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1 Introduction

The turn of the 20th century brought the start of a revolution in physics. In 1900, Max Planck published
his explanation of blackbody radiation. This equation assumed that radiators are quantized, which
proved to be the opening argument in the edifice that would become quantum mechanics. In this
chapter, many of the developments which form the foundation of modern physics are discussed.

2 Blackbody radiation spectrum

A blackbody is an object that absorbs all light that falls on it. Since no light is reflected or transmitted,
the object appears black when it is cold. The term blackbody was introduced by Gustav Kirchhoff in
1860. A perfect blackbody, in thermal equilibrium, will emit exactly as much as it absorbs at every
wavelength. The light emitted by a blackbody is called blackbody radiation.

The plot of distribution of emitted energy as a function of wavelength and temperature of blackbody
is know as blackbody spectrum. It has the following characteristics.

• The spectral distribution of energy in the radiation depends only on the temperature of the
blackbody.

• The higher the temperature, the greater the amount of total radiation energy emitted and also
energy emitted at individual wavelengths.

• The higher the temperature, the lower the wavelength at which maximum emission occurs.

Many theories were proposed to explain the nature of blackbody radiation based on classical physics
arguments. But non of them could explain the complete blackbody spectrum satisfactorily. These
theories are discussed in brief below.
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2.1 Stefan-Boltzmann law

The Stefan-Boltzmann law, also known as Stefan’s law, states that the total energy radiated per unit
surface area of a blackbody in unit time (known variously as the blackbody irradiance, energy flux
density, radiant flux, or the emissive power), E?, is directly proportional to the fourth power of the
blackbody’s thermodynamic temperature T (also called absolute temperature):

E? = σT 4. (1)

The constant of proportionality σ is called the Stefan-Boltzmann constant or Stefan’s constant. It is
not a fundamental constant, in the sense that it can be derived from other known constants of nature.
The value of the constant is 5.6704× 10−8 J s−1 m−2 K−4. The Stefan-Boltzmann law is an example of
a power law.

2.2 Wien’s displacement law

Wien’s displacement law states that there is an inverse relationship between the wavelength of the peak
of the emission of a blackbody and its absolute temperature.

λmax ∝
1

T

Tλmax = b (2)

where
λmax is the peak wavelength in meters,
T is the temperature of the blackbody in kelvins (K), and
b is a constant of proportionality, called Wien’s displacement constant and equals 2.8978×10−3 mK.

In other words, Wien’s displacement law states that the hotter an object is, the shorter the wavelength
at which it will emit most of its radiation.

2.3 Wien’s distribution law

According to Wein, the energy density, Eλ, emitted by a blackbody in a wavelength interval λ and
λ + dλ is given by

Eλ dλ =
c1

λ5
e(−c2/λT ) dλ (3)

where c1 and c2 are constants. This is known as Wien’s distribution law or simply Wein’s law. This
law holds good for smaller values of λ but does not match the experimental results for larger values of
λ. Wien received the 1911 Nobel Prize for his work on heat radiation.

2.4 Rayleigh-Jeans’ law

According to Rayleigh and Jeans the energy density, Eλ, emitted by a blackbody in a wavelength
interval λ and λ + dλ is given by

Eλ dλ =
8πkT

λ4
dλ, (4)

where k is the Boltzmann’s constant whose value is equal to 1.381× 10−23 JK−1.
It agrees well with experimental measurements for long wavelengths. However it predicts an en-

ergy output that diverges towards infinity as wavelengths grow smaller. This was not supported by
experiments and the failure has become known as the ultraviolet catastrophe or Rayleigh-Jeans
catastrophe. Here the word ultraviolet signifies shorter wavelength or higher frequencies and not the
ultraviolet region of the spectrum. One more thing to note is that, it was not, as is sometimes asserted
in physics textbooks, a motivation for quantum theory.
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2.5 Planck’s law of black-body radiation

Explaining the blackbody radiation curve was a major challenge in theoretical physics during the late
nineteenth century. All the theories based on classical ideas failed in one or the other way. The
wavelength at which the radiation is strongest is given by Wien’s displacement law, and the overall
power emitted per unit area is given by the Stefan-Boltzmann law. Wein’s law could explain the
blackbody radiation curve only for shorter wavelengths whereas Rayleigh-Jeans’ law worked well only
for larger wavelengths. The problem was finally solved in 1901 by Max Planck.

Planck came up with the following formula for the spectral energy density of blackbody radiation
in a wavelength range λ and λ + dλ,

Eλ dλ =
8πhc

λ5

1

ehc/λkT − 1
dλ, (5)

where h is the Planck’s constant whose value is 6.626× 10−34 Js. This formula could explain the entire
blackbody spectrum and does not suffer from an ultraviolet catastrophe unlike the previous ones. But
the problem was to justify it in terms of physical principles. Planck proposed a radically new idea that
the oscillators in the blackbody do not have continuous distribution of energies but only in discrete
amounts. An oscillator emits radiation of frequency ν when it drops from one energy state to the next
lower one, and it jumps to the next higher state when it absorbs radiation of frequency ν. Each such
discrete bundle of energy hν is called quantum. Hence, the energy of an oscillator can be written as

En = nhν n = 0, 1, 2, 3, .... (6)

2.5.1 Derivation Wien’s law from Planck’s law

The Planck’s law of blackbody radiation expressed in terms of wavelength is given by

Eλ dλ =
8πhc

λ5

1

ehc/λkT − 1
dλ.

In the limit of shorter wavelengths, hc/λkT becomes very small resulting in

ehc/λkT � 1.

Therefore
ehc/λkT − 1 ≈ ehc/λkT .

This reduces the Planck’s law to

Eλ dλ =
8πhc

λ5

1

ehc/λkT
dλ

or

Eλ dλ =
8πhc

λ5
e−hc/λkT dλ.

Now identifying 8πhc as c1 and hc/k as c2, the above equation takes the form

Eλ dλ =
c1

λ5
e(−c2/λT ) dλ.

This is the familiar Wien’s law.
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2.5.2 Derivation of Rayleigh-Jeans’ law from Planck’s law

The Planck’s law of blackbody radiation expressed in terms of wavelength is given by

Eλ dλ =
8πhc

λ5

1

ehc/λkT − 1
dλ.

In the limit of long wavelengths, the term in the exponential becomes small. Now expressing it in
the form of power series (ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ ....),

ehc/λkT = 1 +

(
hc

λkT

)
+

(
hc

λkT

)2

2!
+ ...

Since hc
λkT

is small, any higher order of the same will be much smaller, so we truncate the series beyond
the first order term,

ehc/λkT ≈ 1 +

(
hc

λkT

)
.

Therefore, the Planck’s law takes the form

Eλ dλ =
8πhc

λ5

1

(1 + hc/λkT )− 1
dλ,

that is,

Eλ dλ =
8πhc

λ5

1

(hc/λkT )
dλ,

Eλ dλ =
8πhc

λ5

λkT

hc
dλ.

This gives back the Rayleigh-Jeans Law

Eλ dλ =
8πkT

λ4
dλ.

3 Photo-electric effect

The phenomenon of electrons being emitted from a metal when struck by incident electromagnetic
radiation of certain frequency is called photoelectric effect. The emitted electrons can be referred to as
photoelectrons. The effect is also termed the Hertz Effect in the honor of its discoverer, although the
term has generally fallen out of use.

3.1 Experimental results of the photoelectric emission

1. The time lag between the incidence of radiation and the emission of a photoelectron is very small,
less than 10−9 second.

2. For a given metal, there exists a certain minimum frequency of incident radiation below which
no photoelectrons can be emitted. This frequency is called the threshold frequency or critical
frequency, denoted by ν0. The energy corresponding to this threshold frequency is the mini-
mum energy required to eject a photoelectron from the surface. This minimum energy is the
characteristic of the material which is called work function (φ).

3. For a given metal and frequency of incident radiation, the number of photoelectrons ejected is
directly proportional to the intensity of the incident light.
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4. Above the threshold frequency, the maximum kinetic energy of the emitted photoelectron is
independent of the intensity of the incident light but depends on the frequency of the incident
light.

5. The photoelectron emission can be stopped by applying the voltage in a reverse way. This
reverse voltage required to stop the photoelectron emission is called the stopping potential. This
is independent of the intensity but increases with increase in the frequency of incident radiation.

3.2 Einstein’s explanation of the photoelectric effect

The above experimental results were at odds with Maxwell’s wave theory of light, which predicted that
the energy would be proportional to the intensity of the radiation. In 1905, Einstein solved this paradox
by describing light as composed of discrete quanta, now called photons, rather than continuous waves.
Based upon Planck’s theory of blackbody radiation, Einstein theorized that the energy in each quantum
of light was equal to the frequency multiplied by a constant, called Planck’s constant. A photon above
a threshold frequency has the required energy to eject a single electron, creating the observed effect.
Einstein came up the following explanation

Energy of incident photon = Energy needed to remove an electron+Kinetic energy of the emitted electron

Algebraically,

hν = φ + KEmax (7)

where
h is Planck’s constant,
ν is the frequency of the incident photon,
φ = hν0 is the work function where ν0 is the threshold frequency,
KEmax = 1

2
mv2 is the maximum kinetic energy of ejected electrons,

m is the rest mass of the ejected electron, and
v is the speed of the ejected electron.

Since an emitted electron cannot have negative kinetic energy, the equation implies that if the photon’s
energy (hν) is less than the work function (φ), no electron will be emitted.

The photoelectric effect helped propel the then-emerging concept of the dualistic nature of light,
that light exhibits characteristics of waves and particles at different times. The effect was impossible to
understand in terms of the classical wave description of light, as the energy of the emitted electrons did
not depend on the intensity of the incident radiation. In his famous paper of 1905, Einstein extended
Planck’s quantum hypothesis by postulating that quantization was not a property of the emission
mechanism, but rather an intrinsic property of the electromagnetic field. Using this hypothesis, Einstein
was able to explain the observed phenomenon. Explanation of the photoelectric effect was one of the
first triumphs of quantum mechanics and earned Einstein the Nobel Prize in 1921.
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4 Compton effect

Compton scattering or the Compton effect is the decrease in energy (increase in wavelength) of an X-ray
or gamma ray photon, when it interacts with matter. The amount the wavelength increases by is called
the Compton shift. The Compton effect was observed in 1923 by Arthur Compton who got the 1927
Nobel Prize in Physics for the discovery.

The interaction between electrons and high energy photons results in the electron being given part
of the energy and a photon containing the remaining energy being emitted in a different direction from
the original, so that the overall momentum of the system is conserved. In this scenario, the electron is
treated as free or loosely bound. If the photon is of sufficient energy, it can eject an electron from its
host atom entirely resulting in the Photoelectric effect instead of undergoing Compton scattering.

The Compton scattering equation is given by,

λ′ − λ =
h

mec
(1− cos θ) (8)

where
λ is the wavelength of the photon before scattering,
λ′ is the wavelength of the photon after scattering,
me is the mass of the electron,
θ is the angle by which the photon’s heading changes,
h is Planck’s constant, and
c is the speed of light.

h
mec

= 2.43× 10−12 m is known as the Compton wavelength.
The effect is important because it demonstrates that light cannot be explained purely as a wave phe-
nomenon. Light must behave as if it consists of particles in order to explain the Compton scattering.
Compton’s experiment convinced physicists that light can behave as a stream of particles whose energy
is proportional to the frequency.

5 Wave-particle dualism

Albert Einstein’s analysis of the photoelectric effect in 1905 demonstrated that light possessed particle-
like properties, and this was further confirmed with the discovery of the Compton scattering in 1923.
Later on, the diffraction of electrons would be predicted and experimentally confirmed, thus showing
that electrons must have wave-like properties in addition to particle properties. The wave-particle
duality is the concept that all matter and energy exhibits both wave-like and particle-like properties.
This duality addresses the inadequacy of classical concepts like ‘particle’ and ‘wave’ in fully describing
the behavior of small-scale objects. This confusion over particle versus wave properties was eventually
resolved with the advent and establishment of quantum mechanics in the first half of the 20th century.
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In 1924, Louis de Broglie formulated the de Broglie hypothesis, claiming that all matter has a wave-
like nature and the wavelength (denoted as λ) of a moving particle of momentum (denoted as p) is
given by:

λ =
h

p
(9)

where h is Planck’s constant. de Broglie’s formula was confirmed three years later for electrons with
the observation of electron diffraction and he was awarded the Nobel Prize for Physics in 1929 for his
hypothesis.

The above formula holds true for all particles. In most of the laboratory experiments for measuring
the de Broglie wavelength, we accelerate a charged particle using an electric field. When an electron at
rest is accelerated by applying a potential difference of V , it will have a kinetic energy given by

1

2
mv2 = eV.

Expressing the kinetic energy in terms of linear momentum p(= mv), we rewrite the above equation as

p2

2m
= eV,

that is
p =

√
2meV .

Now plugging this equation into the expression for de Broglie wavelength, we get

λ =
h√

2meV
.

Substituting the numerical values of the natural constants (h = 6.626× 10−34 Js, m = 9.11× 10−31 kg
and e = 1.602× 10−19 C), we get

λ =
1.226× 10−9

√
V

m. (10)

5.1 Davisson and Germer Experiment

In 1927, while working for Bell Labs, Clinton Davisson and Lester Germer performed an experiment
showing that electrons were diffracted at the surface of a crystal of nickel. The basic idea is that
the planar nature of crystal structure provides scattering surfaces at regular intervals, thus waves that
scatter from one surface can constructively or destructively interfere from waves that scatter from the
next crystal plane deeper into the crystal. This celebrated Davisson-Germer experiment confirmed
the de Broglie hypothesis that particles of matter have a wave-like nature, which is a central tenet of
quantum mechanics. In particular, their observation of diffraction allowed the first measurement of a
wavelength for electrons. The measured wavelength agreed well with de Broglie’s equation.

The Davisson-Germer consisted of firing an electron beam from an electron gun on a nickel crystal
at normal incidence i.e. perpendicular to the surface of the crystal. The electron gun consisted of
a heated filament that released thermally excited electrons, which were then accelerated through a
potential difference V , giving them a kinetic energy of eV where e is the charge of an electron. The
angular dependence of the reflected electron intensity was measured, and was determined to have the
same diffraction pattern as those predicted by Bragg for X-rays. An electron detector was placed at an
angle θ = 50◦ and measured the number of electrons that were scattered at that particular angle.

According to the de Broglie relation, a beam of 54 eV had a wavelength of 0.165 nm. This matched
the predictions of Bragg’s law

nλ = 2d sin

(
90◦ − θ

2

)
,
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for n = 1, θ = 50◦, and for the spacing of the crystalline planes of nickel (d = 0.091 nm) obtained from
previous X-ray scattering experiments on crystalline nickel.

This was also replicated by George Thomson. Thomson and Davisson shared the Nobel Prize for
Physics in 1937 for their experimental work. This, in combination with Arthur Compton’s experiment,
established the wave-particle duality hypothesis, which was a fundamental step in quantum theory.

5.2 Properties of Matter-waves

1. Matter-waves are associated with any moving body and their wavelength is given by λ = h
mv

.

2. The wavelength of matter-waves is inversely proportional to the velocity of the body. Hence, a
body at rest has an infinite wavelength whereas the one traveling with a high velocity has a lower
wavelength.

3. Wavelength of matter-waves depends on the mass of the body and decreases with increase in
mass. Because of this, the wave-like behavior of heavier objects is not very evident whereas the
wave nature of subatomic particles can be observed experimentally.

4. Amplitude of the matter-waves at a particular space and time depends on the probability of
finding the particle at that space and time.

5. Unlike other waves, there is no physical quantity that varies periodically in the case of matter-
waves.

6. Matter waves are represented by a wave packet made up of a group of waves of slightly differing
wavelengths. Hence, we talk of group velocity of matter waves rather than the phase velocity.

7. Matter-waves show similar properties as other waves such as interference and diffraction.

6 Phase velocity, group velocity and particle velocity

The phase velocity of a wave is the rate at which the phase of the wave propagates in space. This
is the speed at which the phase of any one frequency component of the wave travels. For such a
component, any given phase of the wave (for example, the crest) will appear to travel at the phase
velocity.
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The phase speed is given in terms of the wavelength λ and period T as

vphase =
λ

T
. (11)

Or, equivalently, in terms of the wave’s angular frequency ω and wavenumber k by

vphase =
ω

k
. (12)

In quantum mechanics, particles also behave as waves with complex phases. By the de Broglie hypoth-
esis, we see that

vphase =
ω

k
=

E/~
p/~

,

vphase =
E

p
. (13)

The phase velocity of electromagnetic radiation may under certain circumstances (e.g. in the case of
anomalous dispersion) exceed the speed of light in a vacuum, but this does not indicate any superluminal
information or energy transfer. It was theoretically described by physicists such as Arnold Sommerfeld
and Leon Brillouin.

The group velocity of a wave is the velocity with which the variations in the shape of the wave’s
amplitude (known as the modulation or envelope of the wave) propagate through space. For example,
imagine what happens if you throw a stone into the middle of a very still pond. When the stone hits
the surface of the water, a circular pattern of waves appears. It soon turns into a circular ring of waves
with a quiescent center. The ever expanding ring of waves is the group, within which one can discern
individual wavelets of differing wavelengths traveling at different speeds. The longer waves travel faster
than the group as a whole, but they die out as they approach the leading edge. The shorter waves
travel slower and they die out as they emerge from the trailing boundary of the group.

Now, we shall arrive at the expression for the group velocity using the concept of superposition of
two almost similar waves.

Let the two waves be given by
y1 = A cos(ωt− kx),

y2 = A cos[(ω + ∆ω)t− (k + ∆k)x].
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When these two waves superimpose, we get

y = y1 + y2,

y = A cos(ωt− kx) + A cos[(ω + ∆ω)t− (k + ∆k)x].

Using the trigonometric relation

cos α + cos β = 2 cos

(
α + β

2

)
cos

(
α− β

2

)
,

we get

y = 2A cos

(
[ωt− kx] + [(ω + ∆ω)t− (k + ∆k)x]

2

)
cos

(
[ωt− kx]− [(ω + ∆ω)t− (k + ∆k)x]

2

)
,

y = 2A cos

(
(2ω + ∆ω)t− (2k + ∆k)x

2

)
cos

(
∆ωt−∆kx

2

)
.

Since ∆ω is too small compared to 2ω, we can write

2ω + ∆ω ≈ 2ω

Now using this in the above equation and rearranging the terms, we end up with

y = 2A cos

(
∆ωt−∆kx

2

)
cos

(
(2ω)t− (2k)x

2

)
.

Further simplifying it, gives us

y = 2A cos

(
∆ωt−∆kx

2

)
cos (ωt− kx).

Identifying 2 cos
(

∆ωt−∆kx
2

)
as the constant amplitude of the superposed wave, we can write

2A cos

(
∆ωt−∆kx

2

)
= constant

i.e., (
∆ωt−∆kx

2

)
= constant

(∆ωt−∆kx) = constant

x =

(
∆ωt

∆k

)
+ constant

Differentiating the above equation with respect to t, we get the group velocity,

vgroup =
dx

dt
=

∆ω

∆k

under the limiting condition, we get

vgroup =
dω

dk
(14)

This is the defining equation of group velocity. In a dispersive medium, the phase velocity varies with
frequency and is not necessarily the same as the group velocity of the wave.
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The particle velocity is the velocity v of a particle in a medium as it transmits a wave. For a
particle of mass m possessing a linear momentum p, the particle velocity is given by

vparticle =
p

m
. (15)

In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave
as with the vibration of a taut string. When applied to a sound wave through a medium of air, particle
velocity would be the physical speed of an air molecule as it moves back and forth in the direction the
sound wave is traveling as it passes. Particle velocity should not be confused with the speed of the wave
as it passes through the medium, i.e. in the case of a sound wave, particle velocity is not the same as
the speed of sound.

6.1 Relation between group velocity and phase velocity

The group velocity of a matter wave is given by

vgroup =
dω

dκ
,

whereas phase velocity is given by

vphase =
ω

κ
.

From the definition of phase velocity, we can write

ω = vphase κ.

Substituting this in the expression for group velocity, we get

vgroup =
d (vphase κ)

dκ
.

Differentiating using the product rule, we get

vgroup = vphase + κ
dvphase

dκ
.

We rewrite this in the following form

vgroup = vphase + κ
dvphase

dλ

dλ

dκ
.

Since

κ =
2π

λ
,

we have
dκ

dλ
=
−2π

λ2
.

Plugging these two equations into the vgroup expression ,we get

vgroup = vphase +

(
2π

λ

)
dvphase

dλ

(
−λ2

2π

)
.

Further simplifying,

vgroup = vphase − λ
dvphase

dλ
. (16)
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6.2 Relation between group velocity and particle velocity

The group velocity of a matter wave is given by

vgroup =
dω

dκ
,

where
ω = 2πν

and

κ =
2π

λ
.

From Planck’s equation E = hν, we can write

ν =
E

h
;

and from de Broglie wavelength, we can write

λ =
h

p
.

Using the above equations, we rewrite the expressions for ω and κ,

ω = 2π
E

h

and
κ = 2π

p

h
.

Now, differentiating the expressions for ω and κ, we get

dω =
2π

h
dE

and

dκ =
2π

h
dp.

Substituting the expressions for dω and dκ into the vgroup equation,

vgroup =
2π
h

dE
2π
h

dp
,

that is

vgroup =
dE

dp
.

Since we are dealing with the matter-waves E can be the kinetic energy of particle in wave motion.
Using the relation

E =
p2

2m
and differtiating it with respect to p, we get

vgroup =
dE

dp
=

d

dp

(
p2

2m

)
=

2p

2m
,

so
vgroup =

p

m
.

Right hand is nothing but the particle velocity vparticle. Therefore

vgroup = vparticle. (17)
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6.3 Relation between phase velocity and particle velocity

The phase velocity of a matter-wave is given by

vphase =
ω

κ
,

where
ω = 2πν

and

κ =
2π

λ
.

From Planck’s equation E = hν, we can write

ν =
E

h
;

and from de Broglie wavelength, we can write

λ =
h

p
.

Using the above equations, we rewrite the expressions for ω and κ,

ω = 2π
E

h

and
κ = 2π

p

h
.

Now, substituting these into the expression for vphase, we get

vphase =
2πE

h

2π p
h

,

that is,

vphase =
E

p
.

From Einstein’s mass-energy equivalence relation, we have

E = mc2

and from the definition of linear momentum of a particle, we have

p = mvparticle.

Using E and p expressions in equation of vphase, we get

vphase =
mc2

mvparticle

,

or

vphase =
c2

vparticle

,

which gives us
vphase · vparticle = c2. (18)

Since vgroup = vparticle, we can also write

vphase · vgroup = c2. (19)
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6.4 Expression for de Broglie wavelength using group velocity

Consider particle moving with kinetic energy mv2/2. This can be associated with energy hν. Therefore

hν =
mv2

2
,

ν =
m

2h
v2.

Differentiating the above expression with respect to λ,

dν

dλ
=

m

2h
2v

dv

dλ
,

or
dν

dλ
=

mv

h

dv

dλ
.

The group velocity of a matter wave is given by

vgroup =
dω

dκ
,

where
ω = 2πν

and

κ =
2π

λ
.

Differentiating ω and κ, we get
dω = 2πdν

and

dκ =
−2π

λ2
dλ.

vgroup =
2πdν
−2π
λ2 dλ

,

vgroup = −λ2 dν

dλ
,

We can express this in the following way

dν

dλ
=
−vgroup

λ2
,

Equating the two expressions for dν
dλ

, we get

mv

h

dv

dλ
=
−vgroup

λ2
.

Simplifying this equation leaves us with
dv

dλ
=
−h

mλ2
.

Rewriting this in the following form

dv = − h

mλ2
dλ

Integrating the above equation ∫
dv = −

∫
h

mλ2
dλ
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we get

v =
h

mλ
+ constant.

To fix the constant we use the condition: as λ →∞, v → 0. This makes constant = 0

v =
h

mλ

That is

λ =
h

mv
(20)

***


