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State Space Representations of Transfer function Systems

Many techniques are available for obtaining state space representations of transfer
functions.

State space representations in canonical forms

Consider a system defined by,

y(n) + a1y(n−1) + · · · + an−1ẏ + any = b0u(m) + b1u(m−1) + · · · + bm−1u̇ + bmu

where ’u’ is the input and ’y’ is the output. This equation can also be written as,

Y (s)
U(s) = b0sm+b1sm−1+···+bm−1s+bm

sn+a1sn−1+···+an−1s+an
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State Space Representations of Transfer function Systems

State space representations in canonical forms

The process of converting Transfer Function to State-Space form is NOT
unique.

Various realizations are possible which are equivalent.(i.e, their properties do
not change)

However, one representation may have advantages over others for a particular
task.

In what follows, we shall present the state space representations of the
systems defined by different canonical forms.
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Transfer Function to State Space

Canonical Form I

We have,
Y (s)
U(s)

=
b0s

m+b1s
m−1+···+bm−1s+bm

sn+a1sn−1+···+an−1s+an

Let
Y (s)
U(s)

=
Y (s)
X(s)

× X(s)
U(s)

Thus,

Y (s)

X(s)
= b0s

m + b1s
m−1 + · · · + bm−1s + bm

X(s)

U(s)
=

1

sn + a1sn−1 + · · · + an−1s + an

∴ u(t) =
dnx

dtn
+ a1

dn−1x

dtn−1
+ · · · + an−1

dx

dt
+ anx

dnx

dtn
= u(t) − a1

dn−1x

dtn−1
− · · · − an−1

dx

dt
− anx

V. Sankaranarayanan Control system



Representation in Canonical forms

Canonical Form-I
Canonical Form II
Diagonal Canonical form
Jordan Canonical form

Transfer function to State Space

Canonical Form I

Let x1 = x ; x2 = dx
dt

; x3 = d2x
dt2

· · ·xn = dn−1x
dtn−1


ẋ1

ẋ2

...
ẋn

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 1
−an −an−1 · · · · · · −a1



x1

x2

x3

...
xn

+


0
0
...
1

u

Case-1: If m = n− 1[∴ dmx
dtm

= dn−1x
dtn−1 = xn]

We know that,

Y (s) = X(s)(b0s
m + b1s

m−1 + · · · + bm−1s + bm)

∴ y(t) = b0
dn−1x

dtn−1
+ b1

dn−2x

dtn−2
+ · · · + bn−1

dx

dt
+ bnx

y(t) = b0xn + b1xn−1 + · · · + bnx1
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Transfer Function to State Space

Canonical Form I

y =
[
bn bn−1 · · · b0

]

x1

x2

...
xn

+ [0]u

Case-2: If m = n,

dmx

dtm
= u(t) − a1

dn−1x

dtn−1
− · · · − an−1

dx

dt
− anx

y(t) = b0(u(t) − a1
dn−1x

dtn−1
− · · · − anx) + b1

dm−1x

dtm−1
+ · · · + bmx

y(t) = (b1 − a1b0)
dn−1x

dtn−1
+ · · · + (bn−1an−1b0)

dx

dt
+ (bn − anb0) + b0u
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Transfer Function to State Space

Canonical Form I

∴ y =

[
bn − anb0

... bn−1 − an−1b0
... · · ·

... b1 − a1b0

]
x1

x2

...
xn

+ [b0]u
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Transfer function to State Space

Example-1

Consider a transfer function, G(s) = 5s2+7s+9
s3+8s2+6s+2

Let
Y (s)
U(s)

=
Y (s)
X(s)

× X(s)
U(s)

= 5s2+7s+9
s3+8s2+6s+2

Thus,

Y (s)

X(s)
= 5s

2
+ 7s + 9 (1)

X(s)

U(s)
=

1

s3 + 8s2 + 6s + 2
(2)

From eq(2), U(s) = X(s)[s3 + 8s2 + 6s + 2]

u(t) =
d3x

dt3
+ 8

d2x

dt2
+ 6

dx

dt
+ 2x

d3x

dt3
= u(t) − 8

d2x

dt2
− 6

dx

dt
− 2x
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Transfer function to State Space

Examples on Canonical Form-I: Example-1

Let x1 = x ; x2 = dx
dt

; x3 = d2x
dt2ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−2 −6 −8

x1

x2

x3

+

0
0
1

u(t)

From eq(1), Y (s) = X(s)[5s2 + 7s + 9]

y(t) = 5
d2x

dt2
+ 7

dx

dt
+ 9x

y(t) = 5x3 + 7x2 + 9x1

y =
[
9 7 5

] x1

x2

x3

+ [0]u
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Transfer function to State Space

Example-2

Consider a transfer function, G(s) = 5s2+7s+9
s2+2s+15

Let

X(s)

U(s)
=

1

s2 + 2s + 15

d2x

dt2
= −15x− 2

dx

dt
+ u(t)

Let x1 = x ; x2 = dx
dt [

ẋ1

ẋ2

]
=

[
0 1

−15 −2

] [
x1

x2

]
+

[
0
1

]
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Transfer function to State Space

Example-2

Y (s)

X(s)
= 5s2 + 7s + 9

y(t) = 5
d2x

dt2
+ 7

dx

dt
+ 9x

= 5(−15x− 2
dx

dt
+ u(t)) + 7

dx

dt
+ 9x

= −66x− 3
dx

dt
+ 5u(t)

y =
[
−66 −3

] [x1

x2

]
+ [5]u

V. Sankaranarayanan Control system



Representation in Canonical forms

Canonical Form-I
Canonical Form II
Diagonal Canonical form
Jordan Canonical form

Outline

1 Representation in Canonical forms
Canonical Form-I
Canonical Form II
Diagonal Canonical form
Jordan Canonical form

V. Sankaranarayanan Control system



Representation in Canonical forms

Canonical Form-I
Canonical Form II
Diagonal Canonical form
Jordan Canonical form

State Space Representations of Transfer function Systems

Canonical Form II

We have,
Y (s)
U(s)

=
b0s

m+b1s
m−1+···+bm−1s+bm

sn+a1sn−1+···+an−1s+an

∴ Y (s)[sn+a1s
n−1+· · ·+an−1s+an] = U(s)[b0s

m+b1s
m−1+· · ·+bm−1s+bm]

Case-1:If m = n− 1

Replacing m with n− 1 and dividing the equation with sn and rearranging it,
we get,

Y (s) = 1
s

[b0U(s) − a1Y (s) + 1
s

[b1U(s) − a2Y (s) + 1
s

[· · ·

+ 1
s

[bn−1U(s) − anY (s)] · · · ]

V. Sankaranarayanan Control system



Representation in Canonical forms

Canonical Form-I
Canonical Form II
Diagonal Canonical form
Jordan Canonical form

State Space Representations of Transfer function Systems

Canonical Form II

Now, let us define the states and output as follows,

Xn(s) =
1

s
[b0U(s) − a1Y (s) + Xn−1(s)] = Y (s)

Xn−1(s) =
1

s
[b1U(s) − a2Y (s) + Xn−2(s)]

Xn−2(s) =
1

s
[b2U(s) − a3Y (s) + Xn−3(s)]

...

X1(s) =
1

s
[bn−1U(s) − anY (s)]
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State Space Representations of Transfer function Systems

Canonical Form II

Since Xn(s) = Y (s), replacing Y (s) by Xn(s) and rewriting the state
equations, we get

Xn(s) =
1

s
[b0U(s) − a1Xn(s) + Xn−1(s)]

Xn−1(s) =
1

s
[b1U(s) − a2Xn(s) + Xn−2(s)]

Xn−2(s) =
1

s
[b2U(s) − a3Xn(s) + Xn−3(s)]

...

X1(s) =
1

s
[bn−1U(s) − anXn(s)]
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State Space Representations of Transfer function Systems

Canonical Form II

Applying Inverse Laplace Transformation on both sides, we get

ẋn = b0u− a1xn + xn−1

ẋn−1 = b1u− a2xn + xn−2

ẋn−2 = b2u− a3xn + xn−3

...

ẋ2 = bn−2u− anxn + x1

ẋ1 = bn−1u− anxn

The output equation becomes, y = xn
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State Space Representations of Transfer function Systems

Canonical Form II

Summing up all the results into one vector matrix differential equation, we
get,


ẋ1

ẋ2

...
ẋn

 =



0 · · · · · · 0 −an
1 0 · · · 0 −an−1

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 1 −a1




x1

x2

...
xn

+


bn−1

bn−2

...
b0

u

y =
[
0 0 · · · 1

]

x1

x2

...
xn

+ [0]u
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State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 1

Consider a transfer function,
Y (s)
U(s)

= G(s) = 5s2+7s+9
s3+8s2+6s+2

We can see that the order of the numerator is less than that of the
denominator and differs by 1. Hence, this falls under Case-1.

On cross multiplication, we get
Y (s)[s3 + 8s2 + 6s + 2] = U(s)[5s2 + 7s + 9]

dividing the equation with s3 and rearranging it, we get,

Y (s) =
1

s
(5U(s) − 8Y (s) +

1

s
(7U(s) − 6Y (s) +

1

s
(2U(s) − 9Y (s))))
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State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 1

∴ The state equations and output equation can be defined as

ẋ3 = 5u− 8x3 + x2 = y

ẋ2 = 7u− 6x3 + x1

ẋ1 = 9u− 2x3

Summing up all the results and formulating them in the matrix form, we get,ẋ1

ẋ2

ẋ3

 =

0 0 −2
1 0 −6
0 1 −8

x1

x2

x3

+

9
7
5

u

y =
[
0 0 1

] x1

x2

x3

+ [0]u
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State Space Representations of Transfer function Systems

Canonical Form II

Case-2:If m = n

Y (s)[sn + a1s
n−1 + · · · + an−1s + an] = U(s)[b0s

n + b1s
n−1 + · · · + bn−1s + bn]

Dividing the equation with sn and rearranging it, we get,

Y (s) = b0U(s) − a0Y (s) + 1
s

[b1U(s) − a1Y (s) + 1
s

[· · · + 1
s

[bn−1U(s) −

an−1Y (s) + 1
s

[bnU(s) − anY (s)]]] · · · ]
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State Space Representations of Transfer function Systems

Canonical Form II

Now, let us define the states and output as follows,

Y (s) = b0U(s) + Xn(s)

Xn(s) =
1

s
[b1U(s) − a1Y (s) + Xn−1(s)]

Xn−1(s) =
1

s
[b2U(s) − a2Y (s) + Xn−2(s)]

...

X1(s) =
1

s
[bnU(s) − anY (s)]
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State Space Representations of Transfer function Systems

Canonical Form II

Substituting b0U(s) + Xn(s) in the place of Y (s) in state equations, we get,

Xn(s) =
1

s
[(b1 − a1b0)U(s) − a1Xn(s) + Xn−1(s)]

Xn−1(s) =
1

s
[(b2 − a2b0)U(s) − a2Xn(s) + Xn−2(s)]

...

X2(s) =
1

s
[(bn−1 − an−1b0)U(s) − an−1Xn−1(s) + X1(s)]

X1(s) =
1

s
[(bn − anb0)U(s) − anXn(s)]
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State Space Representations of Transfer function Systems

Canonical Form II

Applying Inverse Laplace Transformation on both sides, we get

ẋn = (b1 − a1b0)u− a1xn + xn−1

ẋn−1 = (b2 − a2b0)u− a2xn + xn−2

ẋn−2 = (b3 − a3b0)u− a3xn + xn−3

...

ẋ2 = (bn−1 − an−1b0)u− an−1x1

ẋ1 = (bn − anb0)u− anxn

The output equation becomes, y = b0u + xn
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Canonical Form II

Summing up all the results into one vector matrix differential equation, we
get,



ẋ1

ẋ2

...

...
ẋn


=



0 · · · · · · 0 −an
1 0 · · · 0 −an−1

...
. . .

...
...

...
. . .

...
...

0 · · · · · · 1 −a1





x1

x2

...

...
xn


+



bn − anb0
bn−1 − an−1b0
bn−1 − an−1b0

...

..

.
b1 − a1b0


u

y =
[
0 0 · · · 1

]

x1

x2

...
xn

+ [b0]u
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State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 2

Consider a transfer function,
Y (s)
U(s)

= G(s) = 5s2+7s+9
s2+2s+15

We can see that the order of the numerator is equal to that of the
denominator. Hence, this falls under Case-2.

On cross multiplication, we get
Y (s)[s2 + 2s + 15] = U(s)[5s2 + 7s + 9]

dividing the equation with s2 and rearranging it, we get,

Y (s) = 5U(s) +
1

s
(7U(s) − 2Y (s) +

1

s
(9U(s) − 15Y (s)))
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State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 2

∴ The state equations and output equation can be defined as

y = 5u + x2

ẋ2 = 7u− 2y + x1

ẋ1 = 9u− 15y

Substituting y = 5u + x2 in state equations and rearranging them we get,

ẋ2 = −3u− 2x2 + x1

ẋ1 = −66u− 15x2

Summing up all the results and formulating them in the matrix form, we get,[
ẋ1

ẋ2

]
=

[
0 −15
1 −2

] [
x1

x2

]
+

[
−66
−3

]
u

y =
[
0 1

] [x1

x2

]
+ [5]u
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Diagonal Canonical Form

Consider the transfer function defined by equation

Y (s)
U(s)

=
b0s

m+b1s
m−1+···+bm−1s+bm

sn+a1sn−1+···+an−1s+an

Assumption: Denominator polynomial involves only distinct roots.

Therefore, the transfer function can be written as ,

Y (s)

U(s)
=

b0sm + b1sm−1 + · · · + bm−1s + bm

(s + p1)(s + p2) · · · (s + pn)

= b0 +
c1

s + p1
+

c2

s + p2
+ · · · +

cn

s + pn

if m = n, b0 = constant,
if m < n, b0 = 0
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State Space Representations of Transfer function Systems

Continuation of Diagonal Canonical Form...


ẋ1

ẋ2

...
ẋn

 =


−p1 0 · · · 0

0 −p2 · · · 0
...

...
. . .

...
0 0 · · · −pn



x1

x2

...
xn

+


1
1
...
1

u

y =
[
c1 c2 · · · cn

]

x1

x2

...
xn

+ b0u
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State Space Representations of Transfer function Systems

Example for Diagonal Canonical Form

Consider, the system defined by transfer function, s+1
s2+5s+1

.

Step-1: Rewrite the transfer function as, s+1
(s+3)(s+2)

Step-2: Split the transfer function into Partial fractions

2
s+3 +

(−1)
s+2

Here, m < n , ∴ b0 = 0
Step-3: Compare the obtained partial fraction form with

b0 +
c1

s+p1
+

c2
s+p2

+ · · · + cn
s+pn

, we get...

V. Sankaranarayanan Control system
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State Space Representations of Transfer function Systems

Example for Diagonal Canonical Form

[
ẋ1

ẋ2

]
=

[
−3 0
0 −2

] [
x1

x2

]
+

[
1
1

]
u

y =
[
2 −1

] [x1

x2

]
+ [0]u
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State Space Representations of Transfer function Systems

Violation of Assumption

Previously in Diagonal form, the denominator polynomial involves only
distinct roots.

What if the denominator polynomial involves multiple roots ?
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Violation of Assumption

Previously in Diagonal form, the denominator polynomial involves only
distinct roots.

What if the denominator polynomial involves multiple roots ?

Jordan Canonical Form

To deal with multiple roots, Diagonal Canonical Form must be modified to
Jordan Canonical form.

Consider, the equation

Y (s)

U(s)
=

b0sm + b1sm−1 + · · · + bm−1s + bm

(s + p1)(s + p2) · · · (s + pn)

Let, p1 = p2 = p3.
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Continuation of Jordan Canonical Form...

Then the factored form of
Y (s)
U(s)

becomes

Y (s)

U(s)
=

b0sm + b1sm−1 + · · · + bm−1s + bm

(s + p1)3(s + p4) · · · (s + pn)

The partial fraction expansion of this last equation becomes

Y (s)

U(s)
= b0 +

c1

(s + p1)3
+

c2

(s + p1)2
+

c3

s + p1
+

c4

s + p4
· · · +

cn

s + pn

V. Sankaranarayanan Control system
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Jordan Canonical Form


ẋ1

ẋ2

ẋ3

...
ẋn

 =



−p1 0 0
... · · · 0

0 −p1 0
... · · · 0

0 0 −p1
... · · · 0

· · · · · · · · ·
... · · · 0

...
...

...
...

...
0 0 0 · · · −pn




x1

x2

x3

...
xn

+


1
1
1
...
1

u

y =
[
c1 c2 c3 · · · cn

]

x1

x2

x3

..

.
xn


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Example for Jordan Canonical Form

Consider, the system defined by transfer function, s+5
(s2+2s+1)(s+2)

.

Step-1: Rewrite the transfer function as, s+1
(s+3)(s+2)

Step-2: Split the transfer function into Partial fractions

4
(s+3)2

+
(−3)
s+3

+ 3
s+2

Here, m < n, ∴ b0 = 0

Step-3: Compare the obtained partial fraction form with

b0 + c1
(s+p1)3

+ c2
(s+p1)2

+ c3
s+p1

+ c4
s+p4

+ · · · + cn
s+pn

, we get...

V. Sankaranarayanan Control system
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Example for Jordan Canonical Form

ẋ1

ẋ2

ẋ3

 =


−1 0

... 0

0 −1
... 0

· · · · · ·
...

0 0 −2


x1

x2

x3

+

1
1
1

u

y =
[
4 −3 3

] x1

x2

x3

+ [0]u
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