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Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 

 public void lock(); 
 
 public void unlock(); 
} 

acquire lock 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 

release lock 

acquire lock 



Mutual Exclusion Properties 
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Mutual Exclusion  
•  At most one thread holds the lock 

(has completed lock() and not 
completed unlock()) at any time  



Mutual Exclusion Properties 
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Freedom from Deadlock  
•  If a thread calls lock() or unlock() and 

never returns, then other threads must 
complete invocations of lock() and 
unlock() infinitely often. 



Mutual Exclusion Properties 
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Freedom from Starvation  
•  Every call to lock() or unlock() 

eventually returns. 
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Locking and Amdahl’s Law 
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What Should you do if you can’t 
get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
– Good if delays are short 

•  Give up the processor 
– Good if delays are long 
– Always good on uniprocessor 

(1) 
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What Should you do if you can’t 
get a lock? 

•  Keep trying 
–  “spin” or “busy-wait” 
– Good if delays are short 

•  Give up the processor 
– Good if delays are long 
– Always good on uniprocessor 

our focus 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 

…lock introduces 
sequential bottleneck 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 

…lock suffers from contention 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
These are distinct 
phenomena 

…lock suffers from contention 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
Seq Bottleneck à no parallelism 

…lock suffers from contention 
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Basic Spin-Lock 

CS 

Resets lock  
upon exit 

spin  
lock 

critical  
section 

. . . 
Contention à overloaded 
communication medium 

…lock suffers from contention 
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Mutual Exclusion 

•  What do we want to optimize? 
– Bus bandwidth used by spinning threads 
– Release/Acquire latency 
– Acquire latency for idle lock 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

(5) 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Package 
java.util.concurrent.atomic 
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Review: Test-and-Set 
public class AtomicBoolean { 
 boolean value; 
   
 public synchronized boolean 
getAndSet(boolean newValue) { 

   boolean prior = value; 
   value = newValue; 
   return prior; 
 } 
} 

Swap old and new 
values.  
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Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
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Review: Test-and-Set 
AtomicBoolean lock 
 = new AtomicBoolean(false) 
… 
boolean prior = lock.getAndSet(true) 
  

(5) 

Swapping in true is called 
“test-and-set” or TAS.  

Both “Swap” and “TAS” 
available in hardware.  
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Test-and-Set Locks 

•  Locking 
– Lock is free: value is false 
– Lock is taken: value is true 

•  Acquire lock by calling TAS 
–  If result is false, you win 
–  If result is true, you lose  

•  Release lock by writing false 
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Simple TASLock  

•  TAS invalidates cache lines 
•  Spinners 

– Miss in cache 
– Go to bus 

•  Thread wants to release lock 
– delayed behind spinners 
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Test-and-Test-and-Set Locks 

•  Lurking stage 
– Wait until lock “looks” free 
– Spin while read returns true (lock taken) 

•  Pouncing state 
– As soon as lock “looks” available 
– Read returns false (lock free) 
– Call TAS to acquire lock 
–  If TAS loses, back to lurking 
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  Wait until lock looks free 
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Test-and-test-and-set Lock 
class TTASlock { 
 AtomicBoolean state = 
  new AtomicBoolean(false); 
 
 void lock() { 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
 } 
}  

Then try to 
acquire it 
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Test-and-test-and-set 

•  Wait until lock “looks” free 
– Spin on local cache 
– No bus use while lock busy 

•  Problem: when lock is released 
–  Invalidation storm … 
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Problems 

•  Everyone misses 
– Reads satisfied sequentially 

•  Everyone does TAS 
–  Invalidates others’ caches 

•  Eventually quiesces after lock acquired 
– Quiescence time often linear in number of 

cores   
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Solution: Introduce Delay 

spin lock time 
d r1d r2d 

•  If the lock looks free 
-  but I fail to get it 

•  There must be contention 
-  better to back off than to collide again 
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Dynamic Example: 
Exponential Backoff 

time 
d 2d 4d spin lock 

 If I fail to get lock 
– Wait random duration before retry 
– Each subsequent failure doubles 

expected wait 
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Exponential Backoff Lock 

public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   
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Exponential Backoff Lock 

public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Fix minimum delay 
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Exponential Backoff Lock 

public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   Wait until lock looks free 
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Exponential Backoff Lock 

public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   If we win, return 
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Exponential Backoff Lock 

public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Back off for random duration 
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Exponential Backoff Lock 

public class Backoff implements lock {  
 public void lock() { 
  int delay = MIN_DELAY; 
  while (true) { 
   while (state.get()) {} 
   if (!state.getAndSet(true)) 
    return; 
   sleep(random() % delay); 
   if (delay < MAX_DELAY) 
    delay = 2 * delay; 
 }}}   

Double max delay, within reason 



Actual Data on 40-Core 
Machine 
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Backoff: Other Issues 

•  Good 
– Easy to implement 
– Beats TTAS lock 

•  Bad 
– Must choose parameters carefully 
– Not portable across platforms 
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Idea 

•  Avoid useless invalidations 
– By keeping a queue of threads 

•  Each thread 
– Notifies next in line 
– Without bothering the others 
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CLH Lock 

•  First Come First Served order 
•  Small, constant-size overhead per 

thread 
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Initially 

false 
tail 

idle 
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Initially 

false 
tail 

idle 

Queue tail 
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Initially 

false 
tail 

idle 

Lock is free 
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Initially 

false 
tail 

idle 
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Purple Wants the Lock 

false 
tail 

acquiring 



Art of Multiprocessor Programming 51 

Purple Wants the Lock 

false 

tail 

acquiring 

true 
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Purple Wants the Lock 

false 
tail 

acquiring 

true 

Swap 
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Purple Has the Lock 

false 
tail 

acquired 

true 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true true 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true 

Swap 

true 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true true 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true true 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true true 

Implicit 
Linked list 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true true 
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Red Wants the Lock 

false 
tail 

acquired acquiring 

true true 

true 
Actually, it  
spins on  
cached copy  
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Purple Releases 

false 
tail 

release acquiring 

false true 

false Bingo! 
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Purple Releases 

tail 

released acquired 

true 
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CLH Queue Lock 
class Qnode { 
 AtomicBoolean locked = 
   new AtomicBoolean(true); 
} 
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CLH Queue Lock 
class Qnode { 
 AtomicBoolean locked = 
   new AtomicBoolean(true); 
} 

Not released yet 
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CLH Queue Lock 
class CLHLock implements Lock { 
 AtomicReference<Qnode> tail;  
 ThreadLocal<Qnode> myNode 
    = new Qnode(); 
 public void lock() { 
  Qnode pred  
    = tail.getAndSet(myNode); 
  while (pred.locked) {} 
 }} 
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CLH Queue Lock 
class CLHLock implements Lock { 
 AtomicReference<Qnode> tail;  
 ThreadLocal<Qnode> myNode 
    = new Qnode(); 
 public void lock() { 
  Qnode pred  
    = tail.getAndSet(myNode); 
  while (pred.locked) {} 
 }} 

Queue tail 
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CLH Queue Lock 
class CLHLock implements Lock { 
 AtomicReference<Qnode> tail;  
 ThreadLocal<Qnode> myNode 
    = new Qnode(); 
 public void lock() { 
  Qnode pred  
    = tail.getAndSet(myNode); 
  while (pred.locked) {} 
 }} Thread-local Qnode 
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CLH Queue Lock 
class CLHLock implements Lock { 
 AtomicReference<Qnode> tail;  
 ThreadLocal<Qnode> myNode 
    = new Qnode(); 
 public void lock() { 
  Qnode pred  
    = tail.getAndSet(myNode); 
  while (pred.locked) {} 
 }} 

Swap in my node 
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CLH Queue Lock 
class CLHLock implements Lock { 
 AtomicReference<Qnode> tail;  
 ThreadLocal<Qnode> myNode 
    = new Qnode(); 
 public void lock() { 
  Qnode pred  
    = tail.getAndSet(myNode); 
  while (pred.locked) {} 
 }} 

Spin until predecessor 
releases lock 
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CLH Queue Lock 
Class CLHLock implements Lock { 
 … 
 public void unlock() { 
  myNode.locked.set(false); 
  myNode = pred; 
 } 
} 
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CLH Queue Lock 
Class CLHLock implements Lock { 
 … 
 public void unlock() { 
  myNode.locked.set(false); 
  myNode = pred; 
 } 
} 

Notify successor 
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CLH Queue Lock 
Class CLHLock implements Lock { 
 … 
 public void unlock() { 
  myNode.locked.set(false); 
  myNode = pred; 
 } 
} 

Recycle 
predecessor’s node 
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CLH Queue Lock 
Class CLHLock implements Lock { 
 … 
 public void unlock() { 
  myNode.locked.set(false); 
  myNode = pred; 
 } 
} 

(Here we don’t actually reuse myNode. Can see how 
it’s done in Art of Multiprocessor Programming book) 
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CLH Lock 

•  Good 
– Lock release affects predecessor only 
– Small, constant-sized space 

•  Bad 
– Doesn’t work for uncached NUMA 

architectures 
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NUMA and cc-NUMA 
Architectures 

•  Acronym: 
– Non-Uniform Memory Architecture 
– ccNUMA = cache coherent NUMA 

•  Illusion: 
– Flat shared memory 

•  Truth: 
– No caches (sometimes) 
– Some memory regions faster than others 
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NUMA Machines 

Spinning on local 
memory is fast 
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NUMA Machines 

Spinning on remote 
memory is slow 
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CLH Lock 

•  Each thread spins on predecessor’s 
memory 

•  Could be far away … 
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MCS Lock 

•  FCFS order 
•  Spin on local memory only 
•  Small, Constant-size overhead 
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Initially 

false false 

idle 

tail   
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Acquiring 

false false 

true 

acquiring 

(allocate Qnode) 

tail   
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Acquiring 

false 
tail   

false 

true 

acquired 

swap 
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Acquiring 

false 
tail   

false 

true 

acquired 
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Acquired 

false 
tail   

false 

true 

acquired 
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Acquiring 

tail   
false 

acquired acquiring 

true swap 
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Acquiring 

tail   

acquired acquiring 

true 

false 
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Acquiring 

tail   

acquired acquiring 

true 

false 
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Acquiring 

tail 

acquired acquiring 

true 

false 
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Acquiring 

tail 

acquired acquiring 

true 

true 

false 
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Acquiring 

tail 

acquired acquiring 

true 

true 
Yes! 

false 
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MCS Queue Lock 
class Qnode { 
 volatile boolean locked = false; 
 volatile qnode   next   = null; 
} 
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void lock() { 
  Qnode qnode = new Qnode(); 
  Qnode pred = tail.getAndSet(qnode); 
  if (pred != null) { 
   qnode.locked = true; 
   pred.next = qnode; 
   while (qnode.locked) {} 
  }}} 
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void lock() { 
  Qnode qnode = new Qnode(); 
  Qnode pred = tail.getAndSet(qnode); 
  if (pred != null) { 
   qnode.locked = true; 
   pred.next = qnode; 
   while (qnode.locked) {} 
  }}} 

Make a 
QNode  



Art of Multiprocessor Programming 94 

MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void lock() { 
  Qnode qnode = new Qnode(); 
  Qnode pred = tail.getAndSet(qnode); 
  if (pred != null) { 
   qnode.locked = true; 
   pred.next = qnode; 
   while (qnode.locked) {} 
  }}} 

add my Node to 
the tail of 

queue   
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void lock() { 
  Qnode qnode = new Qnode(); 
  Qnode pred = tail.getAndSet(qnode); 
  if (pred != null) { 
   qnode.locked = true; 
   pred.next = qnode; 
   while (qnode.locked) {} 
  }}} 

Fix if queue was 
non-empty 
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void lock() { 
  Qnode qnode = new Qnode(); 
  Qnode pred = tail.getAndSet(qnode); 
  if (pred != null) { 
   qnode.locked = true; 
   pred.next = qnode; 
   while (qnode.locked) {} 
  }}} 

Wait until 
unlocked 
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Purple Release 

false 

releasing swap 

false 
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Purple Release 

false 

releasing swap 

false 

I don’t see a successor. But by 
looking at the queue, I see 

another thread is active 
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Purple Release 

false 

releasing swap 

false 

I don’t see a successor. But by 
looking at the queue, I see 

another thread is active 

I have to release that 
thread so must wait for it 

to identify its node 
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Purple Release 

false 

releasing prepare to spin 

true 
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Purple Release 

false 

releasing spinning 

true 
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Purple Release 

false 

releasing spinning 

true false 
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Purple Release 

false 

releasing 

true 

Acquired lock 

false 
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MCS Queue Unlock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void unlock() { 
  if (qnode.next == null) { 
   if (tail.CAS(qnode, null) 
    return; 
   while (qnode.next == null) {} 
  } 
 qnode.next.locked = false; 
}} 
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void unlock() { 
  if (qnode.next == null) { 
   if (tail.CAS(qnode, null) 
    return; 
   while (qnode.next == null) {} 
  } 
 qnode.next.locked = false; 
}} 

Missing 
successor

? 



Art of Multiprocessor Programming 106 

MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void unlock() { 
  if (qnode.next == null) { 
   if (tail.CAS(qnode, null) 
    return; 
   while (qnode.next == null) {} 
  } 
 qnode.next.locked = false; 
}} 

If really no successor, 
return 
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference tail; 
 public void unlock() { 
  if (qnode.next == null) { 
   if (tail.CAS(qnode, null) 
    return; 
   while (qnode.next == null) {} 
  } 
 qnode.next.locked = false; 
}} 

Otherwise wait for 
successor to catch up 
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MCS Queue Lock 
class MCSLock implements Lock { 
 AtomicReference queue; 
 public void unlock() { 
  if (qnode.next == null) { 
   if (tail.CAS(qnode, null) 
    return; 
   while (qnode.next == null) {} 
  } 
 qnode.next.locked = false; 
}} 

Pass lock to successor 
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Abortable Locks 

•  What if you want to give up waiting for a 
lock? 

•  For example 
– Timeout 
– Database transaction aborted by user 
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Back-off Lock 

•  Aborting is trivial 
– Just return from lock() call 

•  Extra benefit: 
– No cleaning up 
– Wait-free 
–  Immediate return 
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Queue Locks 

•  Can’t just quit 
– Thread in line behind will starve 

•  Need a graceful way out 
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Queue Locks 

spinning 

true 

spinning 

true true 

spinning 
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Queue Locks 

spinning 

true 

spinning 

true false 

locked 
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Queue Locks 

spinning 

true 

locked 

false 
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Queue Locks 

locked 

false 
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Queue Locks 

spinning 

true 

spinning 

true true 

spinning 
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Queue Locks 

spinning 

true true true 

spinning 
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Queue Locks 

spinning 

true true false 

locked 
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Queue Locks 

spinning 

true false 
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Queue Locks 

pwned 

true false 
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Abortable CLH Lock 

•  When a thread gives up 
– Removing node in a wait-free way is hard 

•  Idea: 
–  let successor deal with it. 
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Initially 

tail 

idle 
Pointer to 

predecessor 
(or null) 

A 
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Initially 

tail 

idle 
Distinguished 
available node 
means lock is 

free 

A 
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Acquiring 

tail 

acquiring 

A 
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Acquiring 
acquiring 

A 

Null predecessor 
means lock not 

available and not 
aborted 
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Acquiring 
acquiring 

A 

Swap 
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Acquiring 
acquiring 

A 
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Acquired 
locked 

A 

Reference to 
AVAILABLE means 

lock is free. 



spinning spinning locked 
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Normal Case 

Null means lock is 
not free & request 

not aborted 
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One Thread Aborts 

spinning Timed out locked 
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Successor Notices 

spinning Timed out locked 

Non-Null means 
predecessor 

aborted 
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Recycle Predecessor’s Node 

spinning locked 
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Spin on Earlier Node 

spinning locked 
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Spin on Earlier Node 

spinning released 

A 

The lock is now 
mine 
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Time-out Lock 
public class TOLock implements Lock { 
  static Qnode AVAILABLE 
    = new Qnode(); 
  AtomicReference<Qnode> tail; 
  ThreadLocal<Qnode> myNode; 
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Time-out Lock 
public class TOLock implements Lock { 
  static Qnode AVAILABLE 
    = new Qnode(); 
  AtomicReference<Qnode> tail; 
  ThreadLocal<Qnode> myNode; 
   

AVAILABLE node 
signifies free lock 
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Time-out Lock 
public class TOLock implements Lock { 
  static Qnode AVAILABLE 
    = new Qnode(); 
  AtomicReference<Qnode> tail; 
  ThreadLocal<Qnode> myNode; 
   

Tail of the queue 
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Time-out Lock 
public class TOLock implements Lock { 
  static Qnode AVAILABLE 
    = new Qnode(); 
  AtomicReference<Qnode> tail; 
  ThreadLocal<Qnode> myNode; 
   

Remember my node … 
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Time-out Lock 
public boolean lock(long timeout) { 
  Qnode qnode = new Qnode(); 
  myNode.set(qnode);  
  qnode.prev = null; 
  Qnode myPred = tail.getAndSet(qnode); 
  if (myPred== null 
      || myPred.prev == AVAILABLE) { 
      return true;  
   } 
… 
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Time-out Lock 
public boolean lock(long timeout) { 
  Qnode qnode = new Qnode(); 
  myNode.set(qnode);  
  qnode.prev = null; 
  Qnode myPred = tail.getAndSet(qnode); 
  if (myPred == null 
      || myPred.prev == AVAILABLE) { 
      return true;  
   } 

Create & initialize node 
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Time-out Lock 
public boolean lock(long timeout) { 
  Qnode qnode = new Qnode(); 
  myNode.set(qnode);  
  qnode.prev = null; 
  Qnode myPred = tail.getAndSet(qnode); 
  if (myPred == null 
      || myPred.prev == AVAILABLE) { 
      return true;  
   } 

Swap with tail 
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Time-out Lock 
public boolean lock(long timeout) { 
  Qnode qnode = new Qnode(); 
  myNode.set(qnode);  
  qnode.prev = null; 
  Qnode myPred = tail.getAndSet(qnode); 
  if (myPred == null 
      || myPred.prev == AVAILABLE) { 
      return true;  
   } 
  ... 

If predecessor absent or 
released, we are done 
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Time-out Lock 
… 
  long start = now(); 
  while (now()- start < timeout) { 
    Qnode predPred = myPred.prev; 
    if (predPred == AVAILABLE) { 
      return true; 
    } else if (predPred != null) { 
      myPred = predPred; 
    } 
  } 
  … 

spinning spinning locked 
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Time-out Lock 
… 
  long start = now(); 
  while (now()- start < timeout) { 
    Qnode predPred = myPred.prev; 
    if (predPred == AVAILABLE) { 
      return true; 
    } else if (predPred != null) { 
      myPred = predPred; 
    } 
  } 
  … 

Keep trying for a while 
… 
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Time-out Lock 
… 
  long start = now(); 
  while (now()- start < timeout) { 
    Qnode predPred = myPred.prev; 
    if (predPred == AVAILABLE) { 
      return true; 
    } else if (predPred != null) { 
      myPred = predPred; 
    } 
  } 
  … 

Spin on predecessor’s 
prev field 
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Time-out Lock 
… 
  long start = now(); 
  while (now()- start < timeout) { 
    Qnode predPred = myPred.prev; 
    if (predPred == AVAILABLE) { 
      return true; 
    } else if (predPred != null) { 
      myPred = predPred; 
    } 
  } 
  … 

Predecessor released lock 
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Time-out Lock 
… 
  long start = now(); 
  while (now()- start < timeout) { 
    Qnode predPred = myPred.prev; 
    if (predPred == AVAILABLE) { 
      return true; 
    } else if (predPred != null) { 
      myPred = predPred; 
    } 
  } 
  … 

Predecessor aborted, 
advance one 
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Time-out Lock 
… 
if (!tail.compareAndSet(qnode, myPred)) 
    qnode.prev = myPred; 
    return false; 
  } 
} 

What do I do when I time out? 
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Time-out Lock 
… 
if (!tail.compareAndSet(qnode, myPred)) 
    qnode.prev = myPred; 
    return false; 
  } 
} 

Do I have a successor? 
If CAS succeeds: no 

successor, tail just set to my 
pred, simply return false 
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Time-out Lock 
… 
if (!tail.compareAndSet(qnode, myPred)) 
    qnode.prev = myPred; 
    return false; 
  } 
} 

If CAS fails, I do have a 
successor. 

Tell it about myPred 
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Time-Out Unlock 
public void unlock() { 
  Qnode qnode = myNode.get(); 
  if (!tail.compareAndSet(qnode, null)) 
    qnode.prev = AVAILABLE; 
} 
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public void unlock() { 
  Qnode qnode = myNode.get(); 
  if (!tail.compareAndSet(qnode, null)) 
    qnode.prev = AVAILABLE; 
} 

Time-out Unlock 

If CAS failed: 
successor exists, 
notify it can enter 
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public void unlock() { 
  Qnode qnode = myNode.get(); 
  if (!tail.compareAndSet(qnode, null)) 
    qnode.prev = AVAILABLE; 
} 

Timing-out Lock 

CAS successful: set tail to 
null, no clean up since no 

successor waiting 



Fairness and NUMA Locks  
 

•  MCS lock mechanics are aware 
of NUMA 

•  Lock Fairness is FCFS  
•  Is this a good fit with NUMA and 

Cache-Coherent NUMA 
machines?  



Lock Data Access in NUMA  
Machine  

Node 1 

MCS 
lock 

Node 2 

CS 

various 
memory 
locations 



 
 “Who’s the Unfairest of Them All?” 

  
 

•  locality crucial to NUMA performance 
•  Big gains if threads from same node/

cluster obtain lock consecutively  
•  Unfairness pays 



Hierarchical Backoff Lock (HBO) 
 

time 
d 2d 4d 

Global  
T&T&S 
lock 

time 
d 2d 4d 

 
Back off less 
for thread from 
same node 

 
CS 

 
Unfairness is key to 
performance 
 



Hierarchical Backoff Lock (HBO) 
 

•  Advantages:  
– Simple, improves locality  

•  Disadvantages:  
– Requires platform specific tuning 
– Unstable 
– Unfair 
– Continuous invalidations on shared global 

lock word 



 
Hierarchical CLH Lock (HCLH) 

 

Local Tail 

CAS() 

Local CLH queue 

CS 
Local Tail 

CAS() 

Local CLH queue 

Global Tail 

CAS() 

 
Thread at 
local head 
splices local  
queue into 
global queue 
 

 
Each thread 
spins on 
cached copy of 
predecessor’s 
node 
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Hierarchical CLH Lock (HCLH) 

 
 



 
Hierarchical CLH Lock (HCLH) 

 

•  Advantages:  
–  Improved locality 
–  Local spinning 
– Fair 

•  Disadvantages:  
– Complex code implies long common path 
– Splicing into both local and global requires 

CAS 
– Hard to get long local sequences 





 
Lock Cohorting 

 

•  General technique for converting almost 
any lock into a NUMA lock 

•  Allows combining different lock types  
•  But need these locks to have certain 

properties (will discuss shortly) 



Lock Cohorting 
 

Global  
Lock 

On release: if non-
empty cohort of 
waiting threads, 
release only local 
lock; leave mark 

CS 

Local 
Lock 
 

Local 
Lock 

Non-empty cohort 

Acquire local 
lock and proceed 
to critical section 

 
empty cohort 

On release: since 
cohort is empty 
must release global 
lock to avoid 
deadlock 

Thread that 
acquired local lock 
can now acquire 
global lock…  



Thread Obliviousness 

•  A lock is thread-oblivious if 
– After being acquired by one thread, 
– Can be released by another 
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Cohort Detection 

•  A lock provides cohort detection if 
–  It can tell whether any thread is trying to 

acquire it 
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Lock Cohorting 

 
•  Two levels of locking 
•  Global lock: thread oblivious 

– Thread acquiring the lock can be different 
than one releasing it 

•  Local lock: cohort detection 
– Thread releasing can detect if some thread 

is waiting to acquire it 



 
Lock Cohorting: C-BO-MCS Lock 

 
 Local MCS lock tail 

CAS() 

CS 

True False False 

Local MCS lock 
tail 

CAS() 
True False False 

time d 2d 4d 

Global  
backoff 
lock 

 
BO Lock is thread 
oblivious by definition 
 

 
In MCS Lock, cohort 
detection by checking 
successor pointer 
 

 
Bound number of 
consecutive acquires 
to control unfairness 
 

Two new states: acquire 
local and acquire global. 
Do we own global lock? 



 
Lock Cohorting: C-BO-BO Lock 

 
 

CS 
time d 2d 4d 

Global  
backoff 
lock 

 
As noted BO Lock is 
thread oblivious 
                           

How to add cohort detection 
property to BO lock? 

d 2d 4d 

d 2d 4d 



 
Lock Cohorting: C-BO-BO Lock 

 
 

CS 
time d 2d 4d 

Global  
backoff 
lock d 2d 4d 

d 2d 4d 

Write successorExists 
field before attempting to 
acquire local lock. 

successorExists reset on 
lock release.   

Release might overwrite 
another successor’s 
write … but we don’t 
care…why?  



 
C-BO-BO is a Time-Out  

NUMA Lock  
 
 

CS 
time d 2d 4d 

Global  
backoff 
lock d 2d 4d 

d 2d 4d 

BO locks trivially abortable 

If releasing thread finds 
successorExists false, it 
releases global lock 

Aborting thread resets 
successorExists field 
before leaving local lock. 
Spinning threads set it to 
true.  



Time-Out NUMA Lock   

swap() 

Local time-out queue 

CS 

Local Time-Out locks 
have cohort detection 
property …why?  
Not enough… 

swap() 

Local time-out queue 
time d 2d 4d 



 
Lock Cohorting 

 
•  Advantages:  

– Great locality 
–  Low contention on shared lock 
– Practically no tuning 
– Has whatever properties you want:  

•  Can be more or less fair, abortable… 
    just choose the appropriate type of locks… 

•  Disadvantages:  
– Must tune fairness parameters  



 
Lock Cohorting 
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Time-Out (Abortable) Lock 
Cohorting 
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One Lock To Rule Them All? 

•  TTAS+Backoff, CLH, MCS, ToLock… 
•  Each better than others in some way 
•  There is no one solution 
•  Lock we pick really depends on: 

–   the application 
–   the hardware 
–   which properties are important 



Yeahy! Amdahl’s Law Works 

75% 
Unshared 

25% 
Shared 

Coarse 
Grained 

Fine 
Grained 

75% 
Unshared 

25% 
Shared 

Fine grained parallelism  
gives great performance  

benefit 



But… 

•  Can we always draw the right 
conclusions from Amdahl’s law? 

•  Claim: sometimes the overhead of fine-
grained synchronization is so high…that 
it is better to have a single thread do all 
the work sequentially in order to avoid it 



Oyama et. al Mutex 

object  
lock 

b c d

Head 

a

object CAS() CAS() 

Apply a,b,c, and d 
 to object 

return responses 

Release lock 

Not great since  
every request  
involves CAS 

Combine lock requests 

Improves cache  
behavior and reduces  
contention on object 



Flat Combining 

•  Have single lock holder collect and 
perform requests of all others 
– Without  using CAS operations to coordinate 

requests 
– With (non-naïve) combining of requests (if 

cost of k batched operations is less than that 
of k operations in sequence à we win) 



Flat-Combining 

object  
lock 

Enq(d) 

Head 
object CAS() 

Apply requests 
 to object 

Publication list 

Enq(d) null null Deq() 

Deq() 

counter 

54 

54 12 54 53 Enq(d) 

Deq() 

Deq() 

Collect requests Again try to  
collect requests 

Most requests do not involve a CAS, in fact,  
not even a memory barrier 



Flat-Combining Pub-List 
Cleanup 

Enq(d) 

Head object 
Publication list 

Enq(d) null Deq() 

counter 

54 

54 12 54 53 Enq(d) 

Every combiner increments counter and updates  
record’s time stamp when returning response 
 Traverse and remove from 

list records with old time 
stamp 

If thread reappears must add itself 
to pub list  

Cleanup requires no CAS, 
only reads and writes 



Fine-Grained Lock-free FIFO 
Queue 

b c d 

Tail Head 

a 
CAS() 

CAS() CAS() 

P: Dequeue() => a Q: Enqueue(d) 



Flat-Combining FIFO Queue 

object  
lock 

Enq(a) 

Head 
CAS() 

Publication list 

Enq(b) null 

counter 

54 

54 12 54 Enq(b) 

Deq() Enq(b) 

Sequential FIFO Queue 
b c d 

Tail Head 

a 



Flat-Combining FIFO Queue 

object  
lock 

Enq(a) 

Head 
CAS() 

Publication list 

Enq(b) 

counter 

54 

54 12 54 Enq(b) 

Deq() 

Deq() 

Enq(b) 

Sequential  
“Fat Node” FIFO Queue 

Tail Head 

c b a c b e 

OK, but can do better…combining: 
collect all items into a “fat node”, 
enqueue in one step “Fat Node” easy sequentially but 

cannot be done in concurrent alg 
without CAS 



Linearizable FIFO Queue 

Flat Combining 

Combining 
tree MS queue, Oyama 



Benefit’s of Flat Combining 

Flat Combining 
in Red 



Linearizable Stack Flat Combining 

Elimination 
Stack 

Treiber Lock-
free Stack 

A Bug 



Concurrent Priority Queue  
(Chapter 15) 

 
k	deleteMin	opera.ons	take	O(k	log	n)	

deleteMin()	traverses	CASing	un.l	you	manage	to	mark	a	node,		
then	use	skiplist	remove	your		marked	node	

1



cvccc	

Flat-Combining Priority Queue 

object		
lock	

Enq(a)	

Head	

CAS()	
Publica.on	list	

Enq(b)	

counter	

54	

54	12	54	 Enq(b)	

Deq()	

Deq()	

Enq(b)	



Flat Combining Priority Queue 

traverse	to	find	kth	key,	collect	values	to	be	returned	

Collect	k		deleteMin	requests	Traverse	skiplist	towards	kth	key,		
removing	all	nodes	below	your	

path	

k	deleteMin	opera.ons	take	O(k+log	n)	

Remove													



Priority Queue Flat	Combining	
Skiplist	based	

queue		 lock-based	
SkipQueue		

Whats	this?	

lock-free	
SkipQueue		



Priority Queue Flat	combining	with	
sequen.al	pairing	heap	

plugged	in…	



Priority Queue on Intel 
Flat	combining	with	

sequen.al	pairing	heap	
plugged	in…	



Don’t be Afraid of the Big Bad 
Lock 
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•  Fine grained parallelism comes 
with an overhead…not always 
worth the effort.  

•  Sometimes using a single global 
lock is a win.  



Thanks! 
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