
Modern High-Performance
Locking

Slides based in part on
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Nir Shavit

Art of Multiprocessor Programming 2

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

Art of Multiprocessor Programming 3

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

Art of Multiprocessor Programming 4

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release lock

acquire lock

Mutual Exclusion Properties

Art of Multiprocessor Programming 5

Mutual Exclusion
•  At most one thread holds the lock

(has completed lock() and not
completed unlock()) at any time

Mutual Exclusion Properties

Art of Multiprocessor Programming 6

Freedom from Deadlock
•  If a thread calls lock() or unlock() and

never returns, then other threads must
complete invocations of lock() and
unlock() infinitely often.

Mutual Exclusion Properties

Art of Multiprocessor Programming 7

Freedom from Starvation
•  Every call to lock() or unlock()

eventually returns.

Locking and Amdahl’s Law

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

75%
Unshared

25%
Shared

Concurrent Program Concurrent Program

Speedup= Parallel
fraction − +

pp
n

1

1

Locking and Amdahl’s Law

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

Amdahls Law: only
2.9x speedup

with 8 processors

75%
Unshared

25%
Shared

Honk!
Honk!

Honk!

Concurrent Program Concurrent Program

Locking and Amdahl’s Law

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

Only 4x speedup
with processors

75%
Unshared

25%
Shared

Honk!
Honk!

Honk!

∞

Concurrent Program Concurrent Program

Locking and Amdahl’s Law

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

Why fine-grained low
overhead locking

maters

75%
Unshared

25%
Shared

Honk!
Honk!

Honk!

Concurrent Program Concurrent Program

Art of Multiprocessor Programming 12

What Should you do if you can’t
get a lock?

•  Keep trying
–  “spin” or “busy-wait”
– Good if delays are short

•  Give up the processor
– Good if delays are long
– Always good on uniprocessor

(1)

Art of Multiprocessor Programming 13

What Should you do if you can’t
get a lock?

•  Keep trying
–  “spin” or “busy-wait”
– Good if delays are short

•  Give up the processor
– Good if delays are long
– Always good on uniprocessor

our focus

Art of Multiprocessor Programming 14

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

Art of Multiprocessor Programming 15

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

…lock introduces
sequential bottleneck

Art of Multiprocessor Programming 16

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .

…lock suffers from contention

Art of Multiprocessor Programming 17

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .
These are distinct
phenomena

…lock suffers from contention

Art of Multiprocessor Programming 18

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .
Seq Bottleneck à no parallelism

…lock suffers from contention

Art of Multiprocessor Programming 19

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

. . .
Contention à overloaded
communication medium

…lock suffers from contention

Art of Multiprocessor Programming 20

Mutual Exclusion

•  What do we want to optimize?
– Bus bandwidth used by spinning threads
– Release/Acquire latency
– Acquire latency for idle lock

Art of Multiprocessor Programming 21

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

(5)

Art of Multiprocessor Programming 22

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Package
java.util.concurrent.atomic

Art of Multiprocessor Programming 23

Review: Test-and-Set
public class AtomicBoolean {
 boolean value;

 public synchronized boolean
getAndSet(boolean newValue) {

 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Swap old and new
values.

Art of Multiprocessor Programming 24

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

Art of Multiprocessor Programming 25

Review: Test-and-Set
AtomicBoolean lock
 = new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called
“test-and-set” or TAS.

Both “Swap” and “TAS”
available in hardware.

Art of Multiprocessor Programming 26

Test-and-Set Locks

•  Locking
– Lock is free: value is false
– Lock is taken: value is true

•  Acquire lock by calling TAS
–  If result is false, you win
–  If result is true, you lose

•  Release lock by writing false

Art of Multiprocessor Programming 27

Simple TASLock

•  TAS invalidates cache lines
•  Spinners

– Miss in cache
– Go to bus

•  Thread wants to release lock
– delayed behind spinners

Art of Multiprocessor Programming 28

Test-and-Test-and-Set Locks

•  Lurking stage
– Wait until lock “looks” free
– Spin while read returns true (lock taken)

•  Pouncing state
– As soon as lock “looks” available
– Read returns false (lock free)
– Call TAS to acquire lock
–  If TAS loses, back to lurking

Art of Multiprocessor Programming 29

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Art of Multiprocessor Programming 30

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
} Wait until lock looks free

Art of Multiprocessor Programming 31

Test-and-test-and-set Lock
class TTASlock {
 AtomicBoolean state =
 new AtomicBoolean(false);

 void lock() {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 }
}

Then try to
acquire it

Art of Multiprocessor Programming 32

Test-and-test-and-set

•  Wait until lock “looks” free
– Spin on local cache
– No bus use while lock busy

•  Problem: when lock is released
–  Invalidation storm …

Art of Multiprocessor Programming 33

Problems

•  Everyone misses
– Reads satisfied sequentially

•  Everyone does TAS
–  Invalidates others’ caches

•  Eventually quiesces after lock acquired
– Quiescence time often linear in number of

cores

Art of Multiprocessor Programming 34

Solution: Introduce Delay

spin lock time
d r1d r2d

•  If the lock looks free
-  but I fail to get it

•  There must be contention
-  better to back off than to collide again

Art of Multiprocessor Programming 35

Dynamic Example:
Exponential Backoff

time
d 2d 4d spin lock

 If I fail to get lock
– Wait random duration before retry
– Each subsequent failure doubles

expected wait

Art of Multiprocessor Programming 36

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Art of Multiprocessor Programming 37

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}} Fix minimum delay

Art of Multiprocessor Programming 38

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}} Wait until lock looks free

Art of Multiprocessor Programming 39

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}} If we win, return

Art of Multiprocessor Programming 40

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Back off for random duration

Art of Multiprocessor Programming 41

Exponential Backoff Lock

public class Backoff implements lock {
 public void lock() {
 int delay = MIN_DELAY;
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true))
 return;
 sleep(random() % delay);
 if (delay < MAX_DELAY)
 delay = 2 * delay;
 }}}

Double max delay, within reason

Actual Data on 40-Core
Machine

Art of Multiprocessor Programming 42

Art of Multiprocessor Programming 43

Backoff: Other Issues

•  Good
– Easy to implement
– Beats TTAS lock

•  Bad
– Must choose parameters carefully
– Not portable across platforms

Art of Multiprocessor Programming 44

Idea

•  Avoid useless invalidations
– By keeping a queue of threads

•  Each thread
– Notifies next in line
– Without bothering the others

Art of Multiprocessor Programming 45

CLH Lock

•  First Come First Served order
•  Small, constant-size overhead per

thread

Art of Multiprocessor Programming 46

Initially

false
tail

idle

Art of Multiprocessor Programming 47

Initially

false
tail

idle

Queue tail

Art of Multiprocessor Programming 48

Initially

false
tail

idle

Lock is free

Art of Multiprocessor Programming 49

Initially

false
tail

idle

Art of Multiprocessor Programming 50

Purple Wants the Lock

false
tail

acquiring

Art of Multiprocessor Programming 51

Purple Wants the Lock

false

tail

acquiring

true

Art of Multiprocessor Programming 52

Purple Wants the Lock

false
tail

acquiring

true

Swap

Art of Multiprocessor Programming 53

Purple Has the Lock

false
tail

acquired

true

Art of Multiprocessor Programming 54

Red Wants the Lock

false
tail

acquired acquiring

true true

Art of Multiprocessor Programming 55

Red Wants the Lock

false
tail

acquired acquiring

true

Swap

true

Art of Multiprocessor Programming 56

Red Wants the Lock

false
tail

acquired acquiring

true true

Art of Multiprocessor Programming 57

Red Wants the Lock

false
tail

acquired acquiring

true true

Art of Multiprocessor Programming 58

Red Wants the Lock

false
tail

acquired acquiring

true true

Implicit
Linked list

Art of Multiprocessor Programming 59

Red Wants the Lock

false
tail

acquired acquiring

true true

Art of Multiprocessor Programming 60

Red Wants the Lock

false
tail

acquired acquiring

true true

true
Actually, it
spins on
cached copy

Art of Multiprocessor Programming 61

Purple Releases

false
tail

release acquiring

false true

false Bingo!

Art of Multiprocessor Programming 62

Purple Releases

tail

released acquired

true

Art of Multiprocessor Programming 63

CLH Queue Lock
class Qnode {
 AtomicBoolean locked =
 new AtomicBoolean(true);
}

Art of Multiprocessor Programming 64

CLH Queue Lock
class Qnode {
 AtomicBoolean locked =
 new AtomicBoolean(true);
}

Not released yet

Art of Multiprocessor Programming 65

CLH Queue Lock
class CLHLock implements Lock {
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode
 = new Qnode();
 public void lock() {
 Qnode pred
 = tail.getAndSet(myNode);
 while (pred.locked) {}
 }}

Art of Multiprocessor Programming 66

CLH Queue Lock
class CLHLock implements Lock {
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode
 = new Qnode();
 public void lock() {
 Qnode pred
 = tail.getAndSet(myNode);
 while (pred.locked) {}
 }}

Queue tail

Art of Multiprocessor Programming 67

CLH Queue Lock
class CLHLock implements Lock {
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode
 = new Qnode();
 public void lock() {
 Qnode pred
 = tail.getAndSet(myNode);
 while (pred.locked) {}
 }} Thread-local Qnode

Art of Multiprocessor Programming 68

CLH Queue Lock
class CLHLock implements Lock {
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode
 = new Qnode();
 public void lock() {
 Qnode pred
 = tail.getAndSet(myNode);
 while (pred.locked) {}
 }}

Swap in my node

Art of Multiprocessor Programming 69

CLH Queue Lock
class CLHLock implements Lock {
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode
 = new Qnode();
 public void lock() {
 Qnode pred
 = tail.getAndSet(myNode);
 while (pred.locked) {}
 }}

Spin until predecessor
releases lock

Art of Multiprocessor Programming 70

CLH Queue Lock
Class CLHLock implements Lock {
 …
 public void unlock() {
 myNode.locked.set(false);
 myNode = pred;
 }
}

Art of Multiprocessor Programming 71

CLH Queue Lock
Class CLHLock implements Lock {
 …
 public void unlock() {
 myNode.locked.set(false);
 myNode = pred;
 }
}

Notify successor

Art of Multiprocessor Programming 72

CLH Queue Lock
Class CLHLock implements Lock {
 …
 public void unlock() {
 myNode.locked.set(false);
 myNode = pred;
 }
}

Recycle
predecessor’s node

Art of Multiprocessor Programming 73

CLH Queue Lock
Class CLHLock implements Lock {
 …
 public void unlock() {
 myNode.locked.set(false);
 myNode = pred;
 }
}

(Here we don’t actually reuse myNode. Can see how
it’s done in Art of Multiprocessor Programming book)

Art of Multiprocessor Programming 74

CLH Lock

•  Good
– Lock release affects predecessor only
– Small, constant-sized space

•  Bad
– Doesn’t work for uncached NUMA

architectures

Art of Multiprocessor Programming 75

NUMA and cc-NUMA
Architectures

•  Acronym:
– Non-Uniform Memory Architecture
– ccNUMA = cache coherent NUMA

•  Illusion:
– Flat shared memory

•  Truth:
– No caches (sometimes)
– Some memory regions faster than others

Art of Multiprocessor Programming 76

NUMA Machines

Spinning on local
memory is fast

Art of Multiprocessor Programming 77

NUMA Machines

Spinning on remote
memory is slow

Art of Multiprocessor Programming 78

CLH Lock

•  Each thread spins on predecessor’s
memory

•  Could be far away …

Art of Multiprocessor Programming 79

MCS Lock

•  FCFS order
•  Spin on local memory only
•  Small, Constant-size overhead

Art of Multiprocessor Programming 80

Initially

false false

idle

tail

Art of Multiprocessor Programming 81

Acquiring

false false

true

acquiring

(allocate Qnode)

tail

Art of Multiprocessor Programming 82

Acquiring

false
tail

false

true

acquired

swap

Art of Multiprocessor Programming 83

Acquiring

false
tail

false

true

acquired

Art of Multiprocessor Programming 84

Acquired

false
tail

false

true

acquired

Art of Multiprocessor Programming 85

Acquiring

tail
false

acquired acquiring

true swap

Art of Multiprocessor Programming 86

Acquiring

tail

acquired acquiring

true

false

Art of Multiprocessor Programming 87

Acquiring

tail

acquired acquiring

true

false

Art of Multiprocessor Programming 88

Acquiring

tail

acquired acquiring

true

false

Art of Multiprocessor Programming 89

Acquiring

tail

acquired acquiring

true

true

false

Art of Multiprocessor Programming 90

Acquiring

tail

acquired acquiring

true

true
Yes!

false

Art of Multiprocessor Programming 91

MCS Queue Lock
class Qnode {
 volatile boolean locked = false;
 volatile qnode next = null;
}

Art of Multiprocessor Programming 92

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
 Qnode qnode = new Qnode();
 Qnode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }}}

Art of Multiprocessor Programming 93

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
 Qnode qnode = new Qnode();
 Qnode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }}}

Make a
QNode

Art of Multiprocessor Programming 94

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
 Qnode qnode = new Qnode();
 Qnode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }}}

add my Node to
the tail of

queue

Art of Multiprocessor Programming 95

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
 Qnode qnode = new Qnode();
 Qnode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }}}

Fix if queue was
non-empty

Art of Multiprocessor Programming 96

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void lock() {
 Qnode qnode = new Qnode();
 Qnode pred = tail.getAndSet(qnode);
 if (pred != null) {
 qnode.locked = true;
 pred.next = qnode;
 while (qnode.locked) {}
 }}}

Wait until
unlocked

Art of Multiprocessor Programming 97

Purple Release

false

releasing swap

false

Art of Multiprocessor Programming 98

Purple Release

false

releasing swap

false

I don’t see a successor. But by
looking at the queue, I see

another thread is active

Art of Multiprocessor Programming 99

Purple Release

false

releasing swap

false

I don’t see a successor. But by
looking at the queue, I see

another thread is active

I have to release that
thread so must wait for it

to identify its node

Art of Multiprocessor Programming 100

Purple Release

false

releasing prepare to spin

true

Art of Multiprocessor Programming 101

Purple Release

false

releasing spinning

true

Art of Multiprocessor Programming 102

Purple Release

false

releasing spinning

true false

Art of Multiprocessor Programming 103

Purple Release

false

releasing

true

Acquired lock

false

Art of Multiprocessor Programming 104

MCS Queue Unlock
class MCSLock implements Lock {
 AtomicReference tail;
 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null)
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
}}

Art of Multiprocessor Programming 105

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null)
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
}}

Missing
successor

?

Art of Multiprocessor Programming 106

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null)
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
}}

If really no successor,
return

Art of Multiprocessor Programming 107

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference tail;
 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null)
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
}}

Otherwise wait for
successor to catch up

Art of Multiprocessor Programming 108

MCS Queue Lock
class MCSLock implements Lock {
 AtomicReference queue;
 public void unlock() {
 if (qnode.next == null) {
 if (tail.CAS(qnode, null)
 return;
 while (qnode.next == null) {}
 }
 qnode.next.locked = false;
}}

Pass lock to successor

Art of Multiprocessor Programming 109

Abortable Locks

•  What if you want to give up waiting for a
lock?

•  For example
– Timeout
– Database transaction aborted by user

Art of Multiprocessor Programming 110

Back-off Lock

•  Aborting is trivial
– Just return from lock() call

•  Extra benefit:
– No cleaning up
– Wait-free
–  Immediate return

Art of Multiprocessor Programming 111

Queue Locks

•  Can’t just quit
– Thread in line behind will starve

•  Need a graceful way out

Art of Multiprocessor Programming 112

Queue Locks

spinning

true

spinning

true true

spinning

Art of Multiprocessor Programming 113

Queue Locks

spinning

true

spinning

true false

locked

Art of Multiprocessor Programming 114

Queue Locks

spinning

true

locked

false

Art of Multiprocessor Programming 115

Queue Locks

locked

false

Art of Multiprocessor Programming 116

Queue Locks

spinning

true

spinning

true true

spinning

Art of Multiprocessor Programming 117

Queue Locks

spinning

true true true

spinning

Art of Multiprocessor Programming 118

Queue Locks

spinning

true true false

locked

Art of Multiprocessor Programming 119

Queue Locks

spinning

true false

Art of Multiprocessor Programming 120

Queue Locks

pwned

true false

Art of Multiprocessor Programming 121

Abortable CLH Lock

•  When a thread gives up
– Removing node in a wait-free way is hard

•  Idea:
–  let successor deal with it.

Art of Multiprocessor Programming 122

Initially

tail

idle
Pointer to

predecessor
(or null)

A

Art of Multiprocessor Programming 123

Initially

tail

idle
Distinguished
available node
means lock is

free

A

Art of Multiprocessor Programming 124

Acquiring

tail

acquiring

A

Art of Multiprocessor Programming 125

Acquiring
acquiring

A

Null predecessor
means lock not

available and not
aborted

Art of Multiprocessor Programming 126

Acquiring
acquiring

A

Swap

Art of Multiprocessor Programming 127

Acquiring
acquiring

A

Art of Multiprocessor Programming 128

Acquired
locked

A

Reference to
AVAILABLE means

lock is free.

spinning spinning locked

Art of Multiprocessor Programming 129

Normal Case

Null means lock is
not free & request

not aborted

Art of Multiprocessor Programming 130

One Thread Aborts

spinning Timed out locked

Art of Multiprocessor Programming 131

Successor Notices

spinning Timed out locked

Non-Null means
predecessor

aborted

Art of Multiprocessor Programming 132

Recycle Predecessor’s Node

spinning locked

Art of Multiprocessor Programming 133

Spin on Earlier Node

spinning locked

Art of Multiprocessor Programming 134

Spin on Earlier Node

spinning released

A

The lock is now
mine

Art of Multiprocessor Programming 135

Time-out Lock
public class TOLock implements Lock {
 static Qnode AVAILABLE
 = new Qnode();
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode;

Art of Multiprocessor Programming 136

Time-out Lock
public class TOLock implements Lock {
 static Qnode AVAILABLE
 = new Qnode();
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode;

AVAILABLE node
signifies free lock

Art of Multiprocessor Programming 137

Time-out Lock
public class TOLock implements Lock {
 static Qnode AVAILABLE
 = new Qnode();
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode;

Tail of the queue

Art of Multiprocessor Programming 138

Time-out Lock
public class TOLock implements Lock {
 static Qnode AVAILABLE
 = new Qnode();
 AtomicReference<Qnode> tail;
 ThreadLocal<Qnode> myNode;

Remember my node …

Art of Multiprocessor Programming 139

Time-out Lock
public boolean lock(long timeout) {
 Qnode qnode = new Qnode();
 myNode.set(qnode);
 qnode.prev = null;
 Qnode myPred = tail.getAndSet(qnode);
 if (myPred== null
 || myPred.prev == AVAILABLE) {
 return true;
 }
…

Art of Multiprocessor Programming 140

Time-out Lock
public boolean lock(long timeout) {
 Qnode qnode = new Qnode();
 myNode.set(qnode);
 qnode.prev = null;
 Qnode myPred = tail.getAndSet(qnode);
 if (myPred == null
 || myPred.prev == AVAILABLE) {
 return true;
 }

Create & initialize node

Art of Multiprocessor Programming 141

Time-out Lock
public boolean lock(long timeout) {
 Qnode qnode = new Qnode();
 myNode.set(qnode);
 qnode.prev = null;
 Qnode myPred = tail.getAndSet(qnode);
 if (myPred == null
 || myPred.prev == AVAILABLE) {
 return true;
 }

Swap with tail

Art of Multiprocessor Programming 142

Time-out Lock
public boolean lock(long timeout) {
 Qnode qnode = new Qnode();
 myNode.set(qnode);
 qnode.prev = null;
 Qnode myPred = tail.getAndSet(qnode);
 if (myPred == null
 || myPred.prev == AVAILABLE) {
 return true;
 }
 ...

If predecessor absent or
released, we are done

Art of Multiprocessor Programming 143

Time-out Lock
…
 long start = now();
 while (now()- start < timeout) {
 Qnode predPred = myPred.prev;
 if (predPred == AVAILABLE) {
 return true;
 } else if (predPred != null) {
 myPred = predPred;
 }
 }
 …

spinning spinning locked

Art of Multiprocessor Programming 144

Time-out Lock
…
 long start = now();
 while (now()- start < timeout) {
 Qnode predPred = myPred.prev;
 if (predPred == AVAILABLE) {
 return true;
 } else if (predPred != null) {
 myPred = predPred;
 }
 }
 …

Keep trying for a while
…

Art of Multiprocessor Programming 145

Time-out Lock
…
 long start = now();
 while (now()- start < timeout) {
 Qnode predPred = myPred.prev;
 if (predPred == AVAILABLE) {
 return true;
 } else if (predPred != null) {
 myPred = predPred;
 }
 }
 …

Spin on predecessor’s
prev field

Art of Multiprocessor Programming 146

Time-out Lock
…
 long start = now();
 while (now()- start < timeout) {
 Qnode predPred = myPred.prev;
 if (predPred == AVAILABLE) {
 return true;
 } else if (predPred != null) {
 myPred = predPred;
 }
 }
 …

Predecessor released lock

Art of Multiprocessor Programming 147

Time-out Lock
…
 long start = now();
 while (now()- start < timeout) {
 Qnode predPred = myPred.prev;
 if (predPred == AVAILABLE) {
 return true;
 } else if (predPred != null) {
 myPred = predPred;
 }
 }
 …

Predecessor aborted,
advance one

Art of Multiprocessor Programming 148

Time-out Lock
…
if (!tail.compareAndSet(qnode, myPred))
 qnode.prev = myPred;
 return false;
 }
}

What do I do when I time out?

Art of Multiprocessor Programming 149

Time-out Lock
…
if (!tail.compareAndSet(qnode, myPred))
 qnode.prev = myPred;
 return false;
 }
}

Do I have a successor?
If CAS succeeds: no

successor, tail just set to my
pred, simply return false

Art of Multiprocessor Programming 150

Time-out Lock
…
if (!tail.compareAndSet(qnode, myPred))
 qnode.prev = myPred;
 return false;
 }
}

If CAS fails, I do have a
successor.

Tell it about myPred

Art of Multiprocessor Programming 151

Time-Out Unlock
public void unlock() {
 Qnode qnode = myNode.get();
 if (!tail.compareAndSet(qnode, null))
 qnode.prev = AVAILABLE;
}

Art of Multiprocessor Programming 152

public void unlock() {
 Qnode qnode = myNode.get();
 if (!tail.compareAndSet(qnode, null))
 qnode.prev = AVAILABLE;
}

Time-out Unlock

If CAS failed:
successor exists,
notify it can enter

Art of Multiprocessor Programming 153

public void unlock() {
 Qnode qnode = myNode.get();
 if (!tail.compareAndSet(qnode, null))
 qnode.prev = AVAILABLE;
}

Timing-out Lock

CAS successful: set tail to
null, no clean up since no

successor waiting

Fairness and NUMA Locks

•  MCS lock mechanics are aware
of NUMA

•  Lock Fairness is FCFS
•  Is this a good fit with NUMA and

Cache-Coherent NUMA
machines?

Lock Data Access in NUMA
Machine

Node 1

MCS
lock

Node 2

CS

various
memory
locations

 “Who’s the Unfairest of Them All?”

•  locality crucial to NUMA performance
•  Big gains if threads from same node/

cluster obtain lock consecutively
•  Unfairness pays

Hierarchical Backoff Lock (HBO)

time
d 2d 4d

Global
T&T&S
lock

time
d 2d 4d

Back off less
for thread from
same node

CS

Unfairness is key to
performance

Hierarchical Backoff Lock (HBO)

•  Advantages:
– Simple, improves locality

•  Disadvantages:
– Requires platform specific tuning
– Unstable
– Unfair
– Continuous invalidations on shared global

lock word

Hierarchical CLH Lock (HCLH)

Local Tail

CAS()

Local CLH queue

CS
Local Tail

CAS()

Local CLH queue

Global Tail

CAS()

Thread at
local head
splices local
queue into
global queue

Each thread
spins on
cached copy of
predecessor’s
node

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 1 16 32 64 96 128 160 192 224 256

Th
rou

gh
pu

t

Number of Threads

hbo
hclh

Threads access 4 cache lines in CS

HBO

HCLH

Hierarchical CLH Lock (HCLH)

Hierarchical CLH Lock (HCLH)

•  Advantages:
–  Improved locality
–  Local spinning
– Fair

•  Disadvantages:
– Complex code implies long common path
– Splicing into both local and global requires

CAS
– Hard to get long local sequences

Lock Cohorting

•  General technique for converting almost
any lock into a NUMA lock

•  Allows combining different lock types
•  But need these locks to have certain

properties (will discuss shortly)

Lock Cohorting

Global
Lock

On release: if non-
empty cohort of
waiting threads,
release only local
lock; leave mark

CS

Local
Lock

Local
Lock

Non-empty cohort

Acquire local
lock and proceed
to critical section

empty cohort

On release: since
cohort is empty
must release global
lock to avoid
deadlock

Thread that
acquired local lock
can now acquire
global lock…

Thread Obliviousness

•  A lock is thread-oblivious if
– After being acquired by one thread,
– Can be released by another

Art of Multiprocessor Programming 165

Cohort Detection

•  A lock provides cohort detection if
–  It can tell whether any thread is trying to

acquire it

Art of Multiprocessor Programming 166

Lock Cohorting

•  Two levels of locking
•  Global lock: thread oblivious

– Thread acquiring the lock can be different
than one releasing it

•  Local lock: cohort detection
– Thread releasing can detect if some thread

is waiting to acquire it

Lock Cohorting: C-BO-MCS Lock

 Local MCS lock tail

CAS()

CS

True False False

Local MCS lock
tail

CAS()
True False False

time d 2d 4d

Global
backoff
lock

BO Lock is thread
oblivious by definition

In MCS Lock, cohort
detection by checking
successor pointer

Bound number of
consecutive acquires
to control unfairness

Two new states: acquire
local and acquire global.
Do we own global lock?

Lock Cohorting: C-BO-BO Lock

CS
time d 2d 4d

Global
backoff
lock

As noted BO Lock is
thread oblivious

How to add cohort detection
property to BO lock?

d 2d 4d

d 2d 4d

Lock Cohorting: C-BO-BO Lock

CS
time d 2d 4d

Global
backoff
lock d 2d 4d

d 2d 4d

Write successorExists
field before attempting to
acquire local lock.

successorExists reset on
lock release.

Release might overwrite
another successor’s
write … but we don’t
care…why?

C-BO-BO is a Time-Out

NUMA Lock

CS
time d 2d 4d

Global
backoff
lock d 2d 4d

d 2d 4d

BO locks trivially abortable

If releasing thread finds
successorExists false, it
releases global lock

Aborting thread resets
successorExists field
before leaving local lock.
Spinning threads set it to
true.

Time-Out NUMA Lock

swap()

Local time-out queue

CS

Local Time-Out locks
have cohort detection
property …why?
Not enough…

swap()

Local time-out queue
time d 2d 4d

Lock Cohorting

•  Advantages:

– Great locality
–  Low contention on shared lock
– Practically no tuning
– Has whatever properties you want:

•  Can be more or less fair, abortable…
 just choose the appropriate type of locks…

•  Disadvantages:
– Must tune fairness parameters

Lock Cohorting

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 1 16 32 64 96 128 160 192 224 256

Th
ro

ug
hp

ut

Number of Threads

hbo
hclh

fc-mcs
nmcs

nclh
nbo

nticket

HBO

HCLH

C-BO-MCS C-BO-BO

Time-Out (Abortable) Lock
Cohorting

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 1 16 32 64 96 128 160 192 224 256

Th
ro

ug
hp

ut
 in

 C
R

-n
C

R
s

pe
r s

ec

Number of Threads

a-clh
a-hbo

a-bo-bo
a-bo-clh (CAS)

a-bo-clh

Abortable
CLH (our
time-out
lock) and
HBO

A-BO-BO

A-BO-CLH (time-out lock + BO)

Art of Multiprocessor Programming 176

One Lock To Rule Them All?

•  TTAS+Backoff, CLH, MCS, ToLock…
•  Each better than others in some way
•  There is no one solution
•  Lock we pick really depends on:

–  the application
–  the hardware
–  which properties are important

Yeahy! Amdahl’s Law Works

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

75%
Unshared

25%
Shared

Fine grained parallelism
gives great performance

benefit

But…

•  Can we always draw the right
conclusions from Amdahl’s law?

•  Claim: sometimes the overhead of fine-
grained synchronization is so high…that
it is better to have a single thread do all
the work sequentially in order to avoid it

Oyama et. al Mutex

object
lock

b c d

Head

a

object CAS() CAS()

Apply a,b,c, and d
 to object

return responses

Release lock

Not great since
every request
involves CAS

Combine lock requests

Improves cache
behavior and reduces
contention on object

Flat Combining

•  Have single lock holder collect and
perform requests of all others
– Without using CAS operations to coordinate

requests
– With (non-naïve) combining of requests (if

cost of k batched operations is less than that
of k operations in sequence à we win)

Flat-Combining

object
lock

Enq(d)

Head
object CAS()

Apply requests
 to object

Publication list

Enq(d) null null Deq()

Deq()

counter

54

54 12 54 53 Enq(d)

Deq()

Deq()

Collect requests Again try to
collect requests

Most requests do not involve a CAS, in fact,
not even a memory barrier

Flat-Combining Pub-List
Cleanup

Enq(d)

Head object
Publication list

Enq(d) null Deq()

counter

54

54 12 54 53 Enq(d)

Every combiner increments counter and updates
record’s time stamp when returning response
 Traverse and remove from

list records with old time
stamp

If thread reappears must add itself
to pub list

Cleanup requires no CAS,
only reads and writes

Fine-Grained Lock-free FIFO
Queue

b c d

Tail Head

a
CAS()

CAS() CAS()

P: Dequeue() => a Q: Enqueue(d)

Flat-Combining FIFO Queue

object
lock

Enq(a)

Head
CAS()

Publication list

Enq(b) null

counter

54

54 12 54 Enq(b)

Deq() Enq(b)

Sequential FIFO Queue
b c d

Tail Head

a

Flat-Combining FIFO Queue

object
lock

Enq(a)

Head
CAS()

Publication list

Enq(b)

counter

54

54 12 54 Enq(b)

Deq()

Deq()

Enq(b)

Sequential
“Fat Node” FIFO Queue

Tail Head

c b a c b e

OK, but can do better…combining:
collect all items into a “fat node”,
enqueue in one step “Fat Node” easy sequentially but

cannot be done in concurrent alg
without CAS

Linearizable FIFO Queue

Flat Combining

Combining
tree MS queue, Oyama

Benefit’s of Flat Combining

Flat Combining
in Red

Linearizable Stack Flat Combining

Elimination
Stack

Treiber Lock-
free Stack

A Bug

Concurrent Priority Queue
(Chapter 15)

k	deleteMin	opera.ons	take	O(k	log	n)	

deleteMin()	traverses	CASing	un.l	you	manage	to	mark	a	node,		
then	use	skiplist	remove	your		marked	node	

1

cvccc	

Flat-Combining Priority Queue

object		
lock	

Enq(a)	

Head	

CAS()	
Publica.on	list	

Enq(b)	

counter	

54	

54	12	54	 Enq(b)	

Deq()	

Deq()	

Enq(b)	

Flat Combining Priority Queue

traverse	to	find	kth	key,	collect	values	to	be	returned	

Collect	k		deleteMin	requests	Traverse	skiplist	towards	kth	key,		
removing	all	nodes	below	your	

path	

k	deleteMin	opera.ons	take	O(k+log	n)	

Remove													

Priority Queue Flat	Combining	
Skiplist	based	

queue		 lock-based	
SkipQueue		

Whats	this?	

lock-free	
SkipQueue		

Priority Queue Flat	combining	with	
sequen.al	pairing	heap	

plugged	in…	

Priority Queue on Intel
Flat	combining	with	

sequen.al	pairing	heap	
plugged	in…	

Don’t be Afraid of the Big Bad
Lock

Art of Multiprocessor Programming 195

•  Fine grained parallelism comes
with an overhead…not always
worth the effort.

•  Sometimes using a single global
lock is a win.

Thanks!

Art of Multiprocessor Programming 196

Art of Multiprocessor Programming 197

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

•  You are free:
–  to Share — to copy, distribute and transmit the work
–  to Remix — to adapt the work

•  Under the following conditions:
–  Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

–  Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

•  For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to
–  http://creativecommons.org/licenses/by-sa/3.0/.

•  Any of the above conditions can be waived if you get permission from
the copyright holder.

•  Nothing in this license impairs or restricts the author's moral rights.

