Modern Control systems

Lecture-4 State Space representation of Transfer Function

V. Sankaranarayanan

Outline

(1) Representation in Canonical forms

- Canonical Form-I
- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

State Space Representations of Transfer function Systems

Many techniques are available for obtaining state space representations of transfer functions.

State space representations in canonical forms

Consider a system defined by,
$y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} \dot{y}+a_{n} y=b_{0} u^{(m)}+b_{1} u^{(m-1)}+\cdots+b_{m-1} \dot{u}+b_{m} u$ where ' u ' is the input and ' y ' is the output. This equation can also be written as,

$$
\frac{Y(s)}{U(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

State Space Representations of Transfer function Systems

State space representations in canonical forms

- The process of converting Transfer Function to State-Space form is NOT unique.
- Various realizations are possible which are equivalent.(i.e, their properties do not change)
- However, one representation may have advantages over others for a particular task.
- In what follows, we shall present the state space representations of the systems defined by different canonical forms.

Outline

(1) Representation in Canonical forms - Canonical Form-I

- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

Transfer Function to State Space

Canonical Form I

- We have, $\frac{Y(s)}{U(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}$
- Let $\frac{Y(s)}{U(s)}=\frac{Y(s)}{X(s)} \times \frac{X(s)}{U(s)}$
- Thus,

$$
\begin{aligned}
& \frac{Y(s)}{X(s)}=b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m} \\
& \frac{X(s)}{U(s)}=\frac{1}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore u(t) & =\frac{d^{n} x}{d t^{n}}+a_{1} \frac{d^{n-1} x}{d t^{n-1}}+\cdots+a_{n-1} \frac{d x}{d t}+a_{n} x \\
\frac{d^{n} x}{d t^{n}} & =u(t)-a_{1} \frac{d^{n-1} x}{d t^{n-1}}-\cdots-a_{n-1} \frac{d x}{d t}-a_{n} x
\end{aligned}
$$

Transfer function to State Space

Canonical Form I

Let $x_{1}=x ; x_{2}=\frac{d x}{d t} ; x_{3}=\frac{d^{2} x}{d t^{2}} \cdots x_{n}=\frac{d^{n-1} x}{d t^{n-1}}$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 1 \\
-a_{n} & -a_{n-1} & \cdots & \cdots & -a_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] u
$$

- Case-1: If $m=n-1\left[\therefore \frac{d^{m} x}{d t^{m}}=\frac{d^{n-1} x}{d t^{n-1}}=x_{n}\right]$

We know that,

$$
\begin{aligned}
Y(s) & =X(s)\left(b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}\right) \\
\therefore y(t) & =b_{0} \frac{d^{n-1} x}{d t^{n-1}}+b_{1} \frac{d^{n-2} x}{d t^{n-2}}+\cdots+b_{n-1} \frac{d x}{d t}+b_{n} x \\
y(t) & =b_{0} x_{n}+b_{1} x_{n-1}+\cdots+b_{n} x_{1}
\end{aligned}
$$

Transfer Function to State Space

Canonical Form I

$$
y=\left[\begin{array}{llll}
b_{n} & b_{n-1} & \cdots & b_{0}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+[0] u
$$

- Case-2: If $m=n$,

$$
\begin{aligned}
\frac{d^{m} x}{d t^{m}} & =u(t)-a_{1} \frac{d^{n-1} x}{d t^{n-1}}-\cdots-a_{n-1} \frac{d x}{d t}-a_{n} x \\
y(t) & =b_{0}\left(u(t)-a_{1} \frac{d^{n-1} x}{d t^{n-1}}-\cdots-a_{n} x\right)+b_{1} \frac{d^{m-1} x}{d t^{m-1}}+\cdots+b_{m} x \\
y(t) & =\left(b_{1}-a_{1} b_{0}\right) \frac{d^{n-1} x}{d t^{n-1}}+\cdots+\left(b_{n-1} a_{n-1} b_{0}\right) \frac{d x}{d t}+\left(b_{n}-a_{n} b_{0}\right)+b_{0} u
\end{aligned}
$$

Transfer Function to State Space

Canonical Form I

$$
\therefore y=\left[\begin{array}{lllllll}
b_{n}-a_{n} b_{0} & \vdots & b_{n-1}-a_{n-1} b_{0} & \vdots & \ldots & \vdots & b_{1}-a_{1} b_{0}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[b_{0}\right] u
$$

Transfer function to State Space

ExAMPLE-1

Consider a transfer function, $G(s)=\frac{5 s^{2}+7 s+9}{s^{3}+8 s^{2}+6 s+2}$
Let $\frac{Y(s)}{U(s)}=\frac{Y(s)}{X(s)} \times \frac{X(s)}{U(s)}=\frac{5 s^{2}+7 s+9}{s^{3}+8 s^{2}+6 s+2}$
Thus,

$$
\begin{align*}
& \frac{Y(s)}{X(s)}=5 s^{2}+7 s+9 \tag{1}\\
& \frac{X(s)}{U(s)}=\frac{1}{s^{3}+8 s^{2}+6 s+2} \tag{2}
\end{align*}
$$

From eq $(2), \quad U(s)=X(s)\left[s^{3}+8 s^{2}+6 s+2\right]$

$$
\begin{aligned}
u(t) & =\frac{d^{3} x}{d t^{3}}+8 \frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+2 x \\
\frac{d^{3} x}{d t^{3}} & =u(t)-8 \frac{d^{2} x}{d t^{2}}-6 \frac{d x}{d t}-2 x
\end{aligned}
$$

Transfer function to State Space

Examples on Canonical Form-I: Example-1

Let $x_{1}=x ; x_{2}=\frac{d x}{d t} ; x_{3}=\frac{d^{2} x}{d t^{2}}$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -6 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u(t)
$$

From eq $(1), \quad Y(s)=X(s)\left[5 s^{2}+7 s+9\right]$

$$
\begin{aligned}
y(t) & =5 \frac{d^{2} x}{d t^{2}}+7 \frac{d x}{d t}+9 x \\
y(t) & =5 x_{3}+7 x_{2}+9 x_{1} \\
y & =\left[\begin{array}{lll}
9 & 7 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+[0] u
\end{aligned}
$$

Transfer function to State Space

ExAMPLE-2

Consider a transfer function, $G(s)=\frac{5 s^{2}+7 s+9}{s^{2}+2 s+15}$
Let

$$
\begin{aligned}
\frac{X(s)}{U(s)} & =\frac{1}{s^{2}+2 s+15} \\
\frac{d^{2} x}{d t^{2}} & =-15 x-2 \frac{d x}{d t}+u(t)
\end{aligned}
$$

Let $x_{1}=x ; x_{2}=\frac{d x}{d t}$

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-15 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Transfer function to State Space

ExAMPLE-2

$$
\begin{aligned}
\frac{Y(s)}{X(s)} & =5 s^{2}+7 s+9 \\
y(t) & =5 \frac{d^{2} x}{d t^{2}}+7 \frac{d x}{d t}+9 x \\
& =5\left(-15 x-2 \frac{d x}{d t}+u(t)\right)+7 \frac{d x}{d t}+9 x \\
& =-66 x-3 \frac{d x}{d t}+5 u(t) \\
y & =[-66 \quad-3]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[5] u
\end{aligned}
$$

Outline

(1) Representation in Canonical forms

- Canonical Form-I
- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

State Space Representations of Transfer function Systems

Canonical Form II

- We have, $\frac{Y(s)}{U(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}$
$\therefore Y(s)\left[s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}\right]=U(s)\left[b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}\right]$
Case-1:If $m=n-1$
- Replacing m with $n-1$ and dividing the equation with s^{n} and rearranging it, we get,

$$
\begin{aligned}
Y(s)=\frac{1}{s}\left[b_{0} U(s)\right. & -a_{1} Y(s)+\frac{1}{s}\left[b_{1} U(s)-a_{2} Y(s)+\frac{1}{s}[\cdots\right. \\
& \left.+\frac{1}{s}\left[b_{n-1} U(s)-a_{n} Y(s)\right] \cdots\right]
\end{aligned}
$$

State Space Representations of Transfer function Systems

Canonical Form II

- Now, let us define the states and output as follows,

$$
\begin{aligned}
X_{n}(s) & =\frac{1}{s}\left[b_{0} U(s)-a_{1} Y(s)+X_{n-1}(s)\right]=Y(s) \\
X_{n-1}(s) & =\frac{1}{s}\left[b_{1} U(s)-a_{2} Y(s)+X_{n-2}(s)\right] \\
X_{n-2}(s) & =\frac{1}{s}\left[b_{2} U(s)-a_{3} Y(s)+X_{n-3}(s)\right] \\
\vdots & \\
X_{1}(s) & =\frac{1}{s}\left[b_{n-1} U(s)-a_{n} Y(s)\right]
\end{aligned}
$$

State Space Representations of Transfer function Systems

Canonical Form II

- Since $X_{n}(s)=Y(s)$, replacing $Y(s)$ by $X_{n}(s)$ and rewriting the state equations, we get

$$
\begin{aligned}
X_{n}(s) & =\frac{1}{s}\left[b_{0} U(s)-a_{1} X_{n}(s)+X_{n-1}(s)\right] \\
X_{n-1}(s) & =\frac{1}{s}\left[b_{1} U(s)-a_{2} X_{n}(s)+X_{n-2}(s)\right] \\
X_{n-2}(s) & =\frac{1}{s}\left[b_{2} U(s)-a_{3} X_{n}(s)+X_{n-3}(s)\right] \\
\vdots & \\
X_{1}(s) & =\frac{1}{s}\left[b_{n-1} U(s)-a_{n} X_{n}(s)\right]
\end{aligned}
$$

State Space Representations of Transfer function Systems

Canonical Form II

- Applying Inverse Laplace Transformation on both sides, we get

$$
\begin{aligned}
\dot{x}_{n} & =b_{0} u-a_{1} x_{n}+x_{n-1} \\
\dot{x}_{n-1} & =b_{1} u-a_{2} x_{n}+x_{n-2} \\
\dot{x}_{n-2} & =b_{2} u-a_{3} x_{n}+x_{n-3} \\
\vdots & \\
\dot{x}_{2} & =b_{n-2} u-a_{n} x_{n}+x_{1} \\
\dot{x}_{1} & =b_{n-1} u-a_{n} x_{n}
\end{aligned}
$$

- The output equation becomes, $y=x_{n}$

State Space Representations of Transfer function Systems

Canonical Form II

- Summing up all the results into one vector matrix differential equation, we get,

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & -a_{n} \\
1 & 0 & \cdots & 0 & -a_{n-1} \\
\vdots & \ddots & & \vdots & \vdots \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & 1 & -a_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{n-1} \\
b_{n-2} \\
\vdots \\
b_{0}
\end{array}\right] u } \\
& y=\left[\begin{array}{llll}
0 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+[0] u
\end{aligned}
$$

State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 1

- Consider a transfer function, $\frac{Y(s)}{U(s)}=G(s)=\frac{5 s^{2}+7 s+9}{s^{3}+8 s^{2}+6 s+2}$
- We can see that the order of the numerator is less than that of the denominator and differs by 1 . Hence, this falls under Case-1.
- On cross multiplication, we get

$$
Y(s)\left[s^{3}+8 s^{2}+6 s+2\right]=U(s)\left[5 s^{2}+7 s+9\right]
$$

- dividing the equation with s^{3} and rearranging it, we get,

$$
Y(s)=\frac{1}{s}\left(5 U(s)-8 Y(s)+\frac{1}{s}\left(7 U(s)-6 Y(s)+\frac{1}{s}(2 U(s)-9 Y(s))\right)\right)
$$

State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 1

- \therefore The state equations and output equation can be defined as

$$
\begin{aligned}
\dot{x}_{3} & =5 u-8 x_{3}+x_{2}=y \\
\dot{x}_{2} & =7 u-6 x_{3}+x_{1} \\
\dot{x}_{1} & =9 u-2 x_{3}
\end{aligned}
$$

- Summing up all the results and formulating them in the matrix form, we get,

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
0 & 0 & -2 \\
1 & 0 & -6 \\
0 & 1 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
9 \\
7 \\
5
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+[0] u
\end{aligned}
$$

State Space Representations of Transfer function Systems

Canonical Form II

Case-2:If $m=n$
$Y(s)\left[s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}\right]=U(s)\left[b_{0} s^{n}+b_{1} s^{n-1}+\cdots+b_{n-1} s+b_{n}\right]$

- Dividing the equation with s^{n} and rearranging it, we get,

$$
\begin{gathered}
Y(s)=b_{0} U(s)-a_{0} Y(s)+\frac{1}{s}\left[b_{1} U(s)-a_{1} Y(s)+\frac{1}{s}\left[\cdots+\frac{1}{s}\left[b_{n-1} U(s)-\right.\right.\right. \\
\left.\left.\left.a_{n-1} Y(s)+\frac{1}{s}\left[b_{n} U(s)-a_{n} Y(s)\right]\right]\right] \cdots\right]
\end{gathered}
$$

State Space Representations of Transfer function Systems

Canonical Form II

- Now, let us define the states and output as follows,

$$
\begin{aligned}
Y(s) & =b_{0} U(s)+X_{n}(s) \\
X_{n}(s) & =\frac{1}{s}\left[b_{1} U(s)-a_{1} Y(s)+X_{n-1}(s)\right] \\
X_{n-1}(s) & =\frac{1}{s}\left[b_{2} U(s)-a_{2} Y(s)+X_{n-2}(s)\right] \\
\vdots & \\
X_{1}(s) & =\frac{1}{s}\left[b_{n} U(s)-a_{n} Y(s)\right]
\end{aligned}
$$

State Space Representations of Transfer function Systems

Canonical Form II

- Substituting $b_{0} U(s)+X_{n}(s)$ in the place of $Y(s)$ in state equations, we get,

$$
\begin{aligned}
X_{n}(s) & =\frac{1}{s}\left[\left(b_{1}-a_{1} b_{0}\right) U(s)-a_{1} X_{n}(s)+X_{n-1}(s)\right] \\
X_{n-1}(s) & =\frac{1}{s}\left[\left(b_{2}-a_{2} b_{0}\right) U(s)-a_{2} X_{n}(s)+X_{n-2}(s)\right] \\
\vdots & \\
X_{2}(s) & =\frac{1}{s}\left[\left(b_{n-1}-a_{n-1} b_{0}\right) U(s)-a_{n-1} X_{n-1}(s)+X_{1}(s)\right] \\
X_{1}(s) & =\frac{1}{s}\left[\left(b_{n}-a_{n} b_{0}\right) U(s)-a_{n} X_{n}(s)\right]
\end{aligned}
$$

State Space Representations of Transfer function Systems

Canonical Form II

- Applying Inverse Laplace Transformation on both sides, we get

$$
\begin{aligned}
\dot{x}_{n} & =\left(b_{1}-a_{1} b_{0}\right) u-a_{1} x_{n}+x_{n-1} \\
\dot{x}_{n-1} & =\left(b_{2}-a_{2} b_{0}\right) u-a_{2} x_{n}+x_{n-2} \\
\dot{x}_{n-2} & =\left(b_{3}-a_{3} b_{0}\right) u-a_{3} x_{n}+x_{n-3} \\
\vdots & \\
\dot{x}_{2} & =\left(b_{n-1}-a_{n-1} b_{0}\right) u-a_{n-1} x_{1} \\
\dot{x}_{1} & =\left(b_{n}-a_{n} b_{0}\right) u-a_{n} x_{n}
\end{aligned}
$$

- The output equation becomes, $y=b_{0} u+x_{n}$

State Space Representations of Transfer function Systems

Canonical Form II

- Summing up all the results into one vector matrix differential equation, we get,

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & -a_{n} \\
1 & 0 & \cdots & 0 & -a_{n-1} \\
\vdots & \ddots & & \vdots & \vdots \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & 1 & -a_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{n}-a_{n} b_{0} \\
b_{n-1}-a_{n-1} b_{0} \\
b_{n-1}-a_{n-1} b_{0} \\
\vdots \\
b_{1}-a_{1} b_{0}
\end{array}\right] u } \\
y=\left[\begin{array}{llll}
0 & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[b_{0}\right] u
\end{aligned}
$$

State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 2

- Consider a transfer function, $\frac{Y(s)}{U(s)}=G(s)=\frac{5 s^{2}+7 s+9}{s^{2}+2 s+15}$
- We can see that the order of the numerator is equal to that of the denominator. Hence, this falls under Case-2.
- On cross multiplication, we get

$$
Y(s)\left[s^{2}+2 s+15\right]=U(s)\left[5 s^{2}+7 s+9\right]
$$

- dividing the equation with s^{2} and rearranging it, we get,

$$
Y(s)=5 U(s)+\frac{1}{s}\left(7 U(s)-2 Y(s)+\frac{1}{s}(9 U(s)-15 Y(s))\right)
$$

State Space Representations of Transfer function Systems

Example of Canonical Form II-Case 2

- \therefore The state equations and output equation can be defined as

$$
\begin{aligned}
y & =5 u+x_{2} \\
\dot{x}_{2} & =7 u-2 y+x_{1} \\
\dot{x}_{1} & =9 u-15 y
\end{aligned}
$$

- Substituting $y=5 u+x_{2}$ in state equations and rearranging them we get,

$$
\begin{aligned}
& \dot{x}_{2}=-3 u-2 x_{2}+x_{1} \\
& \dot{x}_{1}=-66 u-15 x_{2}
\end{aligned}
$$

- Summing up all the results and formulating them in the matrix form, we get,

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -15 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
-66 \\
-3
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[5] u
\end{aligned}
$$

Outline

(1) Representation in Canonical forms

- Canonical Form-I
- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

State Space Representations of Transfer function Systems

Diagonal Canonical Form

Consider the transfer function defined by equation

$$
\frac{Y(s)}{U(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

Assumption: Denominator polynomial involves only distinct roots.
Therefore, the transfer function can be written as,

$$
\begin{aligned}
\frac{Y(s)}{U(s)} & =\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)} \\
& =b_{0}+\frac{c_{1}}{s+p_{1}}+\frac{c_{2}}{s+p_{2}}+\cdots+\frac{c_{n}}{s+p_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } m=n, b_{0}=\text { constant, } \\
& \text { if } m<n, b_{0}=0
\end{aligned}
$$

State Space Representations of Transfer function Systems

Continuation of Diagonal Canonical Form...

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
-p_{1} & 0 & \cdots & 0 \\
0 & -p_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -p_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] u } \\
y=\left[\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+b_{0} u
\end{aligned}
$$

State Space Representations of Transfer function Systems

Example for Diagonal Canonical Form

- Consider, the system defined by transfer function, $\frac{s+1}{s^{2}+5 s+1}$.
- Step-1: Rewrite the transfer function as, $\frac{s+1}{(s+3)(s+2)}$
- Step-2: Split the transfer function into Partial fractions

$$
\frac{2}{s+3}+\frac{(-1)}{s+2}
$$

Here, $m<n, \therefore b_{0}=0$

- Step-3: Compare the obtained partial fraction form with

$$
b_{0}+\frac{c_{1}}{s+p_{1}}+\frac{c_{2}}{s+p_{2}}+\cdots+\frac{c_{n}}{s+p_{n}}, \text { we get... }
$$

State Space Representations of Transfer function Systems

Example for Diagonal Canonical Form

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] u
\end{aligned}
$$

State Space Representations of Transfer function Systems

State Space Representations of Transfer function Systems

Violation of Assumption

- Previously in Diagonal form, the denominator polynomial involves only distinct roots.
- What if the denominator polynomial involves multiple roots?

Outline

(1) Representation in Canonical forms

- Canonical Form-I
- Canonical Form II
- Diagonal Canonical form
- Jordan Canonical form

State Space Representations of Transfer function Systems

Violation of Assumption

- Previously in Diagonal form, the denominator polynomial involves only distinct roots.
- What if the denominator polynomial involves multiple roots?

Jordan Canonical Form

- To deal with multiple roots, Diagonal Canonical Form must be modified to Jordan Canonical form.
- Consider, the equation

$$
\frac{Y(s)}{U(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{\left(s+p_{1}\right)\left(s+p_{2}\right) \cdots\left(s+p_{n}\right)}
$$

- Let, $p_{1}=p_{2}=p_{3}$.

State Space Representations of Transfer function Systems

Continuation of Jordan Canonical Form...

Then the factored form of $\frac{Y(s)}{U(s)}$ becomes

$$
\frac{Y(s)}{U(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{\left(s+p_{1}\right)^{3}\left(s+p_{4}\right) \cdots\left(s+p_{n}\right)}
$$

The partial fraction expansion of this last equation becomes

$$
\frac{Y(s)}{U(s)}=b_{0}+\frac{c_{1}}{\left(s+p_{1}\right)^{3}}+\frac{c_{2}}{\left(s+p_{1}\right)^{2}}+\frac{c_{3}}{s+p_{1}}+\frac{c_{4}}{s+p_{4}} \cdots+\frac{c_{n}}{s+p_{n}}
$$

State Space Representations of Transfer function Systems

Jordan Canonical Form

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\vdots \\
\dot{x}_{n}
\end{array}\right] } & =\left[\begin{array}{cccccc}
-p_{1} & 0 & 0 & \vdots & \cdots & 0 \\
0 & -p_{1} & 0 & \vdots & \ldots & 0 \\
0 & 0 & -p_{1} & \vdots & \ldots & 0 \\
\cdots & \cdots & \cdots & \vdots & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & & \cdots & -p_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{lllll}
c_{1} & c_{2} & c_{3} & \cdots & c_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
\end{aligned}
$$

State Space Representations of Transfer function Systems

Example for Jordan Canonical Form

Consider, the system defined by transfer function, $\frac{s+5}{\left(s^{2}+2 s+1\right)(s+2)}$.
Step-1: Rewrite the transfer function as, $\frac{s+1}{(s+3)(s+2)}$
Step-2: Split the transfer function into Partial fractions

$$
\begin{aligned}
& \frac{4}{(s+3)^{2}}+\frac{(-3)}{s+3}+\frac{3}{s+2} \\
& \text { Here, } m<n, \therefore b_{0}=0
\end{aligned}
$$

Step-3: Compare the obtained partial fraction form with

$$
b_{0}+\frac{c_{1}}{\left(s+p_{1}\right)^{3}}+\frac{c_{2}}{\left(s+p_{1}\right)^{2}}+\frac{c_{3}}{s+p_{1}}+\frac{c_{4}}{s+p_{4}}+\cdots+\frac{c_{n}}{s+p_{n}}, \text { we get... }
$$

State Space Representations of Transfer function Systems

Example for Jordan Canonical Form

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{cccc}
-1 & 0 & \vdots & 0 \\
0 & -1 & \vdots & 0 \\
\ldots & \ldots & \vdots & \\
0 & 0 & & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
4 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+[0] u
\end{aligned}
$$

State Space Representations of Transfer function Systems

