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THE SPECIAL THEORY OF
RELATIVITY

This 12-foot tall statue of Albert Einstein is located at the headquarters of the National
Academy of Sciences in Washington DC. The page in his hand shows three equations that
he discovered: the fundamental equation of general relativity, which revolutionized our
understanding of gravity; the equation for the photoelectric effect, which opened the path to
the development of quantum mechanics; and the equation for mass-energy equivalence,
which is the cornerstone of his special theory of relativity.
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Einstein’s special theory of relativity and Planck’s quantum theory burst forth
on the physics scene almost simultaneously during the first decade of the 20th
century. Both theories caused profound changes in the way we view our universe
at its most fundamental level.

In this chapter we study the special theory of relativity.* This theory has
a completely undeserved reputation as being so exotic that few people can
understand it. On the contrary, special relativity is basically a system of kinematics
and dynamics, based on a set of postulates that are different from those of classical
physics. The resulting formalism is not much more complicated than Newton’s
laws, but it does lead to several predictions that seem to go against our common
sense. Even so, the special theory of relativity has been carefully and thoroughly
tested by experiment and found to be correct in all its predictions.

We first review the classical relativity of Galileo and Newton, and then we show
why Einstein proposed to replace it. We then discuss the mathematical aspects of
special relativity, the predictions of the theory, and finally the experimental tests.

2.1 CLASSICAL RELATIVITY

A “theory of relativity” is in effect a way for observers in different frames of
reference to compare the results of their observations. For example, consider
an observer in a car parked by a highway near a large rock. To this observer,
the rock is at rest. Another observer, who is moving along the highway in a car,
sees the rock rush past as the car drives by. To this observer, the rock appears
to be moving. A theory of relativity provides the conceptual framework and
mathematical tools that enable the two observers to transform a statement such
as “rock is at rest” in one frame of reference to the statement “rock is in motion”
in another frame of reference. More generally, relativity gives a means for
expressing the laws of physics in different frames of reference.

The mathematical basis for comparing the two descriptions is called a transfor-
mation. Figure 2.1 shows an abstract representation of the situation. Two observers
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FIGURE 2.1 Two observers O and O’ observe the same event. O’ moves relative
to O with a constant velocity u.

*The general theory of relativity, which is covered briefly in Chapter 15, deals with “curved”
coordinate systems, in which gravity is responsible for the curvature. Here we discuss the special case
of the more familiar “flat” coordinate systems.



O and O’ are each at rest in their own frames of reference but move relative to one
another with constant velocity u. (O and O’ refer both to the observers and their
reference frames or coordinate systems.) They observe the same event, which
happens at a particular point in space and a particular time, such as a collision
between two particles. According to O, the space and time coordinates of the
event are x, y, z, ¢, while according to O’ the coordinates of the same event are x/,
V', Z, ¢. The two observers use calibrated meter sticks and synchronized clocks,
so any differences between the coordinates of the two events are due to their
different frames of reference and not to the measuring process. We simplify the
discussion by assuming that the relative velocity u always lies along the common
xx direction, as shown in Figure 2.1, and we let u represent the velocity of O’ as
measured by O (and thus O’ would measure velocity —u for O).

In this discussion we make a particular choice of the kind of reference frames
inhabited by O and O'. We assume that each observer has the capacity to test
Newton’s laws and finds them to hold in that frame of reference. For example, each
observer finds that an object at rest or moving with a constant velocity remains
in that state unless acted upon by an external force (Newton’s first law, the law
of inertia). Such frames of reference are called inertial frames. An observer in
interstellar space floating in a nonrotating rocket with the engines off would be in
an inertial frame of reference. An observer at rest on the surface of the Earth is
not in an inertial frame, because the Earth is rotating about its axis and orbiting
about the Sun; however, the accelerations associated with those motions are so
small that we can usually regard our reference frame as approximately inertial.
(The noninertial reference frame at the Earth’s surface does produce important
and often spectacular effects, such as the circulation of air around centers of high
or low pressure.) An observer in an accelerating car, a rotating merry-go-round,
or a descending roller coaster is nof in an inertial frame of reference!

We now derive the classical or Galilean transformation that relates the
coordinates x, y, z, t to X/, y/, Z, ¥. We assume as a postulate of classical physics
that # = #, that is, time is the same for all observers. We also assume for simplicity
that the coordinate systems are chosen so that their origins coincide at = 0.
Consider an object in O’ at the coordinates x’, y/, z’ (Figure 2.2). According to O,
the y and z coordinates are the same as those in O'. Along the x direction, O would
observe the object at x = x’ + ut. We therefore have the Galilean coordinate
transformation

X=x—-uwt Y=y =z 2.1

To find the velocities of the object as observed by O and O’, we take the derivatives
of these expressions with respect to # on the left and with respect to ¢ on the
right (which we can do because we have assumed ¢ = ¢). This gives the Galilean
velocity transformation

/o /o /o
Vi=v, —u vy =V, V.=V,

2.2)

In a similar fashion, we can take the derivatives of Eq. 2.2 with respect to time
and obtain relationships between the accelerations

a.=a, a, = a, a,=a, (2.3)

Equation 2.3 shows again that Newton’s laws hold for both observers. As long as
u is constant (du/dt = 0), the observers measure identical accelerations and agree
on the results of applying F = ma.

2.1 | Classical Relativity 27

y y

N

U

JP

0 0 v

’ Yy ’
X f X

b4

ut j——
X
z 7

FIGURE 2.2 An object or event at
point P is at coordinates x’,)’,z" with
respect to O'. The x coordinate mea-
sured by O isx = x’ 4 ut. The y and z
coordinates in O are the same as those
in 0.
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| Example 2.1

Two cars are traveling at constant speed along a road in the
same direction. Car A moves at 60 km/h and car B moves
at 40 km/h, each measured relative to an observer on the
ground (Figure 2.3a). What is the speed of car A relative
to car B?

Solution

Let O be the observer on the ground, who observes car A
to move at v, = 60 km/h. Assume O’ to be moving with
car B at u = 40 km/h. Then

V. =v, —u = 60km/h — 40km/h
= 20km/h

Figure 2.3 shows the situation as observed by O'.

*Q

(b)

FIGURE 2.3 Example 2.1. (a) As observed by O at rest on the
ground. (b) As observed by O’ in car B.

| Example 2.2

An airplane is flying due east relative to still air at a speed
of 320km/h. There is a 65 km/h wind blowing toward
the north, as measured by an observer on the ground.
What is the velocity of the plane measured by the ground
observer?

Solution

Let O be the observer on the ground, and let O be an
observer who is moving with the wind, for example a
balloonist (Figure 2.4). Then u = 65 km/h, and (because
our equations are set up with u in the xx’ direction) we
must choose the xx’ direction to be to the north. In this
case we know the velocity with respect to O’; taking the y
direction to the east, we have v; = 0 and v}, = 320 km/h.
Using Eq. 2.2 we obtain

v, =V, +u =0+ 65km/h = 65km/h

v, = v)’, = 320km/h

Relative to the ground, the plane flies in a direction
determined by ¢ = tan~!(65km/h)/(320km/h) = 11.5°,
or 11.5° north of east.
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FIGURE 2.4 Example 2.2. As observed by O at rest on the
ground, the balloon drifts north with the wind, while the plane
flies north of east.

| Example 2.3

A swimmer capable of swimming at a speed c in still water
is swimming in a stream in which the current is « (which
we assume to be less than c). Suppose the swimmer swims
upstream a distance L and then returns downstream to the
starting point. Find the time necessary to make the round
trip, and compare it with the time to swim across the stream
a distance L and return.

Solution

Let the frame of reference of O be the ground and
the frame of reference of O be the water, moving at
speed u (Figure 2.5a). The swimmer always moves at
speed c relative to the water, and thus v, = —c for the
upstream swim. (Remember that u always defines the
positive x direction.) According to Eq. 2.2, V. = v, —u,
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so v, =V.+u=u—c. (As expected, the velocity rel-
ative to the ground has magnitude smaller than c¢; it
is also megative, since the swimmer is swimming in

29

the negative x direction, so |v,| =c¢ —u.) Therefore,

ty = L/(c —u). For the downstream swim, Vi =¢, s0 ,———"—:5——65;@{5
Ve = U+ ¢, tyown = L/(c + u), and the total time is ‘———u—+—c————>
o — U
. L L _L(c—u)+L(c+u)
S ctu c—u 2 — 2 &
2Lc 2L 1 (a)
= =— 2.4
2 —u? c 1—u2/c2 (2.4)
20

To swim directly across the stream, the swimmer’s efforts
must be directed somewhat upstream to counter the effect
of the current (Figure 2.5b). That is, in the frame of ref-

erence of O we would like to have v, = 0, which requires
/

—————————

1
\

io, J——7]

v, = —u according to Eq. 2.2. Since the speed relative to :
the water is always ¢, vZ + V2 = ¢; thus v, = /c? — v !
= ,/c? — 42, and the round-trip time is |
I
\
2L 2L 1
t=2tycr05 = (2.5)

V& —u? N 7\/1 —u?/c?

(b)

Notice the difference in form between this result and the
result for the upstream-downstream swim, Eq. 2.4.

FIGURE 2.5 Example 2.3. The motion of a swimmer as seen
by observer O at rest on the bank of the stream. Observer O’
moves with the stream at speed u.

2.2 THE MICHELSON-MORLEY EXPERIMENT

We have seen how Newton’s laws remain valid with respect to a Galilean transfor-
mation that relates the description of the motion of an object in one reference frame
to that in another reference frame. It is then interesting to ask whether the same
transformation rules apply to the motion of a light beam. According to the Galilean
transformation, a light beam moving relative to observer O’ in the x’ direction at
speed ¢ = 299,792,458 m/s would have a speed of ¢ 4 u relative to O. Direct high-
precision measurements of the speed of light beams have become possible in recent
years (as we discuss later in this chapter), but in the 19th century it was necessary
to devise a more indirect measurement of the speed of light according to different
observers in relative motion.

Suppose the swimmer in Example 2.3 is replaced by a light beam. Observer
(' is in a frame of reference in which the speed of light is ¢, and the frame of
reference of observer O’ is in motion relative to observer O. What is the speed
of light as measured by observer O? If the Galilean transformation is correct, we
should expect to see a difference between the speed of the light beam according
to O and O’ and therefore a time difference between the upstream-downstream
and cross-stream times, as in Example 2.3.

Albert A. Michelson (1852—-1931,
United States). He spent 50 years
doing increasingly precise experi-
ments with light, for which he became
the first U.S. citizen to win the Nobel
Prize in physics (1907).
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FIGURE 2.6 (Top) Beam diagram of
Michelson interferometer. Light from
source S'is splitat 4 by the half-silvered
mirror; one part is reflected by the
mirror at B and the other is reflected
at C. The beams are then recom-
bined for observation of the interfer-
ence. (Bottom) Michelson’s appara-
tus. To improve sensitivity, the beams
were reflected to travel each leg of the
apparatus eight times, rather than just
twice. To reduce vibrations from the
surroundings, the interferometer was
mounted on a 1.5-m square stone slab
floating in a pool of mercury.

Physicists in the 19th century postulated just such a situation—a preferred frame
of reference in which the speed of light has the precise value of c and other frames in
relative motion in which the speed of light would differ, according to the Galilean
transformation. The preferred frame, like that of observer O" in Example 2.3, is
one that is at rest with respect to the medium in which light propagates at ¢ (like
the water of that example). What is the medium of propagation for light waves? It
was inconceivable to physicists of the 19th century that a wave disturbance could
propagate without a medium (consider mechanical waves such as sound or seismic
waves, for example, which propagate due to mechanical forces in the medium).
They postulated the existence of an invisible, massless medium, called the ether,
which filled all space, was undetectable by any mechanical means, and existed solely
for the propagation of light waves. It seemed reasonable then to obtain evidence
for the ether by measuring the velocity of the Earth moving through the ether. This
could be done in the geometry of Figure 2.5 by measuring the difference between
the upstream-downstream and cross-stream times for a light wave. The calculation
based on Galilean relativity would then give the relative velocity u between O (in
the Earth’s frame of reference) and the ether.

The first detailed and precise search for the preferred frame was performed
in 1887 by the American physicist Albert A. Michelson and his associate
E. W. Morley. Their apparatus consisted of a specially designed Michelson
interferometer, illustrated in Figure 2.6. A monochromatic beam of light is split
in two; the two beams travel different paths and are then recombined. Any
phase difference between the combining beams causes bright and dark bands or
“fringes” to appear, corresponding, respectively, to constructive and destructive
interference, as shown in Figure 2.7.

There are two contributions to the phase difference between the beams. The
first contribution comes from the path difference AB — AC; one of the beams may
travel a longer distance. The second contribution, which would still be present
even if the path lengths were equal, comes from the time difference between the
upstream-downstream and cross-stream paths (as in Example 2.3) and indicates
the motion of the Earth through the ether. Michelson and Morley used a clever
method to isolate this second contribution—they rotated the entire apparatus by
90°! The rotation doesn’t change the first contribution to the phase difference
(because the lengths 4B and AC don’t change), but the second contribution
changes sign, because what was an upstream-downstream path before the rotation
becomes a cross-stream path after the rotation. As the apparatus is rotated through
90°, the fringes should change from bright to dark and back again as the phase
difference changes. Each change from bright to dark represents a phase change of
180° (a half cycle), which corresponds to a time difference of a half period (about
10713 s for visible light). Counting the number of fringe changes thus gives a
measure of the time difference between the paths, which in turn gives the relative
velocity u. (See Problem 3.)

When Michelson and Morley performed their experiment, there was no
observable change in the fringe pattern—they deduced a shift of less than 0.01
fringe, corresponding to a speed of the Earth through the ether of at most 5 km/s.
As a last resort, they reasoned that perhaps the orbital motion of the Earth just
happened to cancel out the overall motion through the ether. If this were true,
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six months later (when the Earth would be moving in its orbit in the opposite
direction) the cancellation should not occur. When they repeated the experiment
six months later, they again obtained a null result. In no experiment were
Michelson and Morley able to detect the motion of the Earth through the ether.

In summary, we have seen that there is a direct chain of reasoning that leads
from Galileo’s principle of inertia, through Newton’s laws with their implicit
assumptions about space and time, ending with the failure of the Michelson-
Morley experiment to observe the motion of the Earth relative to the ether.
Although several explanations were offered for the unobservability of the ether
and the corresponding failure of the upstream-downstream and cross-stream  FIGURE 2.7 Interference fringes as
velocities to add in the expected way, the most novel, revolutionary, and ultimately  observed with the Michelson inter-
successful explanation is given by Einstein’s special theory of relativity, which  ferometer of Figure 2.6. When the path
requires a serious readjustment of our traditional concepts of space and time, and  length ACA changes by one-half wave-
therefore alters some of the very foundations of physics. length relative to ABA, all light areas

turn dark and all dark areas turn light.

2.3 EINSTEIN’S POSTULATES

The special theory of relativity is based on two postulates proposed by Albert
Einstein in 1905:
The principle of relativity: The laws of physics are the same in all inertial
reference frames.
The principle of the constancy of the speed of light: The speed of light in
free space has the same value c in all inertial reference frames.

The first postulate declares that the laws of physics are absolute, universal, and
the same for all inertial observers. Laws that hold for one inertial observer cannot
be violated for any inertial observer.

The second postulate is more difficult to accept because it seems to go against
our “common sense,” which is based on the Galilean kinematics we observe in
everyday experiences. Consider three observers 4, B, and C. Observer B is at rest,
while 4 and C move away from B in opposite directions each at a speed of ¢/4. B
fires a light beam in the direction of A. According to the Galilean transformation,
if B measures a speed of ¢ for the light beam, then 4 measures a speed of
¢ —c/4 = 3c/4, while C measures a speed of ¢ + ¢/4 = 5¢/4. Einstein’s second
postulate, on the other hand, requires all three observers to measure the same
speed of ¢ for the light beam! This postulate immediately explains the failure of
the Michelson-Morley experiment—the upstream-downstream and cross-stream
speeds are identical (both are equal to ¢), so there is no phase difference between the
two beams.

The two postulates also allow us to dispose of the ether hypothesis. The first ~ Albert Einstein (1879-1955, Ger-
postulate does not permit a preferred frame of reference (all inertial frames are ~ many-United States). A gentle philoso-
equivalent), and the second postulate does not permit only a single frame of pherandpacifist, he wasthe intellectual
reference in which light moves at speed ¢, because light moves at speed ¢ in all  leader of two generations of theoretical
frames. The ether, as a preferred reference frame in which light has a unique physicists and left his imprint on nearly
speed, is therefore unnecessary. every field of modern physics.
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FIGURE 2.8 The clock ticks at inter-
vals At, determined by the time for
a light flash to travel the distance 2L,
from the light source S to the mirror
M and back to the source where it
is detected. (We assume the emission
and detection occur at the same loca-
tion, so the beam travels perpendicular
to the mirror).

2.4 CONSEQUENCES OF EINSTEIN’S POSTULATES

Among their many consequences, Einstein’s postulates require a new considera-
tion of the fundamental nature of time and space. In this section we discuss how
the postulates affect measurements of time and length intervals by observers in
different frames of reference.

The Relativity of Time

To demonstrate the relativity of time, we use the timing device illustrated in
Figure 2.8. It consists of a flashing light source § that is a distance L, from a
mirror M. A flash of light from the source is reflected by the mirror, and when
the light returns to S the clock ticks and triggers another flash. The time interval
between ticks is the distance 2L, (assuming the light travels perpendicular to the
mirror) divided by the speed c:
Aty =2Ly/c (2.6)

This is the time interval that is measured when the clock is at rest with respect to
the observer.

We consider two observers: O is at rest on the ground, and O’ moves with speed
u. Each observer carries a timing device. Figure 2.9 shows a sequence of events that
O observes for the clock carried by O'. According to O, the flash is emitted when
the clock of O’ is at 4, reflected when it is at B, and detected at C. In this interval
At, O observes the clock to move forward a distance of uA¢ from the point at which
the flash was emitted, and O concludes that the light beam travels a distance 2L,
where L = «/L% + (uAt/2)2 ,as shown in Figure 2.9. Because O observes the light
beam to travel at speed ¢ (as required by Einstein’s second postulate) the time
interval measured by O is

2L _ 2VIG + (uAt/2)?

At = — 2.7)
c c
Substituting for L, from Eq. 2.6 and solving Eq. 2.7 for A¢, we obtain
Ar= Bl 2.8)
A B c
Lo | Sl NG ——

FIGURE 2.9 In the frame of reference of O, the clock carried by O’ moves with speed
u. The dashed line, of length 2L, shows the path of the light beam according to O.
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According to Eq. 2.8, observer O measures a longer time interval than O’ measures.
This is a general result of special relativity, which is known as time dilation. An
observer O’ is at rest relative to a device that produces a time interval A¢. For this
observer, the beginning and end of the time interval occur at the same location,
and so the interval Af, is known as the proper time. An observer O, relative to
whom O’ is in motion, measures a longer time interval Az for the same device.
The dilated time interval At is always longer than the proper time interval A¢,
no matter what the magnitude or direction of u.

This is a real effect that applies not only to clocks based on light beams but
also to time itself; all clocks run more slowly according to an observer in relative
motion, biological clocks included. Even the growth, aging, and decay of living
systems are slowed by the time dilation effect. However, note that under normal
circumstances (# < ¢), there is no measurable difference between Az and Af,
so we don’t notice the effect in our everyday activities. Time dilation has been
verified experimentally with decaying elementary particles as well as with precise
atomic clocks carried aboard aircraft. Some experimental tests are discussed in
the last section of this chapter.

| Example 2.4

Muons are elementary particles with a (proper) life-
time of 2.2 ws. They are produced with very high
speeds in the upper atmosphere when cosmic rays (high-
energy particles from space) collide with air molecules.
Take the height L, of the atmosphere to be 100 km in the
reference frame of the Earth, and find the minimum speed
that enables the muons to survive the journey to the surface
of the Earth.

Solution

The birth and decay of the muon can be considered as the
“ticks” of a clock. In the frame of reference of the Earth
(observer O) this clock is moving, and therefore its ticks are
slowed by the time dilation effect. If the muon is moving at
a speed that is close to ¢, the time necessary for it to travel
from the top of the atmosphere to the surface of the Earth is

L 100 km

Ar= 0o P aa
¢ 3.00 x 10° m/s s

If the muon is to be observed at the surface of the Earth,
it must live for at least 333 us in the Earth’s frame of
reference. In the muon’s frame of reference, the interval
between its birth and decay is a proper time interval of
2.2 us. The time intervals are related by Eq. 2.8:

2.2
333 pus = ——= B0
V1 —u?/c?
Solving, we find
u=0.999978¢

If it were not for the time dilation effect, muons would
not survive to reach the Earth’s surface. The observation
of these muons is a direct verification of the time dilation
effect of special relativity.

The Relativity of Length

For this discussion, the moving timing device of O’ is turned sideways, so that
the light travels parallel to the direction of motion of O'. Figure 2.10 shows the
sequence of events that O observes for the moving clock. According to O, the
length of the clock (distance between the light source and the mirror) is L; as we
shall see, this length is different from the length L, measured by O, relative to
whom the clock is at rest.

The flash of light is emitted when the clock of O’ is at 4 and reaches the mirror
(position B) at time A¢; later. In this time interval, the light travels a distance
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FIGURE 2.10 Here the clock carried by O’ emits its light flash in the direction of
motion.

¢ Aty, equal to the length L of the clock plus the additional distance u A¢, that the
mirror moves forward in this interval. That is,

c Al =L+uAt, (2.9)

The flash of light travels from the mirror to the detector in a time Af, and covers
a distance of ¢ At,, equal to the length L of the clock less the distance u At, that
the clock moves forward in this interval:

Solving Egs. 2.9 and 2.10 for At and At,, and adding to find the total time
interval, we obtain

L L 2L 1
At = At, + Aty = + == 2.11)

—

Lo

jLo

Lo
jLo.
L

c—u c+u ¢ l—u2)c?

FIGURE 2.11 Some length-contracted objects. Notice that the shortening occurs only in the direction of motion.
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From Eq. 2.8,
Aty _ 2L, 1

V1 —u?/c? o V1 —u?/c?

Setting Egs. 2.11 and 2.12 equal to one another and solving, we obtain

L=1Ly/1—12/3 (2.13)

Equation 2.13 summarizes the effect known as length contraction. Observer O,
who is at rest with respect to the object, measures the rest length L (also known
as the proper length, in analogy with the proper time). All observers relative to
whom O’ is in motion measure a shorter length, but only along the direction of
motion; length measurements transverse to the direction of motion are unaffected
(Figure 2.11).

For ordinary speeds (¢ < ¢), the effects of length contraction are too small to
be observed. For example, a rocket of length 100 m traveling at the escape speed
from Earth (11.2 km/s) would appear to an observer on Earth to contract only by
about two atomic diameters!

Length contraction suggests that objects in motion are measured to have a
shorter length than they do at rest. The objects do not actually shrink; there is
merely a difference in the length measured by different observers. For example,
to observers on Earth a high-speed rocket ship would appear to be contracted
along its direction of motion (Figure 2.12a), but to an observer on the ship it is
the passing Earth that appears to be contracted (Figure 2.12b).

These representations of length-contracted objects are somewhat idealized.
The actual appearance of a rapidly moving object is determined by the time at
which light leaves the various parts of the object and enters the eye or the camera.
The result is that the object appears distorted in shape and slightly rotated.

At = (2.12)

| Example 2.5

— a9
ﬁ )

(b)

FIGURE 2.12 (a) The Earth views the
passing contracted rocket. (b) From
the rocket’s frame of reference, the
Earth appears contracted.

Consider the point of view of an observer who is moving To the observer in the muon’s rest frame, the moving Earth
toward the Earth at the same velocity as the muon. In  has an atmosphere of height given by Eq. 2.13:

this reference frame, what is the apparent thickness of the

Earth’s atmosphere?
P L=Lyp/1— w2/
Solution
In this observer’s reference frame, the muon is at rest and = (100 km)+/1—(0.999978)2 = 0.66 km =660 m

the Earth is rushing toward it at a speed of u = 0.999978c,

as we found in Example 2.4. To an observer on the Earth, This distance is small enough for the muons to reach the
the height of the atmosphere is its rest length L, of 100km.  Earth’s surface within their lifetime.

Note that what appears as a time dilation in one frame of reference (the observer
on Earth) can be regarded as a length contraction in another frame of reference
(the observer traveling with the muon). For another example of this effect, let’s
review again the example of the pion decay discussed in Section 1.2. A pion at
rest has a lifetime of 26.0 ns. According to observer O, at rest in the laboratory
frame of reference, a pion moving through the laboratory at a speed of 0.913¢
has a longer lifetime, which can be calculated to be 63.7 ns (using Eq. 2.8 for the
time dilation). According to observer O,, who is traveling through the laboratory
at the same velocity as the pion, the pion appears to be at rest and has its proper
lifetime of 26.0 ns. Thus O, sees a time dilation effect.
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| Example 2.6

O, erects two markers in the laboratory, at the locations where the pion is
created and decays. To O, the distance between those markers is the pion’s speed
times its lifetime, which works out to be 17.4 m. Suppose O, places a stick of
length 17.4 m in the laboratory connecting the two markers. That stick is at rest
in the laboratory reference frame and so has its proper length in that frame. In
the reference frame of O,, the stick is moving at a speed of 0.913¢ and has a
shorter length of 7.1 m, which we can find using the length contraction formula
(Eq. 2.13). So O, measures a distance of 7.1 m between the locations in the
laboratory where the pion was created and where it decayed.

Note that O, measures the proper length and the dilated time, while O,
measures the proper time and the contracted length. The proper time and proper
length must always be referred to specific observers, who might not be in the same
reference frame. The proper time is always measured by an observer according to
whom the beginning of the time interval and the end of the time interval occur at
the same location. If the time interval is the lifetime of the pion, then O, (relative
to whom the pion does not move) sees its creation and decay at the same location
and thus measures the proper time interval. The proper length, on the other hand,
is always measured by an observer according to whom the measuring stick is at
rest (O, in this case).

An observer O is standing on a platform of length
D, = 65 m on a space station. A rocket passes at a relative
speed of 0.80c moving parallel to the edge of the platform.
The observer O notes that the front and back of the rocket
simultaneously line up with the ends of the platform at a
particular instant (Figure 2.13a). (@) According to O, what

FIGURE 2.13 Example 2.6. (a) From the reference frame of O
at rest on the platform, the passing rocket lines up simultane-
ously with the front and back of the platform. (b, ¢) From the
reference frame O’ in the rocket, the passing platform lines up
first with the front of the rocket and later with the rear. Note
the differing effects of length contraction in the two reference
frames.

is the time necessary for the rocket to pass a particular
point on the platform? (b) What is the rest length L, of the
rocket? (¢) According to an observer O’ on the rocket, what
is the length D of the platform? (d) According to O, how
long does it take for observer O to pass the entire length
of the rocket? (e) According to O, the ends of the rocket
simultaneously line up with the ends of the platform. Are
these events simultaneous to O'?

Solution

(a) According to O, the length L of the rocket matches the
length Dy, of the platform. The time for the rocket to pass a
particular point is measured by O to be

B L . 65 m
" 0.80c  2.40 x 108 m/s

Aty =0.27 us

This is a proper time interval, because O measures the
interval between two events that occur at the same point in
the frame of reference of O (the front of the rocket passes
a point, and then the back of the rocket passes the same
point).

(b) O measures the contracted length L of the rocket. We
can find its proper length L using Eq. 2.13:

L _ 65 m
J1—12/ J1—(0.80)2

(¢) According to O the platform is at rest, so 65 m is its
proper length D,,. According to (7, the contracted length of

Ly = =108 m




the platform is therefore

D =DyJ/1—u2/c2 = (65m)y/1 — (0.80)2 = 39 m

(d) For O to pass the entire length of the rocket, O’ con-
cludes that O must move a distance equal to its rest length,
or 108 m. The time needed to do this is

_ 108 m

Om o.45
0.80¢ Hs

Al

Note that this is not a proper time interval for O, who deter-
mines this time interval using one clock at the front of the
rocket to measure the time at which O passes the front of the
rocket, and another clock on the rear of the rocket to mea-
sure the time at which O passes the rear of the rocket. The
two events therefore occur at different points in O’ and so
cannot be separated by a proper time in O'. The correspond-
ing time interval measured by O for the same two events,
which we calculated in part (a), is a proper time interval for
O, because the two events do occur at the same point in O.
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The time intervals measured by O and O’ should be related
by the time dilation formula, as you should verify.

(e) According to O', the rocket has a rest length of L, =
108 m and the platform has a contracted length of D = 39 m.
There is thus no way that O" could observe the two ends
of both to align simultaneously. The sequence of events
accordingto O’ isillustrated in Figures 2.13b and c. The time
interval A7 in O’ between the two events that are simulta-
neous in O can be calculated by noting that, according to O’,
the time interval between the situations shown in Figures
2.13b and ¢ must be that necessary for the platform to move
a distance of 108 m — 39 m = 69 m, which takes a time

This result illustrates the relativity of simultaneity: two
events at different locations that are simultaneous to O (the
lining up of the two ends of the rocket with the two ends of
the platform) cannot be simultaneous to O'.

Relativistic Velocity Addition

The timing device is now modified as shown in Figure 2.14. A source P emits
particles that travel at speed V' according to an observer O at rest with respect
to the device. The flashing bulb F is triggered to flash when a particle reaches it.
The flash of light makes the return trip to the detector D, and the clock ticks. The
time interval A, between ticks measured by O’ is composed of two parts: one for
the particle to travel the distance L, at speed v' and another for the light to travel

the same distance at speed c:

Ato = Lo/v/ +L0/C

(2.14)

According to observer O, relative to whom O’ moves at speed u, the sequence of
events is similar to that shown in Figure 2.10. The emitted particle, which travels
at speed v according to O, reaches F' in a time interval At after traveling the
distance v At; equal to the (contracted) length L plus the additional distance u At,

moved by the clock in that interval:

In the interval At,, the light beam travels a distance ¢ At, equal to the length L

less the distance u At, moved by the clock in that interval:

We now solve Eqs. 2.15 and 2.16 for A¢; and Af,, add to find the total interval
At between ticks according to O, use the time dilation formula, Eq. 2.8, to relate
this result to Af, from Eq. 2.14, and finally use the length contraction formula,
Eq. 2.13, to relate L to L. After doing the algebra, we find the result

VvV +u
V= ——
1 +Vvu/c?

(2.15)

v Particle
P > —_————— — - — o]
. F
(2.16) D ___<___|-'_gj_‘t___<__
Ly

FIGURE 2.14 In this timing device,
a particle is emitted by P at a speed
v'. When the particle reaches F, it
triggers the emission of a flash of light

(2.17)
that travels to the detector D.
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| Example 2.7

Equation 2.17 is the relativistic velocity addition law for velocity components
that are in the direction of u. Later in this chapter we use a different method to
derive the corresponding results for motion in other directions.

We can also regard Eq. 2.17 as a velocity transformation, enabling us to convert
a velocity v measured by O’ to a velocity v measured by O. The corresponding
classical law was given by Eq. 2.2: v =V 4 u. The difference between the
classical and relativistic results is the denominator of Eq. 2.17, which reduces to
1 in cases when the speeds are small compared with ¢. Example 2.7 shows how
this factor prevents the measured speeds from exceeding c.

Equation 2.17 gives an important result when O" observes a light beam.
Forv =¢,

c+u

= = 2.18
Y 1+ cu/c? ¢ @.18)

That is, when Vv = ¢, then v = ¢, independent of the value of u. All observers
measure the same speed ¢ for light, exactly as required by Einstein’s second
postulate.

A spaceship moving away from the Earth at a speed of
0.80c fires a missile parallel to its direction of motion
(Figure 2.15). The missile moves at a speed of 0.60c¢ rela-
tive to the ship. What is the speed of the missile as measured
by an observer on the Earth?

NN V' =0.60c

‘) ’
u . c

FIGURE 2.15 Example 2.7. A spaceship moves away from
Earth at a speed of 0.80c. An observer O" on the spaceship
fires a missile and measures its speed to be 0.60c¢ relative to
the ship.

Solution
Here O is on the ship and O is on Earth; O’ moves with
a speed of u = 0.80c relative to O. The missile moves at

speed v = 0.60c relative to O’, and we seek its speed v
relative to O. Using Eq. 2.17, we obtain

V4 u 0.60c + 0.80c

Vv = =
1+vu/c? 14 (0.60c)(0.80c)/c?

B 1.40¢
T 148

= 0.95¢

According to classical kinematics (the numerator of
Eq. 2.17), an observer on the Earth would see the mis-
sile moving at 0.60c + 0.80c = 1.40c, thereby exceeding
the maximum relative speed of ¢ permitted by relativ-
ity. You can see how Eq. 2.17 brings about this speed
limit. Even if v/ were 0.9999 . .. c and u were 0.9999. . .c,
the relative speed v measured by O would remain less
than c.

The Relativistic Doppler Effect

In the classical Doppler effect for sound waves, an observer moving relative to
a source of waves (sound, for example) detects a frequency different from that
emitted by the source. The frequency f” heard by the observer O is related to the
frequency f emitted by the source S according to

4= vEv,
o VF Vg

(2.19)

where v is the speed of the waves in the medium (such as still air, in the case of
sound waves), vg is the speed of the source relative to the medium, and v, is the
speed of the observer relative to the medium. The upper signs in the numerator
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and denominator are chosen whenever S moves toward O or O moves toward S,
while the lower signs apply whenever O and S move away from one another.

The classical Doppler shift for motion of the source differs from that for
motion of the observer. For example, suppose the source emits sound waves at
f = 1000 Hz. If the source moves at 30 m/s toward the observer who is at rest
in the medium (which we take to be air, in which sound moves at v = 340 m/s),
then f” = 1097 Hz, while if the source is at rest in the medium and the observer
moves toward the source at 30 m/s, the frequency is 1088 Hz. Other possibilities
in which the relative speed between S and O is 30 m/s, such as each moving
toward the other at 15 m/s, give still different frequencies.

Here we have a situation in which it is not the relative speed of the source and
observer that determines the Doppler shift—it is the speed of each with respect
to the medium. This cannot occur for light waves, since there is no medium
(no “ether”) and no preferred reference frame by Einstein’s first postulate. We
therefore require a different approach to the Doppler effect for light waves, an
approach that does not distinguish between source motion and observer motion,
but involves only the relative motion between the source and the observer.

Consider a source of waves that is at rest in the reference frame of observer
0. Observer O’ moves relative to the source at speed u. We consider the situation
from the frame of reference of (', as shown in Figure 2.16. Suppose O observes
the source to emit N waves at frequency f. According to O, it takes an interval
Aty = N/f for these N waves to be emitted; this is a proper time interval in the
frame of reference of O. The corresponding time interval to O is A¢, during
which O moves a distance u A¢. The wavelength according to O’ is the total
length interval occupied by these waves divided by the number of waves:

B c A +u Al B c A +ult

N = 2.20
N fAg (220)
The frequency according to O’ is f” = ¢/A’, so
At 1
/ 0
=f— 2.21
r=r At 14+u/c 2:21)

and using the time dilation formula, Eq. 2.8, to relate A¢’ and A¢,, we obtain

, V1 —u?/c? 1 —u/c
= = 2.22
r=r 14+u/c Y 14+u/c 222)
This is the formula for the relativistic Doppler shift, for the case in which the

waves are observed in a direction parallel to u. Note that, unlike the classical
formula, it does not distinguish between source motion and observer motion; the

| u At cAt” |

| N waves |

FIGURE 2.16 A source of waves, in the reference frame of O, moves
at speed u away from observer O'. In the time A¢ (according to O'), O
moves a distance u A¢’ and emits N waves.
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relativistic Doppler effect depends only on the relative speed « between the source

and observer.

Equation 2.22 assumes that the source and observer are separating. If the
source and observer are approaching one another, replace u by —u in the formula.

| Example 2.8

A distant galaxy is moving away from the Earth at such
high speed that the blue hydrogen line at a wavelength
of 434 nm is recorded at 600 nm, in the red range of the
spectrum. What is the speed of the galaxy relative to the
Earth?

Solution
Using Eq. 2.22 with /' = ¢/1 and f" = ¢/A’, we obtain

c  c 1 —u/c
600nm ~ 434nm\ 1+ u/c

Solving, we find

u/c =0.31

Thus the galaxy is moving away from Earth at a speed
of 0.31c = 9.4 x 10'm/s. Evidence obtained in this way

indicates that nearly all the galaxies we observe are moving
away from us. This suggests that the universe is expanding,
and is usually taken to provide evidence in favor of the Big
Bang theory of cosmology (see Chapter 15).

c ¢ |[l—ujc
AooAV 1 +u/c

2.9 THE LORENTZ TRANSFORMATION

We have seen that the Galilean transformation of coordinates, time, and velocity
is not consistent with Einstein’s postulates. Although the Galilean transformation
agrees with our “common-sense” experience at low speeds, it does not agree with
experiment at high speeds. We therefore need a new set of transformation equations
thatreplaces the Galilean setand thatis capable of predicting such relativistic effects
as time dilation, length contraction, velocity addition, and the Doppler shift.

As before, we seek a transformation that enables observers O and O in
relative motion to compare their measurements of the space and time coordinates
of the same event. The transformation equations relate the measurements of O
(namely, x, y, z, t) to those of O (namely, x/, y/, 2, #'). This new transformation
must have several properties: It must be linear (depending only on the first power
of the space and time coordinates), which follows from the homogeneity of space
and time; it must be consistent with Einstein’s postulates; and it must reduce to the
Galilean transformation when the relative speed between O and O’ is small. We
again assume that the velocity of O’ relative to O is in the positive xx direction.

This new transformation consistent with special relativity is called the Lorentz
transformation™. Its equations are

K= 2T (2.23a)
V1 —u?/c?
Y=y (2.23b)

*H. A. Lorentz (1853—1928) was a Dutch physicist who shared the 1902 Nobel Prize for his work
on the influence of magnetic fields on light. In an unsuccessful attempt to explain the failure of the
Michelson-Morley experiment, Lorentz developed the transformation equations that are named for
him in 1904, a year before Einstein published his special theory of relativity. For a derivation of the
Lorentz transformation, see R. Resnick and D. Halliday, Basic Concepts in Relativity (New York,
Macmillan, 1992).
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7=z (2.23¢)

-~ 2
g = LW (2.23d)

V1 —u?/c?
It is often useful to write these equations in terms of intervals of space and time
by replacing each coordinate by the corresponding interval (replace x by Ax,x’
by AX',t by At, ¢ by A?).

These equations are written assuming that O’ moves away from O in the xx’
direction. If O’ moves toward O, replace u with —u in the equations.

The first three equations reduce directly to the Galilean transformation for
space coordinates, Egs. 2.1, when u << ¢. The fourth equation, which links the
time coordinates, reduces to # = ¢, which is a fundamental postulate of the
Galilean-Newtonian world.

We now use the Lorentz transformation equations to derive some of the
predictions of special relativity. The problems at the end of the chapter guide you
in some other derivations. The results derived here are identical with those we
obtained previously using Einstein’s postulates, which shows that the equations of
the Lorentz transformation are consistent with the postulates of special relativity.

Length Contraction

A rod of length L) is at rest in the reference frame of observer O'. The rod extends
along the x’ axis from x/ to x); that is, O’ measures the proper length L, = x} — x.
Observer O, relative to whom the rod is in motion, measures the ends of the rod
to be at coordinates x; and x,. For O to determine the length of the moving rod,
O must make a simultaneous determination of x; and x,, and then the length is
L = x, — x,. Suppose the first event is O’ setting off a flash bulb at one end of the
rod at x| and 7|, which O observes at x; and ¢, and the second event is O’ setting
off a flash bulb at the other end at x}, and 7, which O observes at x, and #,. The
equations of the Lorentz transformation relate these coordinates, specifically,

Xy — ut Xy — Ut
X = ——— Xy= (2.24)

V1—u?/c? V1—u?/c?
Subtracting these equations, we obtain

¥y — ¥ = X=X u(t, —t)

VIi—u2/c2 1 —u?/c?
O’ must arrange to set off the flash bulbs so that the flashes appear to be
simultaneous to O. (They will not be simultaneous to (', as we discuss later in this
section.) This enables O to make a simultaneous determination of the coordinates
of the endpoints of the rod. If O observes the flashes to be simultaneous, then
t, = t, and Eq. 2.25 reduces to

(2.25)

Xy —x) = B S W (2.26)

V1I—u?/c?
With x, — x| = L, and x, — x; = L, this becomes
L=Ly/1—u?/c? (2.27)

which is identical with Eq. 2.13, which we derived earlier using Einstein’s
postulates.
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Clock 1 Clock 2

<<<<<»»>>>>>

x=L/2 X

|
x=0 =L
FIGURE 2.17 A flash of light, emitted
from a point midway between the two
clocks, starts the two clocks simulta-
neously according to O. Observer O’
sees clock 2 start ahead of clock 1.

Velocity Transformation

If O observes a particle to travel with velocity v (components v,,v,,v.), what
velocity v/ does O’ observe for the particle? The relationship between the velocities
measured by O and O’ is given by the Lorentz velocity transformation:

, Vv, —u

Vy = m (228(1)
Lo/l =/
=t (2.28b)
—vaufc
v/l —u?/c?

By solving Eq. 2.28a for v,, you can show that it is identical to Eq. 2.17, a result
we derived previously based on Einstein’s postulates. Note that, in the limit of
low speeds (4 < ¢), the Lorentz velocity transformation reduces to the Galilean
velocity transformation, Eq. 2.2. Note also that v, # v,, even though )’ = y. This
occurs because of the way the Lorentz transformation handles the time coordinate.

We can derive these transformation equations for velocity from the Lorentz
coordinate transformation. By way of example, we derive the velocity trans-
formation for v}, = dy’/d¢'. Differentiating the coordinate transformation )’ = y,
we obtain dy' = dy. Similarly, differentiating the time coordinate transformation
(Eq. 2.23d), we obtain

dt — (u/c*)dx

V9I—u?/c?

df =

So
,_dy dy
vV, —m — = =
Toodl dr— (u/c?)dx]//1 — 2] 2
dy/dt v/ 1= u?/c?
=+/1—u?/c?

1 — (u/c)dx/dt 1 —uv,/c?
Similar methods can be used to obtain the transformation equations for v and
v.. These derivations are left as exercises (Problem 14).

V1—u?/c? b

dt — (u/c?) dx

Simultaneity and Clock Synchronization

Under ordinary circumstances, synchronizing one clock with another is a simple
matter. But for scientific work, where timekeeping at a precision below the
nanosecond range is routine, clock synchronization can present some significant
challenges. At very least, we need to correct for the time that it takes for the signal
showing the reading on one clock to be transmitted to the other clock. However,
for observers who are in motion with respect to each other, special relativity gives
yet another way that clocks may appear to be out of synchronization.

Consider the device shown in Figure 2.17. Two clocks are located at x = 0 and
x = L. Aflash lamp is located atx = L/2, and the clocks are set running when they
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receive the flash of light from the lamp. The light takes the same interval of time
to reach the two clocks, so the clocks start together precisely at a time L/2c after
the flash is emitted, and the clocks are exactly synchronized.

Now let us examine the same situation from the point of view of the moving
observer O'. In the frame of reference of O, two events occur: the receipt of a
light signal by clock 1 at x; = 0,#; = L/2c and the receipt of a light signal by
clock 2 atx, = L,t, = L/2c. Using Eq. 2.23d, we find that O observes clock 1 to
receive its signal at

- t, — (u/c*)x, _ L/2c (2.29)
VI—u?/c2 1 —u?/c
while clock 2 receives its signal at
b= @/x, L2 — (u/)L (2.30)

£ =
’ V1—u?/c? V1—u?/c?

Thus 7, is smaller than 7 and clock 2 appears to receive its signal earlier than
clock 1, so that the clocks start at times that differ by

1 2
Al =1 -1, = e (2.31)

V1—u?/c?

according to O'. Keep in mind that this is nor a time dilation effect—time
dilation comes from the first term of the Lorentz transformation (Eq. 2.23d) for 7,
while the lack of synchronization arises from the second term. O observes both
clocks to run slow, due to time dilation; O’ also observes clock 2 to be ahead of
clock 1.

We therefore reach the following conclusion: two events that are simultaneous
in one reference frame are not simultaneous in another reference frame moving
with respect to the first, unless the two events occur at the same point in space.
(If L =0, Eq. 2.31 shows that the clocks are synchronized in all reference
frames.) Clocks that appear to be synchronized in one frame of reference will not
necessarily be synchronized in another frame of reference in relative motion.

It is important to note that this clock synchronization effect does not depend
on the location of observer O but only on the velocity of O'. In Figure 2.17, the
location of O’ could have been drawn far to the left side of clock 1 or far to the
right side of clock 2, and the result would be the same. In those different locations,
the propagation time of the light signal showing clock 1 starting will differ from
the propagation time of the light signal showing clock 2 starting. However, O
is assumed to be an “intelligent” observer who is aware of the locations where
the light signals showing the two clocks starting are received relative to the
locations of the clocks. O corrects for this time difference, which is due only to
the propagation time of the light signals, and even after making that correction
the clocks still do not appear to be synchronized!

Although the location of O does not appear in Eq. 2.31, the direction of
the velocity of O is important—if O is moving in the opposite direction, the
observed starting order of the two clocks is reversed.
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| Example 2.9

Two rockets are leaving their space station along perpen-
dicular paths, as measured by an observer on the space
station. Rocket 1 moves at 0.60c and rocket 2 moves at
0.80c, both measured relative to the space station. What is
the velocity of rocket 2 as observed by rocket 1?

Solution
Observer O is the space station, observer O is rocket 1
(moving at u = 0.60c¢), and each observes rocket 2, moving
(according to O) in a direction perpendicular to rocket 1.
We take this to be the y direction of the reference frame of
0. Thus O observes rocket 2 to have velocity components
vy =0,v, = 0.80c, as shown in Figure 2.18a.

We can find v, and vj’, using the Lorentz velocity trans-
formation:

, Ve —u 0 — 0.60c

T T v T 1= 00.600)/c ¢

. v/l —u?/c?

T v,u/c?

vy, =
_0.80cy/1 — (0.60c)2/c?

1 — 0(0.60c) /2

= 0.64c

Thus, according to O, the situation looks like Figure 2.185.
The speed of rocket 2 according to O s
\/(0.600)2 + (0.64¢)? = 0.88c, less than c. According to

the Galilean transformation, v}, would be identical with v,,,
and thus the speed would be /(0.60c)? + (0.80¢)? = c.
Once again, the Lorentz transformation prevents relative
speeds from reaching or exceeding the speed of light.

Rocket 2
v,=0
vy = 0.80c¢

Rocket 1

- 4 = 0.60c

(b)

FIGURE 2.18 Example 2.9. (a) As viewed from the reference
frame of O. (b) As viewed from the reference frame of O'.

| Example 2.10

In Example 2.6, two events that were simultaneous to O
(the lining up of the front and back of the rocket ship with
the ends of the platform) were not simultaneous to O'. Find
the time interval between these events according to O'.

Solution
According to O, the two simultaneous events are separated
by a distance of L = 65 m. For u = 0.80c, Eq. 2.31 gives

uL/c?

- V1 —u?/c?

_(0.80)(65 m)/(3.00 x 10° m/s)

—=0.29 us

V1 —1(0.80)2

which agrees with the result calculated in part (e) of
Example 2.6.

2.6 THE TWIN PARADOX

We now turn briefly to what has become known as the twin paradox. Suppose there
is a pair of twins on Earth. One, whom we shall call Casper, remains on Earth, while
his twin sister Amelia sets off in a rocket ship on a trip to a distant planet. Casper,
based on his understanding of special relativity, knows that his sister’s clocks will



run slow relative to his own and that therefore she should be younger than he when
she returns, as our discussion of time dilation would suggest. However, recalling
that discussion, we know that for two observers in relative motion, each thinks the
other’s clocks are running slow. We could therefore study this problem from the
point of view of Amelia, according to whom Casper and the Earth (accompanied
by the solar system and galaxy) make a round-trip journey away from her and
back again. Under such circumstances, she will think it is her brother’s clocks
(which are now in motion relative to her own) that are running slow, and will
therefore expect her brother to be younger than she when they meet again. While
it is possible to disagree over whose clocks are running slow relative to his or her
own, which is merely a problem of frames of reference, when Amelia returns to
Earth (or when the Earth returns to Amelia), all observers must agree as to which
twin has aged less rapidly. This is the paradox—each twin expects the other to be
younger.

The resolution of this paradox lies in considering the asymmetric role of the
two twins. The laws of special relativity apply only to inertial frames, those
moving relative to one another at constant velocity. We may supply Amelia’s
rockets with sufficient thrust so that they accelerate for a very short length of time,
bringing the ship to a speed at which it can coast to the planet, and thus during
her outward journey Amelia spends all but a negligible amount of time in a frame
of reference moving at constant speed relative to Casper. However, in order to
return to Earth, she must decelerate and reverse her motion. Although this also
may be done in a very short time interval, Amelia’s return journey occurs in a
completely different inertial frame than her outward journey. It is Amelia’s jump
from one inertial frame to another that causes the asymmetry in the ages of the
twins. Only Amelia has the necessity of jumping to a new inertial frame to return,
and therefore all observers will agree that it is Amelia who is “really” in motion,
and that it is her clocks that are “really” running slow; therefore she is indeed the
younger twin on her return.

Let us make this discussion more quantitative with a numerical example. We
assume, as discussed above, that the acceleration and deceleration take negligible
time intervals, so that all of Amelia’s aging is done during the coasting. For
simplicity, we assume the distant planet is at rest relative to the Earth; this does
not change the problem, but it avoids the need to introduce yet another frame of
reference. Suppose the planet to be 6 light-years distant from Earth, and suppose
Amelia travels at a speed of 0.6¢. Then according to Casper it takes his sister
10years (10years x0.6c = 6 light-years) to reach the planet and 10years to
return, and therefore she is gone for a total of 20 years. (However, Casper doesn’t
know his sister has reached the planet until the light signal carrying news of her
arrival reaches Earth. Since light takes 6 years to make the journey, it is 16 years
after her departure when Casper sees his sister’s arrival at the planet. Four years
later she returns to Earth.) From the frame of reference of Amelia aboard the
rocket, the distance to the planet is contracted by a factor of /1 — (0.6)2 = 0.8,
and is therefore 0.8 x 6 light-years = 4.8 light-years. At a speed of 0.6c, Amelia
will measure 8 years for the trip to the planet, for a total round trip time of 16 years.
Thus Casper ages 20 years while Amelia ages only 16 years and is indeed the
younger on her return.

We can confirm this analysis by having Casper send a light signal to his sister
each year on his birthday. We know that the frequency of the signal as received
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FIGURE 2.19 A spacetime diagram.

. 209
Casper’s .
worldline
Amelia’s
worldline
15
= I__ight
5 signals
(5]
2 10-¢
[}
€
=
5 ¥
- tan=1(0.6)
5 10
TR TR SN T N TR N T N |
O I

Distance (light-years)

FIGURE 2.20 Casper’s spacetime di-
agram, showing his worldline and
Amelia’s.

by Amelia will be Doppler shifted. During the outward journey, she will receive
signals at the rate of

1—u/c
14+u/c

During the return journey, the Doppler-shifted rate will be

(1/year) = 0.5/year

14+u/c
1 —u/c

(1/year) = 2/year

Thus for the first 8 years, during Amelia’s trip to the planet, she receives 4 signals,
and during the return trip of 8 years, she receives 16 signals, for a total of 20. She
receives 20 signals, indicating her brother has celebrated 20 birthdays during her
16-year journey.

Spacetime Diagrams

A particularly helpful way of visualizing the journeys of Casper and Amelia uses
a spacetime diagram. Figure 2.19 shows an example of a spacetime diagram for
motion that involves only one spatial direction.

In your introductory physics course, you probably became familiar with
plotting motion on a graph in which distance appeared on the vertical axis and
time on the horizontal axis. On such a graph, a straight line represents motion
at constant velocity; the slope of the line is equal to the velocity. Note that the
axes of the spacetime diagram are switched from the traditional graph of particle
motion, with time on the vertical axis and space on the horizontal axis.

On a spacetime diagram, the graph that represents the motion of a particle is
called its worldline. The inverse of the slope of the particle’s worldline gives its
velocity. Equivalently, the velocity is given by the tangent of the angle that the
worldline makes with the vertical axis (rather than with the horizontal axis, as
would be the case with a conventional plot of distance vs. time). Usually, the units
of x and ¢ are chosen so that motion at the speed of light is represented by a line
with a 45° slope. A vertical line represents a particle that is at the same spatial
locations at all times—that is, a particle at rest. Permitted motions with constant
velocity are then represented by straight lines between the vertical and the 45°
line representing the maximum velocity.

Let’s draw the worldlines of Casper and Amelia according to Casper’s frame
of reference. Casper’s worldline is a vertical line, because he is at rest in this frame
(Figure 2.20). In Casper’s frame of reference, 20 years pass between Amelia’s
departure and her return, so we can follow Casper’s vertical worldline for
20 years.

Amelia is traveling at a speed of 0.6¢, so her worldline makes an angle with
the vertical whose tangent is 0.6 (31°). In Casper’s frame of reference, the planet
visited by Amelia is 6 light-years from Earth. Amelia travels a distance of 6
light-years in a time of 10 years (according to Casper) so that v = 6 light-years/10
years = 0.6¢.

The birthday signals that Casper sends to Amelia at the speed of light are
represented by the series of 45° lines in Figure 2.20. Amelia receives 4 birthday
signals during her outbound journey (the 4th arrives just as she reaches the planet)
and 16 birthday signals during her return journey (the 16th is sent and received
just as she returns to Earth).



It is left as an exercise (Problems 22 and 24) to consider the situation if it is
Amelia who is sending the signals.

2.7 RELATIVISTIC DYNAMICS

We have seen how Einstein’s postulates have led to a new “relative” interpretation
of such previously absolute concepts as length and time, and that the classical
concept of absolute velocity is not valid. It is reasonable then to ask how far this
revolution is to go in changing our interpretation of physical concepts. Dynamical
quantities, such as momentum and kinetic energy, depend on length, time, and
velocity. Do classical laws of momentum and energy conservation remain valid
in Einstein’s relativity?

Let’s test the conservation laws by examining the collision shown in
Figure 2.21a. Two particles collide elastically as observed in the reference
frame of O'. Particle 1 of mass m; = 2m is initially at rest, and particle 2 of
mass m, = m is moving in the negative x direction with an initial velocity of
vy, = —0.750c. Using the classical law of momentum conservation to analyze
this collision, 0" would calculate the particles to be moving with final velocities
Vip = —0.500c¢ and v}, = +0.250c. According to O, the total initial and final
momenta of the particles would be:

pi = mvy; + myvy = 2m)(0) + (m)(—0.750¢) = —0.750me
Py = mVip + myvhe = 2m)(—0.500¢) + (m)(0.250c) = —0.750mc

The initial and final momenta are equal according to O, demonstrating that
momentum is conserved.

Suppose that the reference frame of 0" moves at a velocity of u = +0.550c¢ in
the x direction relative to observer O, as in Figure 2.215. How would observer
O analyze this collision? We can find the initial and final velocities of the two
particles according to O using the velocity transformation of Eq. 2.17, which gives
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Y y
2m m 2m m
v =—0.750¢ v1; =0.550¢ vo; =—0.340¢
el Initial o 0.550¢
vllf V’2f Vi Vog
Final Final
X x

(@)

(b)

FIGURE 2.21 (a) A collision between two particles as observed from the reference frame of O'.
(b) The same collision observed from the reference frame of O.
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the initial velocities shown in the figure and the final velocities v;; = +0.069¢
and vy = 40.703¢. Observer O can now calculate the initial and final values of
the total momentum of the two particles:

pi = myvy; + myvy = (2m)(+0.550¢) 4 (m)(—0.340c) = 4-0.760mc
Ppr = mvip + myvye = 2m)(+0.069¢) 4 (m)(4-0.703¢c) = +0.841mc

Momentum is therefore not conserved according to observer O.

This collision experiment has shown that that the law of conservation of linear
momentum, with momentum defined as p = mVv, does not satisfy Einstein’s first
postulate (the law must be the same in all inertial frames). We cannot have a
law that is valid for some observers but not for others. Therefore, if we are to
retain the conservation of momentum as a general law consistent with Einstein’s
first postulate, we must find a new definition of momentum. This new definition
of momentum must have two properties: (1) It must yield a law of conservation
of momentum that satisfies the principle of relativity; that is, if momentum is
conserved according to an observer in one inertial frame, then it is conserved
according to observers in all inertial frames. (2) At low speeds, the new definition
must reduce to p = mV, which we know works perfectly well in the nonrelativistic
case.

These requirements are satisfied by defining the relativistic momentum for a
particle of mass m moving with velocity V as

- mv
p=—-—-— (2.32)
V1—=12/c?
In terms of components, we can write Eq. 2.32 as
my
s and Y (2.33)

Ay Ry

The velocity v that appears in the denominator of these expressions is always the
velocity of the particle as measured in a particular inertial frame. It is not the
velocity of an inertial frame. The velocity in the numerator can be any of the
components of the velocity vector.

We can now reanalyze the collision shown in Figure 2.21 using the relativistic
definition of momentum. The initial relativistic momentum according to O’ is

o= mvi; n m,vh, _ (Zm)(O)2 n (m)(—0.750(:)2 — _1.134me
\/1 V2t \/1 22 V1=00 0 J/1-(0.750)
The final velocities according to O" are V|, = —0.585¢ and v,; = 4-0.294c, and

the total final momentum is
m,V, m,V,
Ph = Vit + 2Vor
\/1 — v/ \/1 — i/
_ (2m)(—0.585¢) (m)(0.294¢)
V1=1(0.585)2 /1 —(0.294)2

=—1.134mc
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Thus p; = pg, and observer O’ concludes that momentum is conserved. According
to O, the initial relativistic momentum is

mvy; myVs; (2m)(+0.550c)  (m)(—0.340c)
pl-z + = + =V.
\/1 — 2/ \/1 2/ V105507 /1-(0.340)?

6mce

Using the velocity transformation, the final velocities measured by O are v ; =
—0.051c¢ and vy = +0.727¢, and so O calculates the final momentum to be

e mvie myvye  (2m)(=0.051¢) = (m)(+0.727¢)
! \/l_v%f/cz \/l_v%f/cz V1=0.051)2 /1 —1(0.727)2

=0.956mc

Observer O also concludes that p; = p; and that the law of conservation of
momentum is valid. Defining momentum according to Eq. 2.32 gives conservation
of momentum in all reference frames, as required by the principle of relativity.

| Example 2.11

49

What is the momentum of a proton moving at a speed of mvc mc*(v/e) (938 MeV)(0.86)

pe =

v =0.86¢? 1= 12 JT—(0.86)
Solution = 1580 MeV
Using Eq. 2.32, we obtain

Here we have used the proton’s rest energy mc*, which

mv is defined later in this section. The momentum is obtained
pP= \/1—72/2 from this result by dividing by the symbol ¢ (not its
—Vv/c

numerical value), which gives
(167 x 10727 kg)(0.86)(3.00 x 10% m/s)

1 — (0.86)2 p = 1580MeV/c

=8.44 x 107 kg-m/s The units of MeV/c for momentum are often used in rela-

tivistic calculations because, as we show later, the quantity

The units of kg - m/s are generally not convenient in solv-  pc often appears in these calculations. You should be able
ing problems of this type. Instead, we manipulate Eq. 2.32  to convert MeV//c to kg - m/s and show that the two results

to obtain obtained for p are equivalent.

Relativistic Kinetic Energy

Like the classical definition of momentum, the classical definition of kinetic
energy also causes difficulties when we try to compare the interpretations of
different observers. According to (', the initial and final kinetic energies in the
collision shown in Figure 2.21a are:

K| = Im V% + Imyvi = (0.5)(2m)(0)> + (0.5)(m)(—0.750c)* = 0.281mc?

Ki = tm Vi + myvE = (0.5)(2m)(—0.5000)% + (0.5)(m)(0.250¢)* = 0.281mc?
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and so energy is conserved according to O'. The initial and final kinetic energies
observed from the reference frame of O (as in Figure 2.210) are

K; = mv2 + Imyvh = (0.5)(2m)(0.550¢)? + (0.5)(m)(—0.340¢)? = 0.360mc>

1

Kp = Imp2e + Imyvde = (0.5)(2m)(0.069¢)? + (0.5)(m)(0.703¢)* = 0.252mc>

Thus energy is not conserved in the reference frame of O if we use the classical
formula for kinetic energy. This leads to a serious inconsistency—an elastic
collision for one observer would not be elastic for another observer. As in the
case of momentum, if we want to preserve the law of conservation of energy for
all observers, we must replace the classical formula for kinetic energy with an
expression that is valid in the relativistic case (but that reduces to the classical
formula for low speeds).

We can derive the relativistic expression for the kinetic energy of a particle
using essentially the same procedure used to derive the classical expression,
starting with the particle form of the work-energy theorem (see Problem 28). The
result of this calculation is

I’I’IC2

K=—n— —mc (2.34)

V1 —=v2/c?

Using Eq. 2.34, you can show that both O and O’ will conclude that kinetic energy
is conserved. In fact, all observers will agree on the applicability of the energy
conservation law using the relativistic definition for kinetic energy.

Equation 2.34 looks very different from the classical result K = %mvz, but, as
you should show (see Problem 32), Eq. 2.34 reduces to the classical expression in
the limit of low speeds (v < ¢).

The classical expression for kinetic energy also violates the second relativity
postulate by allowing speeds in excess of the speed of light. There is no limit
(in either classical or relativistic dynamics) to the energy we can give to a
particle. Yet, if we allow the kinetic energy to increase without limit, the classical
expression K = %mv2 implies that the velocity must correspondingly increase
without limit, thereby violating the second postulate. You can also see from the
first term of Eq. 2.34 that K — oo as v — c¢. Thus we can increase the relativistic
kinetic energy of a particle without limit, and its speed will not exceed c.

Relativistic Total Energy and Rest Energy

We can also express Eq. 2.34 as
K=E—E, (2.35)

where the relativistic total energy E is defined as

m02

E=—n (2.36)

V1—=1v2/c?



and the rest energy E is defined as
Ey=mc* (2.37)

The rest energy is in effect the relativistic total energy of a particle measured in a
frame of reference in which the particle is at rest.
Sometimes m in Eq. 2.37 is called the rest mass m and is distinguished from

the “relativistic mass,” which is defined as m,/+/1 — v /c%. We choose not to use
relativistic mass, because it can be a misleading concept. Whenever we refer to
mass, we always mean rest mass.

Equation 2.37 suggests that mass can be expressed in units of energy divided
by ¢?, such as MeV/c?. For example, a proton has a rest energy of 938 MeV and
thus a mass of 938 MeV/c?. Just like expressing momentum in units of MeV/c,
expressing mass in units of MeV/c? turns out to be very useful in calculations.

The relativistic total energy is given by Eq. 2.35 as

E=K+E, (2.38)

Collisions of particles at high energies often result in the production of new
particles, and thus the final rest energy may not be equal to the initial rest energy
(see Example 2.18). Such collisions must be analyzed using conservation of total
relativistic energy E; kinetic energy will not be conserved when the rest energy
changes in a collision. In the special example of the elastic collision considered
in this section, the identities of the particles did not change, and so kinetic energy
was conserved. In general, collisions do not conserve kinetic energy—it is the
relativistic total energy that is conserved in collisions.

Manipulation of Egs. 2.32 and 2.36 gives a useful relationship among the total
energy, momentum, and rest energy:

E =/ (po)2 + (mc2)? (2.39)

Figure 2.22 shows a useful mnemonic device for remembering this relationship,
which has the form of the Pythagorean theorem for the sides of a right triangle.

When a particle travels at a speed close to the speed of light (say, v > 0.99¢),
which often occurs in high-energy particle accelerators, the particle’s kinetic
energy is much greater than its rest energy; that is, K > E,. In this case, Eq. 2.39
can be written, to a very good approximation,

E = pc (2.40)

This is called the extreme relativistic approximation and is often useful for
simplifying calculations. As v approaches c, the angle in Figure 2.22 between the
bottom leg of the triangle (representing mc?) and the hypotenuse (representing E)
approaches 90°. Imagine in this case a very tall triangle, in which the vertical leg
(pc) and the hypotenuse (E) are nearly the same length.

For massless particles (such as photons), Eq. 2.39 becomes exactly

E=pe (2.41)

All massless particles travel at the speed of light; otherwise, by Egs. 2.34 and
2.36 their kinetic and total energies would be zero.
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pc

sine = v/c

Ey= mc?

FIGURE 2.22 A useful mnemonic
device for recalling the relationships
among E,p,K, and E. Note that to
put all variables in energy units, the
quantity pc must be used.
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| Example 2.12

What are the kinetic and relativistic total energies of a
proton (£, = 938 MeV) moving at a speed of v = 0.86¢?

Solution
In Example 2.11 we found the momentum of this particle
to be p = 1580 MeV/c. The total energy can be found from
Eq. 2.39:

E =/ (pc)? 4+ (mc?)? = \/ (1580 MeV)? + (938 MeV)?

= 1837MeV

The kinetic energy follows from Eq. 2.35:

K =E —E,
= 1837 MeV — 938 MeV
= 899 MeV

We also could have solved this problem by finding the
kinetic energy directly from Eq. 2.34.

| Example 2.13

Find the velocity and momentum of an electron (£, =
0.511 MeV) with a kinetic energy of 10.0 MeV.

Solution
The total energy is £ = K + £, = 10.0 MeV + 0.511 MeV
= 10.51 MeV. We then can find the momentum from
Eq. 2.39:

1 1
p=—VE? — (mc?)? = -\/(10.51 MeV)?>—(0.511 MeV)?
C C
= 10.5MeV/c

Note that in this problem we could have used the
extreme relativistic approximation, p = E/c, from Eq. 2.40.
The error we would make in this case would be
only 0.1%.

The velocity can be found by solving Eq. 2.36 for v.

v | mc? 2_ . 0.511 MeV \?
c E ] 10.51 MeV

= 0.9988

(2.42)

| Example 2.14

In the Stanford Linear Collider electrons are accelerated to a
kinetic energy of 50 GeV. Find the speed of such an electron
as (a) a fraction of ¢, and (b) a difference from c. The rest
energy of the electron is 0.511 MeV = 0.511 x 1073GeV.

Solution
(a) First we solve Eq. 2.34 for v, obtaining

1

and thus

1
v=c []l— 5
[1+4 (50 GeV)/(0.511 x 103 GeV)]
= 0.999999 999 948¢

Calculators cannot be trusted to 12 significant digits. Here
is a way to avoid this difficulty. We can write Eq. 2.43
asv = c(1 +x)'/2, where x = —1/(1 + K/mc?)*. Because
K > mc?, we have x <« 1, and we can use the binomial
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expansion to write v = ¢(1 + %x), or

1
vEce|ll - ————
[ 21 +K/mc2>2]
which gives

vEe(l—=52x%x 1071

This leads to the same value of v given above.

(b) From the above result, we have

c—v=52x10""¢
=0.016 m/s
=1.6cm/s

| Example 2.15

At a distance equal to the radius of the Earth’s orbit
(1.5 x 10" m), the Sun’s radiation has an intensity of
about 1.4 x 10> W/m?. Find the rate at which the mass of
the Sun is decreasing.

By conservation of energy, we know that the energy lost
by the Sun through radiation must be accounted for by
a corresponding loss in its rest energy. The change in
mass Am corresponding to a change in rest energy AE,, of

4.0 x 10%° J each second is

Solution

If we assume that the Sun’s radiation is distributed uni- 26

forml the surf 477 of a sphere of radi Am= BB 40X 07T o0k
m= = =44 x

ormly over the surface area 477 of a sphere of radius ) 9.0 x 1016 m2/2 g

1.5 x 10" m, then the total radiative power emitted by the

Sun is - .
The Sun loses mass at a rate of about 4 billion kilograms

per second! If this rate were to remain constant, the Sun
(with a present mass of 2 x 10°* kg) would shine “only”
for another 10'3 years.

47 (1.5 x 10"'m)2(1.4 x 10° W/m?)
=4.0x 10°°W = 4.0 x 10 J/s

2.8 CONSERVATION LAWS IN RELATIVISTIC

DECAYS AND COLLISIONS

In all decays and collisions, we must apply the law of conservation of momentum.
The only difference between applying this law for collisions at low speed (as we
did in Example 1.1) and at high speed is the use of the relativistic expression for
momentum (Eq. 2.32) instead of Eq. 1.2. The law of conservation of momentum
for relativistic motion can be stated in exactly the same way as for classical motion:

In an isolated system of particles, the total linear momentum remains

constant.

In the classical case, kinetic energy is the only form of energy that is present in
elastic collisions, so conservation of energy is equivalent to conservation of kinetic
energy. In inelastic collisions or decay processes, the kinetic energy does not
remain constant. Total energy is conserved in classical inelastic collisions, but we
did not account for the other forms of energy that might be important. This missing
energy is usually stored in the particles, perhaps as atomic or nuclear energy.
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In the relativistic case, the internal stored energy contributes to the rest energy
of the particles. Usually rest energy and kinetic energy are the only two forms
of energy that we consider in atomic or nuclear processes (later we’ll add the
energy of radiation to this balance). A loss of kinetic energy in a collision is thus
accompanied by a gain in rest energy, but the total relativistic energy (kinetic
energy -+ rest energy) of all the particles involved in the process doesn’t change.
For example, in a reaction in which new particles are produced, the loss in kinetic
energy of the original reacting particles gives the increase in rest energy of the
product particles. On the other hand, in a nuclear decay process such as alpha
decay, the initial nucleus gives up some rest energy to account for the kinetic
energy carried by the decay products.

The law of energy conservation in the relativistic case is:

In an isolated system of particles, the relativistic total energy (kinetic energy
plus rest energy) remains constant.

In applying this law to relativistic collisions, we don’t have to worry whether the
collision is elastic or inelastic, because the inclusion of the rest energy accounts
for any loss in kinetic energy.

The following examples illustrate applications of the conservation laws for
relativistic momentum and energy.

| Example 2.16

A neutral K meson (mass 497.7 MeV/c?) is moving with a
kinetic energy of 77.0 MeV. It decays into a pi meson (mass
139.6 MeV/c?) and another particle of unknown mass. The
pi meson is moving in the direction of the original K meson
with a momentum of 381.6 MeV/c. (@) Find the momen-
tum and total relativistic energy of the unknown particle.
(b) Find the mass of the unknown particle.

Solution
(a) The total energy and momentum of the K meson are

Ex = Ky 4+ mgc® = 77.0MeV + 497.7MeV = 574.7MeV

1
Pk = Z\/ E2K — (mgc?)?

1
= —/(574.7MeV)? — (497.7 MeV)2
C

= 287.4MeV/c
and for the pi meson

E, =/ (cpy)? + (myc?)?

= /(381.6MeV)? + (139.6 MeV)?
= 406.3 MeV

C.onservation of relativistic momentum (pigisial = Pfinal)
gives px = p, + py (where x represents the unknown par-
ticle), so

Py =Pk — Pr = 287.4MeV/c —381.6 MeV/c
= —94.2MeV/c

and conservation of total relativistic energy (Eipiial = Efinal)
gives Ey = E_ + E,, so

E, = Ey — E, = 574.7MeV — 406.3 MeV
= 168.4MeV

(b) We can find the mass by solving Eq. 2.39 for mc?:

mxc2 = /EZ — (cp,)?

= /(168.4MeV)?2 — (94.2 MeV)2
= 139.6 MeV

Thus the unknown particle has a mass of 139.6 MeV/c?,
and its mass shows that it is another pi meson.
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| Example 2.17

In the reaction K~ +p— A+ 7% a charged K
meson (mass 493.7MeV/c?) collides with a proton
(938.3MeV/c?) at rest, producing a lambda particle
(1115.7MeV /c?) and a neutral pi meson (135.0 MeV/c?),
as represented in Figure 2.23. The initial kinetic energy
of the K meson is 152.4 MeV. After the interaction, the
pi meson has a kinetic energy of 254.8 MeV. (a) Find the
kinetic energy of the lambda. (b) Find the directions of
motion of the lambda and the pi meson.

y
g =
— ‘)7
K- p
(a)
y
. )
/0 0 x
AO
J/ ¢
(b)

FIGURE 2.23 Example 2.17. () A K~ meson collides with a
proton at rest. (b) After the collision, a 7 meson and a A® are
produced.

Solution
(a) The initial and final total energies are

Einitial = Ex + Ep =Ky + ch2 + mpC2
Eﬁnal = EA +Err = KA +mAcz+Krr +mnc2
In these two equations, the value of every quantity is known
except the kinetic energy of the lambda. Using conserva-

tion of total relativistic energy, we set E ... = Eqn, and
solve for K, :

2 2 2 2
Ky =K +mgc” +myc” —mpc” — K —myc

= 152.4MeV + 493.7MeV + 938.3 MeV
— 1115.7MeV — 254.8 MeV — 135.0 MeV
=78.9MeV

(b) To find the directional information we must apply
conservation of momentum. The initial momentum is just
that of the K meson. From its total energy, Ex = Kx+
myc? = 152.4MeV + 493.7MeV = 646.1 MeV, we can
find the momentum:

1
Pinitial =Pk = Z\/ (EK)2 - (chz)z

1
= —/(646.1 MeV)2 — (493.7 MeV)2
C

=416.8 MeV/c

A similar procedure applied to the two final particles
gives p, =426.9 MeV/c and p, = 365.7 MeV/c. The
total momentum of the two final particles is p, g, =
PpCosO +p, cosgandp, gy, = p,sind — p, sing. Con-
servation of momentum in the x and y directions gives

P OS8O + Py COSP = Pinigiay and p, sinf —p, sing =0

Here we have two equations with two unknowns
(6 and ¢). We can eliminate 6 by writing the first equation as
P €080 = Piniial — P €0S ¢, then squaring both equations
and adding them. The resulting equation can be solved
for ¢:

2 b 2
¢ = cos™! DPinitial T Pz — P
2P Pinitial

(416.8 MeV/c)? + (365.7 MeV/c)?
—(426.9MeV/c)?

2(365.7MeV/c)(416.8 MeV/c)

1

EXV

=65.7°

From the conservation of momentum equation for the y
components, we have

0 = sin~! <p—” singb)
P

. _1 {(365.7MeV/c)(sin 65.7°) o
in =513
426.9 MeV/c
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| Example 2.18

The discovery of the antiproton p (a particle with the same
rest energy as a proton, 938 MeV, but with the opposite
electric charge) took place in 1956 through the following
reaction:

ptp—>ptpt+tp+p

in which accelerated protons were incident on a target of
protons at rest in the laboratory. The minimum incident
kinetic energy needed to produce the reaction is called the
threshold kinetic energy, for which the final particles move
together as if they were a single unit (Figure 2.24). Find
the threshold kinetic energy to produce antiprotons in this
reaction.

y y
p p °
—
A Emmamn X . X

(@) )

FIGURE 2.24 Example 2.18. (@) A proton moving with veloc-
ity v collides with another proton at rest. (») The reaction
produces three protons and an antiproton, which move together
as a unit.

Solution

This problem can be solved by a straightforward applica-
tion of energy and momentum conservation. Let £, and p,,
represent the total energy and momentum of the incident

proton. Thus the initial total energy of the two protons is
2 ! /

E, +myc®. Let E; and p,, represent the. total energy and

momentum of each of the four final particles (which move

together and thus have the same energy and momentum).

We can then apply conservation of total energy:

2 _ /
Ep +myc” = 4Ep
and conservation of momentum:

Py =4p,

We can write the momentum equation as  /E2 — (m,c?)? =

4 /E;,2 — (mpcz)z, so now we have two equations in two

unknowns (£, and E}). We eliminate £}, for example
by solving the energy conservation equation for £ and
substituting into the momentum equation. The result is

_ 2
Ep = 7mpc

from which we can calculate the kinetic energy of the
incident proton:

K, = E, — m,c* = 6m,c* = 6(938 MeV) = 5628 MeV
= 5.628GeV

The Bevatron accelerator at the Lawrence Berkeley Labo-
ratory was designed with this experiment in mind, so that
it could produce a beam of protons whose energy exceeded
5.6 GeV. The discovery of the antiproton in this reaction
was honored with the award of the 1959 Nobel Prize to the
experimenters, Emilio Segré and Owen Chamberlain.

2.9 EXPERIMENTAL TESTS OF SPECIAL RELATIVITY

Because special relativity provided such a radical departure from the notions of
space and time in classical physics, it is important to perform detailed experimental
tests that can clearly distinguish between the predictions of special relativity and
those of classical physics. Many tests of increasing precision have been done
since the theory was originally presented, and in every case the predictions of
special relativity are upheld. Here we discuss a few of these tests.
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Universality of the Speed of Light

The second relativity postulate asserts that the speed of light has the same value
¢ for all observers. This leads to several types of experimental tests, of which we
discuss two: (1) Does the speed of light change with the direction of travel? (2)
Does the speed of light change with relative motion between source and observer?

The Michelson-Morley experiment provides a test of the first type. This
experiment compared the upstream-downstream and cross-stream speeds of light
and concluded that they were equal within the experimental error. Equivalently,
we may say that the experiment showed that there is no preferred reference frame
(no ether) relative to which the speed of light must be measured. If there is an
ether, the speed of the Earth through the ether is less than 5 km/s, which is much
smaller than the Earth’s orbital speed about the Sun, 30 km/s. We can express
their result as a difference Ac between the upstream-downstream and cross-stream
speeds; the experiment showed that Ac/c < 3 x 10719,

To reconcile the result of the Michelson-Morley experiment with classical
physics, Lorentz proposed the “ether drag” hypothesis, according to which
the motion of the Earth through the ether caused an electromagnetic drag that
contracted the arm of the interferometer in the direction of motion. This contraction
was just enough to compensate for the difference in the upstream-downstream
and cross-stream times predicted by the Galilean transformation. This hypothesis
succeeds only when the two arms of the interferometer are of the same length.
To test this hypothesis, a similar experiment was done in 1932 by Kennedy and
Thorndike; in their experiment, the lengths of the interferometer arms differed by
about 16 cm, the maximum distance over which light sources available at that time
could remain coherent. The Kennedy-Thorndike experiment in effect tests the
second question, whether the speed of light changes due to relative motion. Their
result was Ac/c < 3 x 1078, which excludes the Lorentz contraction hypothesis
as an explanation for the Michelson-Morley experiment.

In recent years, these fundamental experiments have been repeated with
considerably improved precision using lasers as light sources. Experimenters
working at the Joint Institute for Laboratory Astrophysics in Boulder, Colorado,
built an apparatus that consisted of two He-Ne lasers on a rotating granite
platform. By electronically stabilizing the lasers, they improved the sensitivity
of their apparatus by several orders of magnitude. Again expressing the result
as a difference between the speeds along the two arms of the apparatus, this
experiment corresponds to Ac/c < 8 x 10~!%, an improvement of about 5 orders
of magnitude over the original Michelson-Morley experiment. In a similar
repetition of the Kennedy-Thorndike experiment using He-Ne lasers, they obtained
Ac/c < 1 x 10719 an improvement over the original experiment by a factor of
300. [See A. Brillet and J. L. Hall, Physical Review Letters 42, 549 (1979); D.
Hils and J. L. Hall, Physical Review Letters 64, 1697 (1990).] A considerable
improvement in the Kennedy-Thorndike type of experiment has been made
possible by comparing the oscillation frequency of a crystal with the frequency
of a hydrogen maser (a maser is similar to a laser, but it uses microwaves rather
than visible light). The experimenters measured for nearly one year, looking for a
change in the relative frequencies as the Earth’s velocity changed. No effect was
observed, leading to a limit of Ac/c < 2 x 10712, [See P. Wolf et al., Physical
Review Letters 90, 060402 (2003).]

Another way of testing the second question is to measure the speed of a light
beam emitted by a source in motion. Suppose we observe this beam along the
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direction of motion of the moving source, which might be moving toward us or
away from us. In the rest frame of the source, the emitted light travels at speed c.
We can express the speed of light in our reference frame as ¢’ = ¢ + Ac, where
Ac is zero according to special relativity (¢’ = ¢) or is £u according to classical
physics (¢’ = ¢ & u in the Galilean transformation, depending on whether the
motion is toward or away from the observer).

In one experiment of this type, the decay of pi mesons (pions) into gamma
rays (a form of electromagnetic waves traveling at ¢) was observed. When pions
(produced in laboratories with large accelerators) emit these gamma rays, they are
traveling at speeds close to the speed of light, relative to the laboratory. Thus if
Galilean relativity were valid, we should expect to find gamma rays emitted in the
direction of motion of the decaying pions traveling at a speed ¢’ in the laboratory of
nearly 2c, rather than always with ¢ as predicted by special relativity. The observed
laboratory speed of these gamma rays in one experiment was (2.9977 £ 0.0004)
x 10® m/s when the decaying pions were moving at u/c = 0.99975. These results
give Ac/c <2 x 107*, and thus ¢’ = ¢ as expected from special relativity. This
experiment shows directly that an object moving at a speed of nearly c relative to
the laboratory emits “light” that travels at a speed of ¢ relative to both the object
and the laboratory, giving direct evidence for Einstein’s second postulate. [See T.
Alvager et al., Physics Letters 12, 260 (1964).]

Another experiment of this type is to study the X rays emitted by a binary
pulsar, a rapidly pulsating source of X rays in orbit about another star, which
would eclipse the pulsar as it rotated in its orbit. If the speed of light (in this case,
X rays) were to change as the pulsar moved first toward and later away from the
Earth in its orbit, the beginning and end of the eclipse would not be equally spaced
in time from the midpoint of the eclipse. No such effect is observed, and from
these observations it is concluded that Ac/c <2 x 107!2, in agreement with
predictions of special relativity. These experiments were done at u/c = 1073.
[See K. Brecher, Physical Review Letters 39, 1051 (1977).]

A different type of test of the limit by which the speed of light changes with
direction of travel can be done using the clocks carried aboard the network of Earth
satellites that make up the Global Positioning System (GPS). By comparing the
readings of clocks on the GPS satellites with clocks on the ground at different times
of day (as the satellites move relative to the ground stations), it is possible to test
whether the change in the direction of travel affects the apparent synchronization
of the clocks. No effect was observed, and the experimenters were able to set a
limit of Ac/c < 5 x 107 for the difference between the one-way and round-trip
speeds of light. [See P. Wolf and G. Petit, Physical Review A 56, 4405 (1997).]

Time Dilation

We have already discussed the time dilation effect on the decay of muons produced
by cosmic rays. Muon decay can also be studied in the laboratory. Muons can be
produced following collisions in high-energy accelerators, and the decay of the
muons can be followed by observing their decay products (ordinary electrons).
These muons can either be trapped and decay at rest, or they can be placed
in a beam and decay in flight. When muons are observed at rest, their decay
lifetime is 2.198 ws. (As we discuss in Chapter 12, decays generally follow an
exponential law. The lifetime is the time after which a fraction 1/e = 0.368 of
the original muons remain.) This is the proper lifetime, measured in a frame of
reference in which the muon is at rest. In one particular experiment, muons were
trapped in a ring and circulated at a momentum of p = 3094 MeV/c. The decays
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in flight occurred with a lifetime of 64.37 us (measured in the laboratory frame
of reference). For muons of this momentum, Eq. 2.8 gives a dilated lifetime of
(see Problem 43) 64.38 us, which is in excellent agreement with the measured
value and confirms the time dilation effect. [See J. Bailey et al., Nature 268, 301
(1977).]

Another similar experiment was done with pions. The proper lifetime, measured
for pions at rest, is known to be 26.0 ns. In one experiment, pions were observed
in flight at #/c = 0.913, and their lifetime was measured to be 63.7 ns. (Pions
decay to muons, so we can follow the exponential radioactive decay of the pions
by observing the muons emitted as a result of the decay.) For pions moving at
this speed, the expected dilated lifetime is in exact agreement with the measured
value, once again confirming the time dilation effect. [See D. S. Ayres et al.,
Physical Review D 3, 1051 (1971).]

The Doppler Effect

Confirmation of the relativistic Doppler effect first came from experiments done
in 1938 by Ives and Stilwell. They sent a beam of hydrogen atoms, generated
in a gas discharge, down a tube at a speed u, as shown in Figure 2.25. They
could simultaneously observe light emitted by the atoms in a direction parallel
to « (atom 1) and opposite to u (atom 2, reflected from the mirror). Using a
spectrograph, the experimenters were able to photograph the characteristic spectral
lines from these atoms and also, on the same photographic plate, from atoms at
rest. If the classical Doppler formula were valid, the wavelengths of the lines
from atoms 1 and 2 would be placed at symmetric intervals AA; = £, (u/c) on
either side of the line from the atoms at rest (wavelength A,), as in Figure 2.255.
The relativistic Doppler formula, on the other hand, gives a small additional
asymmetric shift Ax, = +%)\0(u/c)2, as in Figure 2.25¢ (computed for # < ¢, so
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FIGURE 2.25 (a) Apparatus used in the Ives-Stilwell experiment. (b) Line
spectrum expected from classical Doppler effect. (¢) Line spectrum expected
from relativistic Doppler effect.
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FIGURE 2.26 Results of the Ives-
Stilwell experiment. According to
classical theory, AA, =0, while
according to special relativity, AAX,
depends on (u/c)>. The solid line,
which represents the relativistic for-
mula, gives excellent agreement with
the data points.

that higher-order terms in #/c can be neglected). Figure 2.26 shows the results of
Ives and Stilwell for one of the hydrogen lines (the blue line of the Balmer series
at 1, = 486 nm). The agreement between the observed values and those predicted
by the relativistic formula is impressive.

Recent experiments with lasers have verified the relativistic formula at greater
accuracy. These experiments are based on the absorption of laser light by an
atom; when the radiation is absorbed, the atom changes from its lowest-energy
state (the ground state) to one of its excited states. The experiment consists
essentially of comparing the laser wavelength needed to excite atoms at rest
with that needed for atoms in motion. One experiment used a beam of hydrogen
atoms with kinetic energy 800 MeV (corresponding to u/c = 0.84) produced in a
high-energy proton accelerator. An ultraviolet laser was used to excite the atoms.
This experiment verified the relativistic Doppler effect to an accuracy of about
3 x 107, [See D. W. MacArthur et al., Physical Review Letters 56, 282 (1986).]
In another experiment, a beam of neon atoms moving with a speed of u = 0.0036¢
was irradiated with light from a tunable dye laser. This experiment verified the
relativistic Doppler shift to a precision of 2 x 107°. [See R. W. McGowan et al.,
Physical Review Letters 70, 251 (1993).] A more recent study used two tunable
dye lasers parallel and antiparallel to a beam of lithium atoms moving at 0.064c.
The results of this experiment agreed with the relativistic Doppler formula to
within a precision of 2 x 107, improving on the best previous results by an order
of magnitude. [See G. Saathoff et al., Physical Review Letters 91, 190403 (2003).]

Relativistic Momentum and Energy

The earliest direct confirmation of the relativistic relationship for energy and
momentum came just a few years after Einstein’s 1905 paper. Simultaneous
measurements were made of the momentum and velocity of high-energy electrons
emitted in certain radioactive decay processes (nuclear beta decay, which is
discussed in Chapter 12). Figure 2.27 shows the results of several different
investigations plotted as p/mv, which should have the value 1 according to
classical physics. The results agree with the relativistic formula and disagree with
the classical one. Note that the relativistic and classical formulas give the same
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FIGURE 2.27 The ratio p/mv is plotted for electrons of various speeds. The data agree
with the relativistic result and not at all with the nonrelativistic result (p/mv = 1).
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results at low speeds, and in fact the two cannot be distinguished for speeds below
0.1 ¢, which accounts for our failure to observe these effects in experiments with
ordinary laboratory objects.

Other more recent experiments, in which the kinetic energies of fast electrons
were measured, are shown in Figure 2.28. Once again, the data at high speeds
agree with special relativity and disagree with the classical equations. In a
more extreme example, experimenters at the Stanford Linear Accelerator Center
measured the speed of 20 GeV electrons, whose speed is within 5 x 107!? of the
speed of light (or about 0.15 m/s less than c). The measurement was not capable
of this level of precision, but it did determine that the speed of the electrons was
within 2 x 10~7 of the speed of light (60 m/s). [See Z. G. T. Guiragossian et al.,
Physical Review Letters 34,335 (1975).]

Nearly every time the nuclear or particle physicist enters the laboratory, a direct
or indirect test of the momentum and energy relationships of special relativity
is made. Principles of special relativity must be incorporated in the design of
the high-energy accelerators used by nuclear and particle physicists, so even the
construction of these projects gives testimony to the validity of the formulas of
special relativity.

For example, consider the capture of a neutron by an atom of hydrogen to form
an atom of deuterium or “heavy hydrogen.” Energy is released in this process,
mostly in the form of electromagnetic radiation (gamma rays). The energy of the
gamma rays is measured to be 2.224 MeV. Where does this energy come from?
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FIGURE 2.28 Confirmation of relativistic kinetic energy relationships. In (a) and (b) the momentum and energy of
radioactive decay electrons were measured simultaneously. In these two independent experiments, the data were plotted in
different ways, but the results are clearly in good agreement with the relativistic relationships and in poor agreement with
the classical, nonrelativistic relationships. In (¢) electrons were accelerated to a fixed energy through a large electric field
(up to 4.5 million volts, as shown) and the velocities of the electrons were determined by measuring the flight time over
8.4 m. Notice that at small kinetic energies (K < mc?), the relativistic and nonrelativistic relationships become identical.
[Sources: (a) K. N. Geller and R. Kollarits, Am. J. Phys. 40, 1125 (1972); (b) S. Parker, Am. J. Phys. 40, 241 (1972);,

(c) W. Bertozzi, Am. J. Phys. 32, 551 (1964).].
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It comes from the difference in mass when the hydrogen and neutron combine to
form deuterium. The difference between the initial and final masses is:

Am = m(hydrogen) + m(neutron) — m(deuterium)
= 1.007825 u+ 1.008665 u — 2.014102 u = 0.002388 u

The initial mass of hydrogen plus neutron is greater than the final mass of
deuterium by 0.002388 u. The energy equivalent of this change in mass is

AE = (Am)c* = 2.224MeV

which is equal to the energy released as gamma rays.

Similar experiments have been done to test the E = mc? relationship by
measuring the energy released as gamma rays following the capture of neutrons
by atoms of silicon and sulfur, and comparing the gamma-ray energies with the
difference between the initial and final masses. These experiments are consistent
with E = mc? to a precision of about 4 x 1077, [See S. Rainville et al., Nature
438, 1096 (20006).]

Twin Paradox

Although we cannot perform the experiment to test the twin paradox as we have
described it, we can do an equivalent experiment. We take two clocks in our
laboratory and synchronize them carefully. We then place one of the clocks in an
airplane and fly it around the Earth. When we return the clock to the laboratory
and compare the two clocks, we expect to find, if special relativity is correct,
that the clock that has left the laboratory is the “younger” one—that is, it will
have ticked away fewer seconds and appear to run behind its stationary twin. In
this experiment, we must use very precise clocks based on the atomic vibrations
of cesium in order to measure the time differences between the clock readings,
which amount to only about 10~7 s. This experiment is complicated by several
factors, all of which can be computed rather precisely: the rotating Earth is not
an inertial frame (there is a centripetal acceleration), clocks on the surface of the
Earth are already moving because of the rotation of the Earth, and the general
theory of relativity predicts that a change in the gravitational field strength, which
our moving clock will experience as it changes altitude in its airplane flight, will
also change the rate at which the clock runs. In this experiment, as in the others
we have discussed, the results are entirely in agreement with the predictions of
special relativity. [See J. C. Hafele and R. E. Keating, Science 177, 166 (1972).]

In a similar experiment, a cesium atomic clock carried on the space shuttle was
compared with an identical clock on the Earth. The comparison was made through
a radio link between the shuttle and the ground station. At an orbital height of
about 328 km, the shuttle moves at a speed of about 7712 m/s, or 2.5 x 10 5¢. A
clock moving at this speed runs slower than an identical clock at rest by the time
dilation factor. For every second the clock is in orbit, it loses 330 ps relative to the
clock on Earth; equivalently, it loses about 1.8 us per orbit. These time intervals
can be measured with great precision, and the predicted asymmetric aging was
verified to a precision of about 0.1%. [See E. Sappl, Naturwissenschaften 77,
325 (1990).]
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remain constant.

Explain in your own words what is meant by the term
“relativity.” Are there different theories of relativity?

Suppose the two observers and the rock described in the
first paragraph of Section 2.1 were isolated in interstellar
space. Discuss the two observers’ differing perceptions of
the motion of the rock. Is there any experiment they can
do to determine whether the rock is moving in any absolute
sense?

Describe the situation of Figure 2.4 as it would appear from
the reference frame of O'.

Does the Michelson-Morley experiment show that the ether
does not exist or that it is merely unnecessary?

Suppose we made a pair of shears in which the cutting blades
were many orders of magnitude longer than the handle. Let
us in fact make them so long that, when we move the handles
at angular velocity w, a point on the tip of the blade has a
tangential velocity v = wr that is greater than c. Does this
contradict special relativity? Justify your answer.

Light travels through water at a speed of about 2.25 x 108
m/s. Is it possible for a particle to travel through water at a
speed v greater than 2.25 x 10% m/s?
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10.

11.

12.

13.
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Is it possible to have particles that travel at the speed of
light? What does Eq. 2.36 require of such particles?

How does relativity combine space and time coordinates
into spacetime?

Einstein developed the relativity theory after trying unsuc-
cessfully to imagine how a light beam would look to an
observer traveling with the beam at speed ¢. Why is this so
difficult to imagine?

Explain in your own words the terms time dilation and
length contraction.

Does the Moon’s disk appear to be a different size to a
space traveler approaching it at v = 0.99¢, compared with
the view of a person at rest at the same location?
According to the time dilation effect, would the life
expectancy of someone who lives at the equator be longer
or shorter than someone who lives at the North Pole? By
how much?

Criticize the following argument. “Here is a way to travel
faster than light. Suppose a star is 10 light-years away. A
radio signal sent from Earth would need 20 years to make
the round trip to the star. If I were to travel to the star in my
rocket at v = 0.8¢, to me the distance to the star is contracted

by /1 — (0.8)2 to 6 light-years, and at that speed it would
take me 6 light-years/0.8¢ = 7.5 years to travel there. The

2.1 Classical Relativity

1.

You are piloting a small airplane in which you want to reach
a destination that is 750 km due north of your starting loca-
tion. Once you are airborne, you find that (due to a strong
but steady wind) to maintain a northerly course you must
point the nose of the plane at an angle that is 22° west of
true north. From previous flights on this route in the absence
of wind, you know that it takes you 3.14 h to make the
journey. With the wind blowing, you find that it takes 4.32
h. A fellow pilot calls you to ask about the wind velocity
(magnitude and direction). What is your report?

A moving sidewalk 95 m in length carries passengers at
a speed of 0.53 m/s. One passenger has a normal walking
speed of 1.24 m/s. (a) If the passenger stands on the side-
walk without walking, how long does it take her to travel
the length of the sidewalk? (b) If she walks at her normal
walking speed on the sidewalk, how long does it take to
travel the full length? (¢) When she reaches the end of the
sidewalk, she suddenly realizes that she left a package at the
opposite end. She walks rapidly back along the sidewalk at
double her normal walking speed to retrieve the package.
How long does it take her to reach the package?

14.

15.

16.

17.

19.

20.

round trip takes me only 15years, and therefore I travel
faster than light, which takes 20 years.”

Is it possible to synchronize clocks that are in motion rela-
tive to each other? Try to design a method to do so. Which
observers will believe the clocks to be synchronized?
Suppose event 4 causes event B. To one observer, event 4
comes before event B. Is it possible that in another frame of
reference event B could come before event 4? Discuss.

Is mass a conserved quantity in classical physics? In special
relativity?

“In special relativity, mass and energy are equivalent.”
Discuss this statement and give examples.

Which is more massive, an object at low temperature or
the same object at high temperature? A spring at its natural
length or the same spring under compression? A container of
gas at low pressure or at high pressure? A charged capacitor
or an uncharged one?

Could a collision be elastic in one frame of reference and
inelastic in another?

(a) What properties of nature would be different if there
were a relativistic transformation law for electric charge?
(b) What experiments could be done to prove that electric
charge does not change with velocity?

2.2 The Michelson-Morley Experiment

3.

A shift of one fringe in the Michelson-Morley experiment
corresponds to a change in the round-trip travel time along
one arm of the interferometer by one period of vibration
of light (about 2 x 10™!% s) when the apparatus is rotated
by 90°. Based on the results of Example 2.3, what veloc-
ity through the ether would be deduced from a shift of
one fringe? (Take the length of the interferometer arm to
be 11 m.)

2.4 Consequences of Einstein’s Postulates

4.

The distance from New York to Los Angeles is about
5000km and should take about 50 h in a car driving at
100 km/h. (¢) How much shorter than 5000 km is the dis-
tance according to the car travelers? () How much less than
50 h do they age during the trip?

How fast must an object move before its length appears to
be contracted to one-half its proper length?

An astronaut must journey to a distant planet, which is
200 light-years from Earth. What speed will be necessary
if the astronaut wishes to age only 10years during the
round trip?
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12.

13.

The proper lifetime of a certain particle is 100.0 ns. (¢) How
long does it live in the laboratory if it moves at v = 0.960c?
(b) How far does it travel in the laboratory during that time?
(c) What is the distance traveled in the laboratory according
to an observer moving with the particle?

High-energy particles are observed in laboratories by pho-
tographing the tracks they leave in certain detectors; the
length of the track depends on the speed of the parti-
cle and its lifetime. A particle moving at 0.995¢ leaves
a track 1.25mm long. What is the proper lifetime of the
particle?

Carry out the missing steps in the derivation of Eq. 2.17.
Two spaceships approach the Earth from opposite directions.
According to an observer on the Earth, ship 4 is moving at
a speed of 0.753¢ and ship B at a speed of 0.851¢. What is
the velocity of ship 4 as observed from ship B? Of ship B as
observed from ship 4?

Rocket A leaves a space station with a speed of 0.826¢.
Later, rocket B leaves in the same direction with a speed of
0.635¢. What is the velocity of rocket 4 as observed from
rocket B?

One of the strongest emission lines observed from distant
galaxies comes from hydrogen and has a wavelength of
122nm (in the ultraviolet region). (¢) How fast must a
galaxy be moving away from us in order for that line to be
observed in the visible region at 366 nm? (b) What would
be the wavelength of the line if that galaxy were moving
toward us at the same speed?

A physics professor claims in court that the reason he
went through the red light (A = 650 nm) was that, due to
his motion, the red color was Doppler shifted to green
(X = 550 nm). How fast was he going?

2.5 The Lorentz Transformation

14.
15.

16.

17.

18.

Derive the Lorentz velocity transformations for v, and v..
Observer O fires a light beam in the y direction (v, =o0).
Use the Lorentz velocity transformation to find v/, and v/

and show that O’ also measures the value ¢ for the speed oyf
light. Assume that O’ moves relative to O with velocity « in
the x direction.

A light bulb at point x in the frame of reference of O
blinks on and off at intervals Af=1t, —t,. Observer O,
moving relative to O at speed u, measures the interval to be
At =, — 1. Use the Lorentz transformation expressions
to derive the time dilation expression relating Az and Af'.
A neutral K meson at rest decays into two 7 mesons, which
travel in opposite directions along the x axis with speeds of
0.828¢. If instead the K meson were moving in the positive
x direction with a velocity of 0.486¢, what would be the
velocities of the two 7 mesons?

A rod in the reference frame of observer O makes an angle
of 31° with the x axis. According to observer O, who is in
motion in the x direction with velocity u, the rod makes an
angle of 46° with the x axis. Find the velocity u.

19.

20.
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According to observer O, two events occur separated by a
time interval Ar = 40.465 s and at locations separated by
Ax = +53.4 m. (a) According to observer O, who is in
motion relative to O at a speed of 0.762c¢ in the positive x
direction, what is the time interval between the two events?
(b) What is the spatial separation between the two events,
according to O'?

According to observer O, a blue flash occurs at x, = 10.4 m
when f, = 0.124 us, and a red flash occurs at x, = 23.6 m
when 7. = 0.138 pus. According to observer O’, who is in
motion relative to O at velocity u, the two flashes appear to
be simultaneous. Find the velocity u.

2.6 The Twin Paradox

21.

22.

23.

24.

Suppose the speed of light were 1000 mi/h. You are traveling
on a flight from Los Angeles to Boston, a distance of 3000
mi. The plane’s speed is a constant 600 mi/h. You leave Los
Angeles at 10:00 A.M., as indicated by your wristwatch and
by a clock in the airport. (¢) According to your watch, what
time is it when you land in Boston? () In the Boston airport
is a clock that is synchronized to read exactly the same time
as the clock in the Los Angeles airport. What time does that
clock read when you land in Boston? (¢) The following day
when the Boston clock that records Los Angeles time reads
10:00 A.M., you leave Boston to return to Los Angeles on
the same airplane. When you land in Los Angeles, what are
the times read on your watch and on the airport clock?
Suppose rocket traveler Amelia has a clock made on Earth.
Every year on her birthday she sends a light signal to brother
Casper on Earth. (a) At what rate does Casper receive
the signals during Amelia’s outward journey? (b) At what
rate does he receive the signals during her return journey?
(c¢) How many of Amelia’s birthday signals does Casper
receive during the journey that he measures to last 20 years?
Suppose Amelia traveled at a speed of 0.80c¢ to a star that
(according to Casper on Earth) is 8.0 light-years away.
Casper ages 20 years during Amelia’s round trip. How much
younger than Casper is Amelia when she returns to Earth?
Make a drawing similar to Figure 2.20 showing the world-
lines of Casper and Amelia from Casper’s frame of reference.
Divide the world line for Amelia’s outward journey into 8
equal segments (for the 8 birthdays that Amelia celebrates).
For each birthday, draw a line that represents a light signal
that Amelia sends to Casper on her birthday. Do the same
for Amelia’s return journey. (a) According to Casper’s time,
when does he receive the signal showing Amelia celebrating
her 8th birthday after leaving Earth? (b) How long does
it take for Casper to receive the signals showing Amelia
celebrating birthdays 9 through 16?

2.7 Relativistic Dynamics

25.

(a) Using the relativistically correct final velocities for
the collision shown in Figure 2.21a (V{; = —0.585¢,v}; =
+0.294¢), show that relativistic kinetic energy is conserved
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26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

according to observer O'. (b) Using the relativistically cor-
rect final velocities for the collision shown in Figure 2.215
(vig = —0.051c¢, vy = +0.727¢), show that relativistic
kinetic energy is conserved according to observer O.

Find the momentum, kinetic energy, and total energy of a
proton moving at a speed of 0.756¢.

An electron is moving with a kinetic energy of 1.264 MeV.
What is its speed?

The work-energy theorem relates the change in kinetic
energy of a particle to the work done on it by an external
force: AK = W = [ F dx. Writing Newton’s second law
as F' = dp/dt, show that W = [v dp and integrate by parts
using the relativistic momentum to obtain Eq. 2.34.

For what range of velocities of a particle of mass m can
we use the classical expression for kinetic energy %mv2 to
within an accuracy of 1%?

For what range of velocities of a particle of mass m can we
use the extreme relativistic approximation £ = pc to within
an accuracy of 1%?

Use Eqgs. 2.32 and 2.36 to derive Eq. 2.39.

Use the binomial expansion (1+x)"=1+4nx+
[n(n — 1)/2!]x* 4+ - - - to show that Eq. 2.34 for the rel-
ativistic kinetic energy reduces to the classical expression
%mv2 when v < ¢. This important result shows that our
familiar expressions are correct at low speeds. By evaluat-
ing the first term in the expansion beyond %mvz, find the
speed necessary before the classical expression is off by
0.01%.

(a) According to observer O, a certain particle has a
momentum of 817 MeV/c and a total relativistic energy
of 1125 MeV. What is the rest energy of this particle?
(b) An observer O’ in a different frame of reference mea-
sures the momentum of this particle to be 953 MeV/c.
What does O" measure for the total relativistic energy of the
particle?

An electron is moving at a speed of 0.81c. By how much
must its kinetic energy increase to raise its speed to 0.91¢?
What is the change in mass when 1 g of copper is heated
from 0 to 100°C? The specific heat capacity of copper is
0.40J/g-K.

Find the kinetic energy of an electron moving at a speed of
(@) v=1.00x10"%; (b) v=1.00x10"2%¢c; (¢) v=
0.300¢; (d) v =0.999c.

An electron and a proton are each accelerated starting from
rest through a potential difference of 10.0 million volts. Find
the momentum (in MeV/c) and the kinetic energy (in MeV)
of each, and compare with the results of using the classical
formulas.

In a nuclear reactor, each atom of uranium (of atomic mass
235 u) releases about 200 MeV when it fissions. What is the
change in mass when 1.00 kg of uranium-235 is fissioned?

2.8 Conservation Laws in Relativistic Decays and Collisions

39.

40.

41.

42.

A 7 meson of rest energy 139.6 MeV moving at a speed of
0.906¢ collides with and sticks to a proton of rest energy
938.3 MeV that is at rest. () Find the total relativistic
energy of the resulting composite particle. (b) Find the total
linear momentum of the composite particle. (¢) Using the
results of (a) and (b), find the rest energy of the composite
particle.

An electron and a positron (an antielectron) make a head-on
collision, each moving at v = 0.99999¢. In the collision
the electrons disappear and are replaced by two muons
(mc* = 105.7 MeV), which move off in opposite directions.
What is the kinetic energy of each of the muons?

It is desired to create a particle of mass 9700 MeV/c? in a
head-on collision between a proton and an antiproton (each
having a mass 0f 938.3 MeV /c?) traveling at the same speed.
What speed is necessary for this to occur?

A particle of rest energy mc? is moving with speed v in the
positive x direction. The particle decays into two particles,
each of rest energy 140 MeV. One particle, with kinetic
energy 282 MeV, moves in the positive x direction, and the
other particle, with kinetic energy 25 MeV, moves in the
negative x direction. Find the rest energy of the original
particle and its speed.

2.9 Experimental Tests of Special Relativity

43.

44.

In the muon decay experiment discussed in Section 2.9 as a
verification of time dilation, the muons move in the lab with
a momentum of 3094 MeV/c. Find the dilated lifetime in
the laboratory frame. (The proper lifetime is 2.198 us.)
Derive the relativistic expression p?/2K = m + K/2¢?,
which is plotted in Figure 2.28a.

General Problems

45.

46.

47.

Suppose we want to send an astronaut on a round trip to
visit a star that is 200 light-years distant and at rest with
respect to Earth. The life support systems on the spacecraft
enable the astronaut to survive at most 20 years. (a) At what
speed must the astronaut travel to make the round trip in
20 years of spacecraft time? (b) How much time passes on
Earth during the round trip?

A “cause” occurs at point 1 (x,¢,) and its “effect” occurs
at point 2 (x,,#,). Use the Lorentz transformation to find
t, — 1, and show that 7, — #; > 0; that is, O’ can never see
the “effect” coming before its “cause.”

Observer O sees a red flash of light at the origin at 7 = 0 and
a blue flash of light at x = 3.26 km at a time # = 7.63 us.
What are the distance and the time interval between the
flashes according to observer O', who moves relative to O
in the direction of increasing x with a speed of 0.625¢?



48.

49.

50.

51.

52.

Assume that the origins of the two coordinate systems line
upatt=+¢=0.

Several spacecraft (4,B,C, and D) leave a space station
at the same time. Relative to an observer on the station,
A travels at 0.60c in the x direction, B at 0.50c in the y
direction, C at 0.50c in the negative x direction, and D at
0.50c at 45° between the y and negative x directions. Find
the velocity components, directions, and speeds of B, C, and
D as observed from A.

Observer O sees a light turn on at x = 524 m when
t = 1.52 us. Observer O’ is in motion at a speed of 0.563¢
in the positive x direction. The two frames of reference are
synchronized so that their origins match up (x = x" = 0) at
t =t = 0. (a) At what time does the light turn on according
to O'? (b) At what location does the light turn on in the
reference frame of O'?

Suppose an observer O measures a particle of mass m
moving in the x direction to have speed v, energy E,
and momentum p. Observer O, moving at speed u in
the x direction, measures v/, E’, and p’ for the same object.
(a) Use the Lorentz velocity transformation to find £” and
p' in terms of m,u, and v. (b) Reduce E? — (p'c)? to its
simplest form and interpret the result.

Repeat Problem 50 for the mass moving in the y direction
according to O. The velocity u of O’ is still along the x
direction.

Consider again the situation described in Section 2.6.
Amelia’s friend Bernice leaves Earth at the same time
as Amelia and travels in the same direction at the same
speed, but Bernice continues in the original direction when
Amelia reaches the planet and turns her ship around.
(a) From Bernice’s frame of reference, Casper is moving
at a velocity of —0.60c. Draw Casper’s worldline in Ber-
nice’s frame of reference. (b) Casper celebrates 20 birthdays
during Amelia’s journey. In Bernice’s frame of reference,
how long does it take for Casper to celebrate 20 birthdays?
(c¢) In Bernice’s frame of reference, draw a worldline repre-
senting Amelia’s outbound journey to the planet. (d) Calcu-
late Amelia’s velocity during her return journey as observed
from Bernice’s frame of reference, and draw a worldline
showing Amelia’s return journey. Amelia’s and Casper’s
worldlines should intersect when Amelia return to Earth.

53.

54.

55.

56.

57.

Problems 67

(e) Divide Casper’s worldline into 20 segments, represent-
ing his birthdays. He sends a light signal to Amelia on each
birthday. Amelia receives a light signal from Casper just as
she arrives at the planet. On which birthday did Casper send
this signal? (f) Amelia sends Casper a light signal on her
8th birthday. Draw a line on your diagram representing this
light signal. When does Casper receive this signal?
Electrons are accelerated to high speeds by a two-stage
machine. The first stage accelerates the electrons from rest
to v=0.99c. The second stage accelerates the electrons
from 0.99¢ to 0.999¢. (a) How much energy does the first
stage add to the electrons? (b) How much energy does the
second stage add in increasing the velocity by only 0.9%?
A beam of 1.35 x 10'! electrons/s moving at a speed of
0.732¢ strikes a block of copper that is used as a beam
stop. The copper block is a cube measuring 2.54 cm on edge.
What is the temperature increase of the block after one hour?
An electron moving at a speed of v; = 0.960c in the positive
x direction collides with another electron at rest. After the
collision, one electron is observed to move with a speed of
vip = 0.956¢ at an angle of 6, = 9.7° with the x axis. () Use
conservation of momentum to find the velocity (magnitude
and direction) of the second electron. (b) Based only on
the original data given in the problem, use conservation of
energy to find the speed of the second electron.

A pion has a rest energy of 135MeV. It decays into two
gamma ray photons, bursts of electromagnetic radiation that
travel at the speed of light. A pion moving through the
laboratory at v = 0.98c¢ decays into two gamma ray photons
of equal energies, making equal angles 6 with the original
direction of motion. Find the angle 6 and the energies of the
two gamma ray photons.

Consider again the decay described in Example 2.16 and
determine the energies of the two pi mesons emitted in the
decay of the K meson by first making a Lorentz transfor-
mation to a reference frame in which the initial K meson is
at rest. When a K meson at rest decays into two pi mesons,
they move in opposite directions with equal and opposite
velocities, so they share the decay energy equally. Find
the energies and velocities of the two pi mesons in the K
meson’s rest frame. Then transform back to the lab frame to
find their kinetic energies.



