Modern Control systems

Lecture-4 State Space representation of Transfer Function

V. Sankaranarayanan

э.

OUTLINE

Representation in Canonical forms

- Canonical Form-I
- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

イロン イボン イヨン イヨン

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Many techniques are available for obtaining state space representations of transfer functions.

STATE SPACE REPRESENTATIONS IN CANONICAL FORMS

Consider a system defined by,

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} \dot{y} + a_n y = b_0 u^{(m)} + b_1 u^{(m-1)} + \dots + b_{m-1} \dot{u} + b_m u$$

where u' is the *input* and y' is the *output*. This equation can also be written as,

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

STATE SPACE REPRESENTATIONS IN CANONICAL FORMS

- The process of converting Transfer Function to State-Space form is **NOT** unique.
- Various realizations are possible which are equivalent.(i.e, their properties do not change)
- However, one representation may have advantages over others for a particular task.
- In what follows, we shall present the state space representations of the systems defined by different canonical forms.

Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

<ロ> (四) (四) (日) (日) (日)

э.

OUTLINE

Representation in Canonical Forms

• Canonical Form-I

- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

TRANSFER FUNCTION TO STATE SPACE

CANONICAL FORM I

- We have, $\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$
- Let $\frac{Y(s)}{U(s)} = \frac{Y(s)}{X(s)} \times \frac{X(s)}{U(s)}$
- Thus,

۲

$$\frac{Y(s)}{X(s)} = b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_n$$
$$\frac{X(s)}{U(s)} = \frac{1}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

$$\therefore u(t) = \frac{d^n x}{dt^n} + a_1 \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1} \frac{dx}{dt} + a_n x$$
$$\frac{d^n x}{dt^n} = u(t) - a_1 \frac{d^{n-1} x}{dt^{n-1}} - \dots - a_{n-1} \frac{dx}{dt} - a_n x$$

TRANSFER FUNCTION TO STATE SPACE

CANONICAL FORM I

Let
$$x_1 = x$$
; $x_2 = \frac{dx}{dt}$; $x_3 = \frac{d^2x}{dt^2} \cdots x_n = \frac{d^{n-1}x}{dt^{n-1}}$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ -a_n & -a_{n-1} & \cdots & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} u$$

• Case-1: If
$$m = n - 1[\therefore \frac{d^m x}{dt^m} = \frac{d^{n-1}x}{dt^{n-1}} = x_n]$$

We know that,

$$Y(s) = X(s)(b_0s^m + b_1s^{m-1} + \dots + b_{m-1}s + b_m)$$

$$\therefore y(t) = b_0\frac{d^{n-1}x}{dt^{n-1}} + b_1\frac{d^{n-2}x}{dt^{n-2}} + \dots + b_{n-1}\frac{dx}{dt} + b_nx$$

$$y(t) = b_0x_n + b_1x_{n-1} + \dots + b_nx_1$$

TRANSFER FUNCTION TO STATE SPACE

CANONICAL FORM I

$$y = \begin{bmatrix} b_n & b_{n-1} & \cdots & b_0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

• Case-2: If
$$m = n_i$$

$$\frac{d^m x}{dt^m} = u(t) - a_1 \frac{d^{n-1} x}{dt^{n-1}} - \dots - a_{n-1} \frac{dx}{dt} - a_n x$$

$$y(t) = b_0(u(t) - a_1 \frac{d^{n-1} x}{dt^{n-1}} - \dots - a_n x) + b_1 \frac{d^{m-1} x}{dt^{m-1}} + \dots + b_m x$$

$$y(t) = (b_1 - a_1 b_0) \frac{d^{n-1} x}{dt^{n-1}} + \dots + (b_{n-1} a_{n-1} b_0) \frac{dx}{dt} + (b_n - a_n b_0) + b_0 u$$

Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

∃ nar

TRANSFER FUNCTION TO STATE SPACE

CANONICAL FORM I

$$\therefore y = \begin{bmatrix} b_n - a_n b_0 & \vdots & b_{n-1} - a_{n-1} b_0 & \vdots & \cdots & \vdots & b_1 - a_1 b_0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + [b_0] u$$

TRANSFER FUNCTION TO STATE SPACE

EXAMPLE-1

Consider a transfer function, $G(s) = \frac{5s^2 + 7s + 9}{s^3 + 8s^2 + 6s + 2}$

Let
$$\frac{Y(s)}{U(s)} = \frac{Y(s)}{X(s)} \times \frac{X(s)}{U(s)} = \frac{5s^2 + 7s + 9}{s^3 + 8s^2 + 6s + 2}$$

Thus,

$$\frac{\zeta(s)}{\zeta(s)} = 5s^2 + 7s + 9 \tag{1}$$

$$\frac{X(s)}{V(s)} = \frac{1}{s^3 + 8s^2 + 6s + 2}$$
(2)

イロト イボト イヨト イヨト

3

From eq(2), $U(s) = X(s)[s^3 + 8s^2 + 6s + 2]$

$$u(t) = \frac{d^3x}{dt^3} + 8\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 2x$$
$$\frac{d^3x}{dt^3} = u(t) - 8\frac{d^2x}{dt^2} - 6\frac{dx}{dt} - 2x$$

(日) (同) (三) (三)

э.

TRANSFER FUNCTION TO STATE SPACE

Examples on Canonical Form-I: Example-1

Let
$$x_1 = x$$
; $x_2 = \frac{dx}{dt}$; $x_3 = \frac{d^2x}{dt^2}$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -6 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
From eq(1), $Y(s) = X(s)[5s^2 + 7s + 9]$
 $y(t) = 5\frac{d^2x}{dt^2} + 7\frac{dx}{dt} + 9x$
 $y(t) = 5x_3 + 7x_2 + 9x_1$
 $y = \begin{bmatrix} 9 & 7 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 うらぐ

TRANSFER FUNCTION TO STATE SPACE

$E_{XAMPLE-2}$

Consider a transfer function, $G(s)=\frac{5s^2+7s+9}{s^2+2s+15}$ Let

$$\frac{X(s)}{U(s)} = \frac{1}{s^2 + 2s + 15} \\ \frac{d^2x}{dt^2} = -15x - 2\frac{dx}{dt} + u(t)$$

Let $x_1 = x$; $x_2 = \frac{dx}{dt}$ $\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -15 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix}$

Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

TRANSFER FUNCTION TO STATE SPACE

Example-2

$$\frac{Y(s)}{X(s)} = 5s^{2} + 7s + 9$$

$$y(t) = 5\frac{d^{2}x}{dt^{2}} + 7\frac{dx}{dt} + 9x$$

$$= 5(-15x - 2\frac{dx}{dt} + u(t)) + 7\frac{dx}{dt} + 9x$$

$$= -66x - 3\frac{dx}{dt} + 5u(t)$$

$$y = [-66 -3] \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + [5]u$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 - のへで

Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

<ロ> (四) (四) (日) (日) (日)

э.

OUTLINE

Representation in Canonical forms

• Canonical Form-I

• Canonical Form II

- Diagonal Canonical form
- Jordan Canonical form

・ロト ・ 一下 ・ ・ ヨ ト ・ ・ ヨ ト

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• We have,
$$\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

$$\therefore Y(s)[s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n}] = U(s)[b_{0}s^{m} + b_{1}s^{m-1} + \dots + b_{m-1}s + b_{m}]$$

<u>Case-1</u>:If m = n - 1

• Replacing m with n-1 and dividing the equation with s^n and rearranging it, we get,

$$Y(s) = \frac{1}{s} [b_0 U(s) - a_1 Y(s) + \frac{1}{s} [b_1 U(s) - a_2 Y(s) + \frac{1}{s} [\cdots + \frac{1}{s} [b_{n-1} U(s) - a_n Y(s)] \cdots]$$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Now, let us define the states and output as follows,

$$X_{n}(s) = \frac{1}{s}[b_{0}U(s) - a_{1}Y(s) + X_{n-1}(s)] = Y(s)$$

$$X_{n-1}(s) = \frac{1}{s}[b_{1}U(s) - a_{2}Y(s) + X_{n-2}(s)]$$

$$X_{n-2}(s) = \frac{1}{s}[b_{2}U(s) - a_{3}Y(s) + X_{n-3}(s)]$$

$$\vdots$$

$$X_1(s) = \frac{1}{s} [b_{n-1}U(s) - a_n Y(s)]$$

・ロト ・ 一下 ・ ・ ヨ ト ・ ・ ヨ ト

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Since $X_n(s) = Y(s)$, replacing Y(s) by $X_n(s)$ and rewriting the state equations, we get

$$X_{n}(s) = \frac{1}{s} [b_{0}U(s) - a_{1}X_{n}(s) + X_{n-1}(s)]$$

$$X_{n-1}(s) = \frac{1}{s} [b_{1}U(s) - a_{2}X_{n}(s) + X_{n-2}(s)]$$

$$X_{n-2}(s) = \frac{1}{s} [b_{2}U(s) - a_{3}X_{n}(s) + X_{n-3}(s)]$$

$$\vdots$$

$$X_{1}(s) = \frac{1}{s} [b_{n-1}U(s) - a_{n}X_{n}(s)]$$

-

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Applying Inverse Laplace Transformation on both sides, we get

$$\dot{x}_n = b_0 u - a_1 x_n + x_{n-1} \dot{x}_{n-1} = b_1 u - a_2 x_n + x_{n-2} \dot{x}_{n-2} = b_2 u - a_3 x_n + x_{n-3} \vdots \dot{x}_2 = b_{n-2} u - a_n x_n + x_1 \dot{x}_1 = b_{n-1} u - a_n x_n$$

• The output equation becomes, $y = x_n$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Summing up all the results into one vector matrix differential equation, we get,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & \cdots & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_{n-1} \\ b_{n-2} \\ \vdots \\ b_0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

・ロト ・ 一下 ・ ・ ヨ ト ・ ・ ヨ ト

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Example of Canonical Form II-Case 1

- Consider a transfer function, $\frac{Y(s)}{U(s)} = G(s) = \frac{5s^2 + 7s + 9}{s^3 + 8s^2 + 6s + 2}$
- We can see that the order of the numerator is less than that of the denominator and differs by 1. Hence, this falls under Case-1.
- On cross multiplication, we get $Y(s)[s^3 + 8s^2 + 6s + 2] = U(s)[5s^2 + 7s + 9]$
- dividing the equation with s^3 and rearranging it, we get,

$$Y(s) = \frac{1}{s}(5U(s) - 8Y(s) + \frac{1}{s}(7U(s) - 6Y(s) + \frac{1}{s}(2U(s) - 9Y(s))))$$

< 口 > < 同 >

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Example of Canonical Form II-Case 1

• \therefore The state equations and output equation can be defined as

$$\dot{x}_3 = 5u - 8x_3 + x_2 = y$$

 $\dot{x}_2 = 7u - 6x_3 + x_1$
 $\dot{x}_1 = 9u - 2x_3$

• Summing up all the results and formulating them in the matrix form, we get,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & -6 \\ 0 & 1 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 9 \\ 7 \\ 5 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

<u>Case-2</u>:If m = n

$$Y(s)[s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n}] = U(s)[b_{0}s^{n} + b_{1}s^{n-1} + \dots + b_{n-1}s + b_{n}]$$

• Dividing the equation with s^n and rearranging it, we get,

$$Y(s) = b_0 U(s) - a_0 Y(s) + \frac{1}{s} [b_1 U(s) - a_1 Y(s) + \frac{1}{s} [\dots + \frac{1}{s} [b_{n-1} U(s) - a_{n-1} Y(s) + \frac{1}{s} [b_n U(s) - a_n Y(s)]]] \dots]$$

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Now, let us define the states and output as follows,

$$Y(s) = b_0 U(s) + X_n(s)$$

$$X_n(s) = \frac{1}{s} [b_1 U(s) - a_1 Y(s) + X_{n-1}(s)]$$

$$X_{n-1}(s) = \frac{1}{s} [b_2 U(s) - a_2 Y(s) + X_{n-2}(s)]$$

$$\vdots$$

$$X_1(s) = \frac{1}{s} [b_n U(s) - a_n Y(s)]$$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Substituting $b_0 U(s) + X_n(s)$ in the place of Y(s) in state equations, we get,

$$X_{n}(s) = \frac{1}{s}[(b_{1} - a_{1}b_{0})U(s) - a_{1}X_{n}(s) + X_{n-1}(s)]$$

$$X_{n-1}(s) = \frac{1}{s}[(b_{2} - a_{2}b_{0})U(s) - a_{2}X_{n}(s) + X_{n-2}(s)]$$

$$\vdots$$

$$X_{2}(s) = \frac{1}{s}[(b_{n-1} - a_{n-1}b_{0})U(s) - a_{n-1}X_{n-1}(s) + X_{1}(s)]$$

$$X_{1}(s) = \frac{1}{s}[(b_{n} - a_{n}b_{0})U(s) - a_{n}X_{n}(s)]$$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Applying Inverse Laplace Transformation on both sides, we get

$$\dot{x}_n = (b_1 - a_1 b_0)u - a_1 x_n + x_{n-1} \dot{x}_{n-1} = (b_2 - a_2 b_0)u - a_2 x_n + x_{n-2} \dot{x}_{n-2} = (b_3 - a_3 b_0)u - a_3 x_n + x_{n-3} \vdots \dot{x}_2 = (b_{n-1} - a_{n-1} b_0)u - a_{n-1} x_1 \dot{x}_1 = (b_n - a_n b_0)u - a_n x_n$$

• The output equation becomes, $y = b_0 u + x_n$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CANONICAL FORM II

• Summing up all the results into one vector matrix differential equation, we get,

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \vdots \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} 0 & \cdots & \cdots & 0 & -a_{n} \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & -a_{1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + \begin{bmatrix} b_{n} - a_{n}b_{0} \\ b_{n-1} - a_{n-1}b_{0} \\ \vdots \\ b_{n-1} - a_{n-1}b_{0} \\ \vdots \\ b_{1} - a_{1}b_{0} \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + \begin{bmatrix} b_{0} \end{bmatrix} u$$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Example of Canonical Form II-Case 2

- Consider a transfer function, $\frac{Y(s)}{U(s)} = G(s) = \frac{5s^2 + 7s + 9}{s^2 + 2s + 15}$
- We can see that the order of the numerator is equal to that of the denominator. Hence, this falls under Case-2.
- On cross multiplication, we get $Y(s)[s^2 + 2s + 15] = U(s)[5s^2 + 7s + 9]$
- dividing the equation with s^2 and rearranging it, we get,

$$Y(s) = 5U(s) + \frac{1}{s}(7U(s) - 2Y(s) + \frac{1}{s}(9U(s) - 15Y(s)))$$

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Example of Canonical Form II-Case 2

• \therefore The state equations and output equation can be defined as

$$y = 5u + x_2$$

$$\dot{x}_2 = 7u - 2y + x_1$$

$$\dot{x}_1 = 9u - 15y$$

• Substituting $y = 5u + x_2$ in state equations and rearranging them we get,

$$\dot{x}_2 = -3u - 2x_2 + x_1$$

 $\dot{x}_1 = -66u - 15x_2$

• Summing up all the results and formulating them in the matrix form, we get,

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -15\\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} -66\\ -3 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 5 \end{bmatrix} u$$

Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

<ロ> (四) (四) (日) (日) (日)

э.

OUTLINE

Representation in Canonical forms

- Canonical Form-I
- Canonical Form II

• Diagonal Canonical form

• Jordan Canonical form

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

DIAGONAL CANONICAL FORM

Consider the transfer function defined by equation

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

Assumption: Denominator polynomial involves only distinct roots.

Therefore, the transfer function can be written as,

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{(s+p_1)(s+p_2)\cdots(s+p_n)}$$
$$= b_0 + \frac{c_1}{s+p_1} + \frac{c_2}{s+p_2} + \dots + \frac{c_n}{s+p_n}$$

if $m = n, b_0 = \text{constant},$ if $m < n, b_0 = 0$

・ロト ・同ト ・ヨト ・ヨト

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CONTINUATION OF DIAGONAL CANONICAL FORM...

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -p_1 & 0 & \cdots & 0 \\ 0 & -p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -p_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + b_0 u$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

EXAMPLE FOR DIAGONAL CANONICAL FORM

• Consider, the system defined by transfer function, $\frac{s+1}{s^2+5s+1}$.

- <u>Step-1</u>: Rewrite the transfer function as, $\frac{s+1}{(s+3)(s+2)}$
- Step-2: Split the transfer function into Partial fractions

$$\frac{2}{s+3} + \frac{(-1)}{s+2}$$

Here, m < n, $\therefore b_0 = 0$ • <u>Step-3</u>: Compare the obtained partial fraction form with $b_0 + \frac{c_1}{s+n_1} + \frac{c_2}{s+n_2} + \dots + \frac{c_n}{s+n_n}$, we get... Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

・ロト ・ 一下 ・ ・ ヨ ト ・ ・ ヨ ト

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Example for Diagonal Canonical Form

$$\begin{aligned} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} &= \begin{bmatrix} -3 & 0\\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u \\ y &= \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u \end{aligned}$$

Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

VIOLATION OF ASSUMPTION

- Previously in Diagonal form, the denominator polynomial involves only distinct roots.
- What if the denominator polynomial involves multiple roots ?

イロン イボン イヨン イヨン

э.

Representation in Canonical forms

- Canonical Form-I
- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

VIOLATION OF ASSUMPTION

- Previously in Diagonal form, the denominator polynomial involves only distinct roots.
- What if the denominator polynomial involves multiple roots

JORDAN CANONICAL FORM

- To deal with multiple roots, Diagonal Canonical Form must be modified to Jordan Canonical form.
- Consider, the equation

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{(s+p_1)(s+p_2)\cdots(s+p_n)}$$

• Let, $p_1 = p_2 = p_3$.

• • • • • • • • • • • •

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

CONTINUATION OF JORDAN CANONICAL FORM...

Then the factored form of $\frac{Y(s)}{U(s)}$ becomes

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{(s+p_1)^3 (s+p_4) \cdots (s+p_n)}$$

The partial fraction expansion of this last equation becomes

$$\frac{Y(s)}{U(s)} = b_0 + \frac{c_1}{(s+p_1)^3} + \frac{c_2}{(s+p_1)^2} + \frac{c_3}{s+p_1} + \frac{c_4}{s+p_4} \dots + \frac{c_n}{s+p_n}$$

э

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

JORDAN CANONICAL FORM

・ロト ・ 一 ・ モート ・ モー・ うらつ

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

Example for Jordan Canonical Form

Consider, the system defined by transfer function, $\frac{s+5}{(s^2+2s+1)(s+2)}.$

Step-1: Rewrite the transfer function as, $\frac{s+1}{(s+3)(s+2)}$

Step-2: Split the transfer function into Partial fractions

 $\frac{4}{(s+3)^2} + \frac{(-3)}{s+3} + \frac{3}{s+2}$ Here, $m < n, \therefore b_0 = 0$

Step-3: Compare the obtained partial fraction form with $b_0 + \frac{c_1}{(s+p_1)^3} + \frac{c_2}{(s+p_1)^2} + \frac{c_3}{s+p_1} + \frac{c_4}{s+p_4} + \dots + \frac{c_n}{s+p_n}, \text{ we get...}$ Representation in Canonical forms

Canonical Form-I Canonical Form II Diagonal Canonical form Jordan Canonical form

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

EXAMPLE FOR JORDAN CANONICAL FORM

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & \vdots & 0 \\ 0 & -1 & \vdots & 0 \\ \dots & \dots & \vdots \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 4 & -3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$

・ロト ・ 一下 ・ ・ ヨ ト ・ ・ ヨ ト

э.

STATE SPACE REPRESENTATIONS OF TRANSFER FUNCTION SYSTEMS

