (ARINC 743A):

- No impact on navigation interface, no impact on standard ARINC 743 navigation connector
- Same labels for position solution, same label for integrity information
- Only difference is that data is more accurate, better integrity availability
- Impact on ARINC 743: no impact, aircraft is presented with a better solution
- Optional labels exist, if exercised, then there will be modifications, but not needed.

SBAS/GBAS Approach Receiver

- DO-229D GPS/SBAS receiver classes
 - Defines a Beta and Delta class receiver (Gamma class not discussed)
 - ✓ Beta class is a navigation receiver, does NOT provide Glide Slope or Localizer guidance, relies on some other equipment to do guidance (FMS?)
 - ✓ Beta Class receiver interface is essentially unchanged for navigation, the standard connector is the "navigation connector" with same navigation interface definitions.
 - ✓ Delta class is an approach receiver, provides Glide Slope and Localizer guidance
 - ✓ Delta Class receiver interface defines a new approach connector
 - ✓ Delta class receiver can have its own FAS or it down-load the FAS from the FMS
 - Beta + Delta class receiver can be combined as one receiver
 - Beta + Delta class receiver can be a complete stand-alone navigation and approach receiver
 - ✓ Approach does not have to be driven by a FMS
 - √ Navigation solution used by FMS as if GPS only
- DO-253C GBAS receiver
 - No equipment classes
 - ✓ GPS or GPS/SBAS navigation outside range of GBAS ground station
 - ✓ GBAS Differential navigation within range of ground station if that service is provided by the GBAS ground station
 - ✓ Approach guidance within range of ground station

SBAS/GBAS Approach Receiver, How It's Done

- The Guidance Solution
 - Must be ILS Look-Alike: Glide Slope and Localizer outputs
 - Must be DME Look-Alike: Distance to LTP/FTP
 - Delta Class receiver behaves exactly as an ILS receiver aircraft systems see Delta Class receiver as an ILS receiver – true ILS look-alike. Result: no aircraft systems need to be modified
 - Ability to switch between ILS and GPS approach with built-in High Integrity Switch
- Impact on FMS and aircraft
 - In retrofits, maximize use of existing aircraft displays, autopilot without modifications. This
 is the key to low cost.
 - However, FMS must provide for:
 - ✓ FMS procedures for GPS RNAV, guidance to FAF, "same as for ILS"
 - ✓ FMS procedures for GPS RNAV missed approach, "same as for ILS"
 - FMS does not have to be modified to control GLSSU receiver, can be done with a separate control head
 - FMS does not have to host the LPV database, GLSSU can host 2 cycles of the entire world-wide LPV database, CMC GLSSU: 12Mb/cycle, 2 cycles (total = 24 Mb).
- Impact on Aircraft <u>Approach</u> Interface:
 - Provides Glide Slope and Localizer look-alike guidance, identical to ILS
 - Provides DME look-alike, identical to DME
 - Retain existing ILS, displays, add "bolt-on" GPS approach solution
 - Potential FMS impact to provide RNAV and Missed Approach Guidance

SBAS/GBAS Approach Receiver, What It Delivers

DO-229D

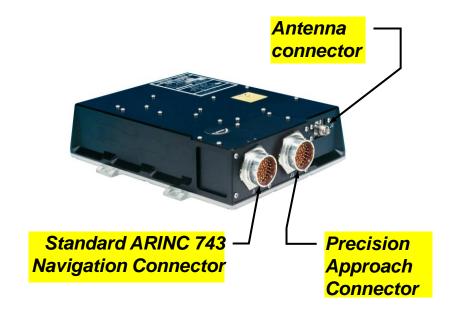
- Defines a Beta and Delta class receiver
 - ✓ Beta class is a navigation receiver, does NOT provide Glide Slope or Localizer guidance
 - ✓ Delta class is an approach receiver, provides Glide Slope and Localizer guidance
 - ✓ Delta class receiver can have its own FAS or have it down-loaded from the FMS
- Beta + Delta class receiver can be combined as one receiver.
- Coverage tends to be entire continental airspace
- Beta + Delta class receiver can be a complete stand-alone navigation and approach receiver, fully independent of a FMS

DO-253C

- GBAS receiver uses GBAS differential GPS data and integrity information to:
 - ✓ Produce a more accurate navigation solution
 - ✓ Produce a better integrity (smaller HIL, HPL) and much better availability
 - ✓ provides Glide Slope and Localizer guidance
 - ✓ CAT-I Approach capability, CAT-II/III TBD approval with GPS L1 signal.
- Coverage limited to 23 nmi operational radius as defined by VDB link budget
- Impact on Aircraft <u>Navigation</u> Interface (ARINC 743):
 - None foreseen
 - Same labels for position solution, same label for integrity information
 - Only difference is that data is more accurate, better integrity availability
 - Impact on ARINC 743: no impact, aircraft is presented with a better solution.

Practical Example of an ARINC 743B receiver retrofit

- GLSSU developed by CMC Electronics as an alternative to MMR
 - ARINC 743B Alternate Form Factor
 - Today: SBAS + LPV
 - Tomorrow: SBAS + LPV & GBAS + GLS in one receiver: GLSSU
 - ✓ External VDB receiver, same foot-print
- Example: classic B-757 Retrofit
 - No GPS
 - VOR/DME & INS navigation
 - ILS approach


A Practical Example of an ARINC 743B SBAS/GBAS receiver

GLSSU dual purpose:

- SBAS Navigation
 RNP0.1 performance
 ADS-B in terminal area
 Primary Mean Nav
 SA Aware built-in
- SBAS LPV + GBAS GLS

Complete GLSSU system:

- Built-in High integrity switch for ILS-GLS signal source selection
- External VDB receiver for GBAS
- Optional control head
- Addition of guidance mode ILS-GLS/LPV selector
- Active antenna, TSO C-190, required for LPV or GLS

optional Control Head for Stand-alone Precision Approach

CMA-5024 IntegriFlight™ GLSSU SBAS/LPV

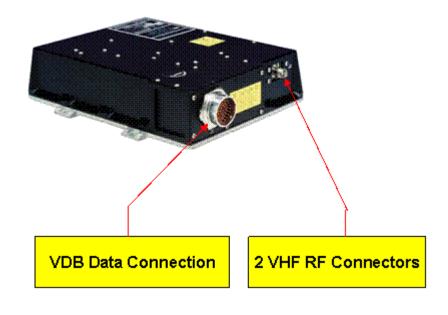
- GPS Landing + GLSSU in single unit
 - Certified (2008) to highest standards
 TSO-C145c Beta-3 & TSO-C146c Delta-4
 - √ No "Waivers" of any sort
 - ✓ Primary Means of Navigation
 - √ Supports RNP0.1 certification
 - ✓ Supports ADS-B requirements, NAC_V=2
 - ✓ Built-In WAAS LPV + FAS Database
 - ✓ Built-in High Integrity Switch ILS/GLS switch
 - SA-Aware world-wide
 - ARINC 743A-4/5 & 743B compliant
 - Unmatched 40,000MTBF
 - Aircraft Personality Data (APD) provision to configure interface to specific airframe type.
 - Upgradable to LAAS, external VDB required
 - CAT-IIIb ready: All-in-view 24-Channel
 Narrow Correlator technology

CMA-5024 GLSSU

CMA-5025 Control Panel

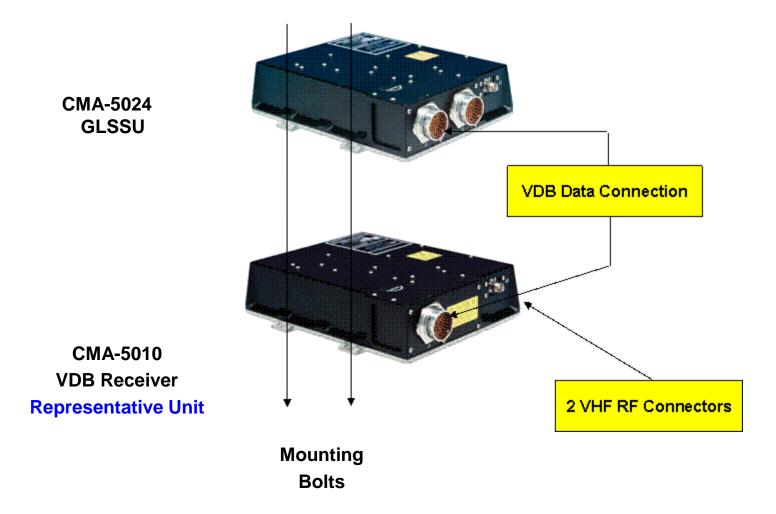
CMA-5025 IntegriFlight™ Control Panel - Overview

- TSO-C146c Delta-4
- Smallest "standard" form factor
 - 2.25" X 2.5" X 4.5"
- Connects to GLSSU:
 - Controls and selects WAAS LPV ICAO tuning range from (40000 to 99999)
 - Controls and selects LAAS GLS ICAO tuning range from (20000 to 39999)
- 20,000 hour MTBF



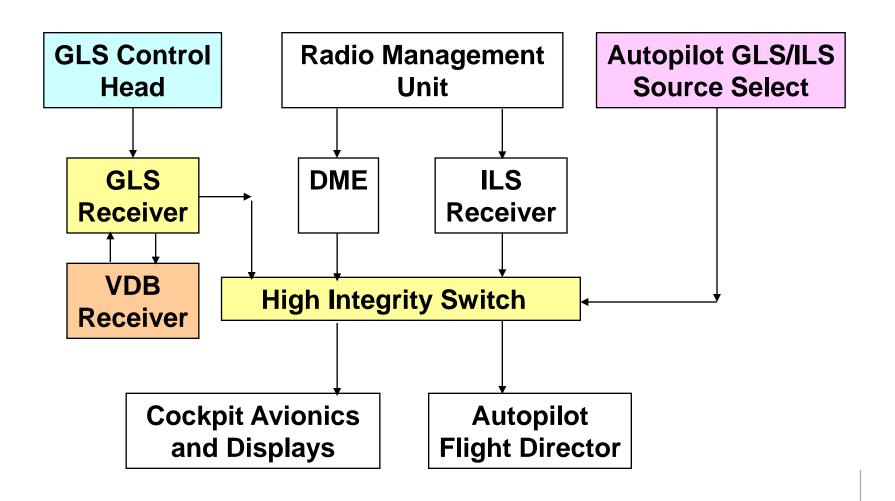
- Left and Right CMA-5025 connect to Left and Right CMA-5024s
- GLSSUs crosstalk tuning at all times, all GLSSUs tuned to same approach
- Both CMA-5025s will display same active approach (GLSSUs will cross-talk the tuning among themselves and to the opposite control panel)
- Either side can select tuning, opposite control panel will display same selected approach, all GLSSUs will tune to same selected approach.

CMA-5010 IntegriFlight™ VDB Receiver - Overview

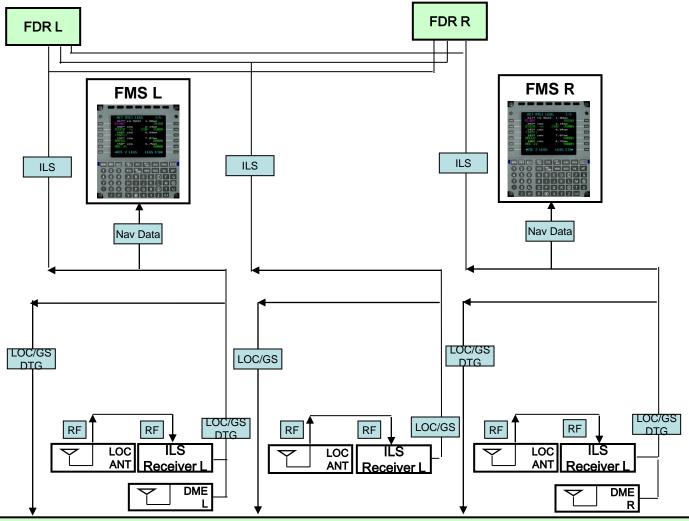

- Dedicated VBD Receiver (planned)
 - RTCA/DO-253C
 - ARINC 755 I/O compliant
- 3 Connectors:
 - Data and Power Connector
 Connected only to GLSSU
 - 2 RF Connectors: (In and Out)
 Configurable RF ILS/VDB switch,
 3dB power split or active RF
- Controlled only by GLSSU and ILS/GLS Approach Select Switch
- > 40,000 hour MTBF target
- An "Add-Below" to existing GLSSU
 - Identical "footprint" to GLSSU
 - Slim deck height, approx 1 inch

CMA-5010
VDB Receiver
Representative Unit

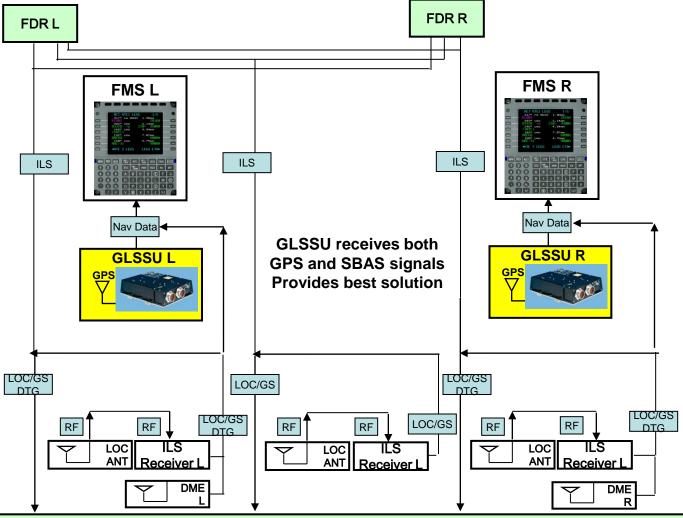
CMA-5010 IntegriFlight™ VDB Receiver - Overview



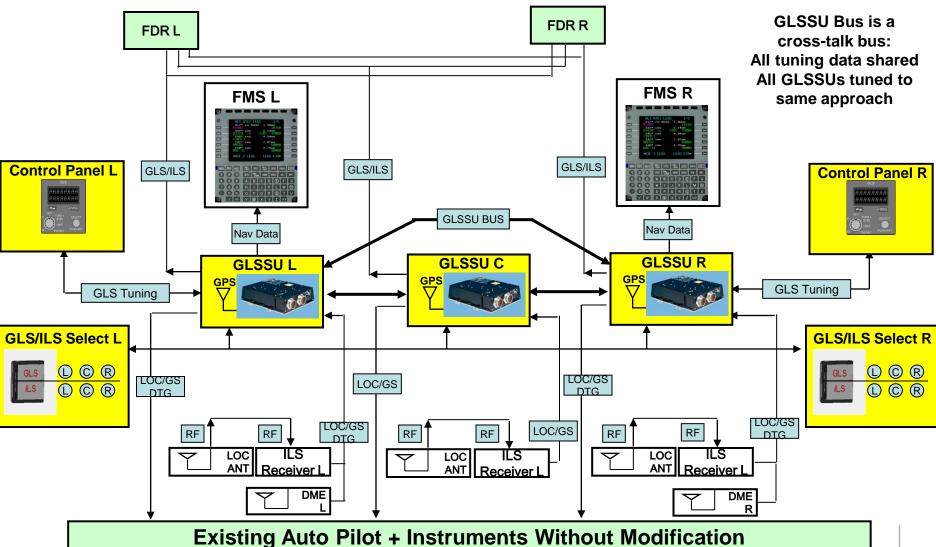
ILS / DME Top Level Diagram



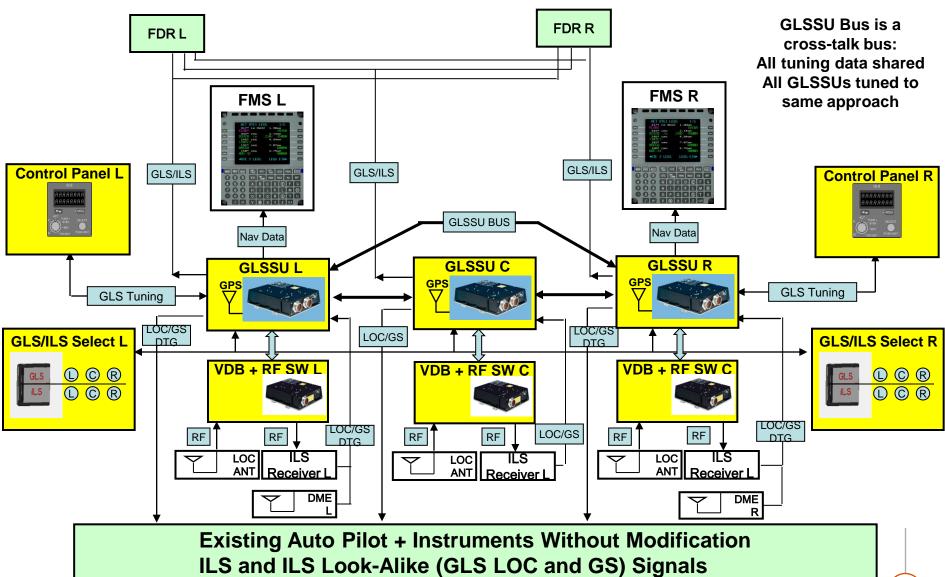
ILS/DME + GLS Approach Top Level Diagram


Architecture in a classic 757 NO GPS

Existing Auto Pilot + Instruments Without Modification ILS and ILS Look-Alike (GLS LOC and GS) Signals


Architecture in a classic 757 + SBAS (SA-Aware)

Existing Auto Pilot + Instruments Without Modification ILS and ILS Look-Alike (GLS LOC and GS) Signals


Architecture in a classic 757 + SBAS + LPV

ILS and ILS Look-Alike (GLS LOC and GS) Signals

Architecture in a classic 757 + SBAS + LPV + GBAS + GLS

Concluding Remarks

- SBAS and GBAS in one receiver as a simple retrofit solution for classic aircraft is possible.
- GLSSU with SBAS available today
- GLSSU with GBAS coming soon.
- To consider future standards:
 - Radio box with classical radios (ILS, VOR, etc) in one box, but NO GPS
 - Separate GNSS box
 - ✓ GPS, SBAS, GLS today
 - ✓ Coming: GPS L1 & L5, Galileo, and still newer things on drawing boards
 - √ The GNSS receiver will undergo changes for decades to come. Does it
 make sense to integrate it with ILS, VOR, etc...?

The Precision Upgrade Solution for Existing Aircraft

IntegriFlight® SBAS/WAAS GPS Receiver

- Worldwide Primary Means Navigation
- Meets or exceeds ADS-B requirements
- Navigation solution supports RNP0.1
- Fully coupled autopilot LPV guidance
- Growth to LAAS/GBAS

