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In this course we will study a selection of important modern statistical methods. This
selection is heavily biased towards my own interests, but I hope it will nevertheless give you
a flavour of some of the most important recent methodological developments in statistics.

Over the last 25 years, the sorts of datasets that statisticians have been challenged to
study have changed greatly. Where in the past, we were used to datasets with many obser-
vations with a few carefully chosen variables, we are now seeing datasets where the number
of variables can run into the thousands and greatly exceed the number of observations. For
example, with microarray data, we typically have gene expression values measured for sev-
eral thousands of genes, but only for a few hundred tissue samples. The classical statistical
methods are often simply not applicable in these “high-dimensional” situations.

The course is divided into 4 chapters (of unequal size). Our first chapter will start by
introducing ridge regression, a simple generalisation of ordinary least squares. Our study
of this will lead us to some beautiful connections with functional analysis and ultimately
one of the most successful and flexible classes of learning algorithms: kernel machines.

The second chapter concerns the Lasso and its extensions. The Lasso has been at the
centre of much of the developments that have occurred in high-dimensional statistics, and
will allow us to perform regression in the seemingly hopeless situation when the number
of parameters we are trying to estimate is larger than the number of observations.

In the third chapter we will study graphical modelling and provide an introduction to
the exciting field of causal inference. Where the previous chapters consider methods for
relating a particular response to a large collection of (explanatory) variables, graphical
modelling will give us a way of understanding relationships between the variables them-
selves. Ultimately we would like to infer causal relationships between variables based on
(observational) data. This may seem like a fundamentally impossible task, yet we will show
how by developing the graphical modelling framework further, we can begin to answer such
causal questions.

Statistics is not only about developing methods that can predict well in the presence
of noise, but also about assessing the uncertainty in our predictions and estimates. In
the final chapter we will tackle the problem of how to handle performing thousands of
hypothesis tests at the same time and more generally the task of quantifying uncertainty
in high-dimensional settings.

Before we begin the course proper, we will briefly review two key classical statistical
methods: ordinary least squares and maximum likelihood estimation. This will help to set
the scene and provide a warm-up for the modern methods to come later.
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Classical statistics

Ordinary least squares

Imagine data are available in the form of observations (Yi, xi) ∈ R× Rp, i = 1, . . . , n, and
the aim is to infer a simple regression function relating the average value of a response, Yi,
and a collection of predictors or variables, xi. This is an example of regression analysis,
one of the most important tasks in statistics.

A linear model for the data assumes that it is generated according to

Y = Xβ0 + ε, (0.0.1)

where Y ∈ Rn is the vector of responses; X ∈ Rn×p is the predictor matrix (or design
matrix) with ith row xTi ; ε ∈ Rn represents random error; and β0 ∈ Rp is the unknown
vector of coefficients.

Provided p� n, a sensible way to estimate β is by ordinary least squares (OLS). This
yields an estimator β̂OLS with

β̂OLS := arg min
β∈Rp

‖Y −Xβ‖2
2 = (XTX)−1XTY, (0.0.2)

provided X has full column rank.
Under the assumptions that (i) E(εi) = 0 and (ii) Var(ε) = σ2I, we have that:

• Eβ0,σ2(β̂OLS) = E{(XTX)−1XT (Xβ0 + ε)} = β0.

• Varβ0,σ2(β̂OLS) = (XTX)−1XTVar(ε)X(XTX)−1 = σ2(XTX)−1.

The Gauss–Markov theorem states that OLS is the best linear unbiased estimator in
our setting: for any other estimator β̃ that is linear in Y (so β̃ = AY for some fixed matrix
A), we have

Varβ0,σ2(β̃)− Varβ0,σ2(β̂OLS)

is positive semi-definite.

Maximum likelihood estimation

The method of least squares is just one way to construct as estimator. A more general
technique is that of maximum likelihood estimation. Here given data y ∈ Rn that we take
as a realisation of a random variable Y , we specify its density f(y; θ) up to some unknown
vector of parameters θ ∈ Θ ⊆ Rd, where Θ is the parameter space. The likelihood function
is a function of θ for each fixed y given by

L(θ) := L(θ; y) = c(y)f(y; θ),

where c(y) is an arbitrary constant of proportionality. The maximum likelihood estimate
of θ maximises the likelihood, or equivalently it maximises the log-likelihood

`(θ) := `(θ; y) = log f(y; θ) + log(c(y)).
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A very useful quantity in the context of maximum likelihood estimation is the Fisher
information matrix with jkth (1 ≤ j, k ≤ d) entry

ijk(θ) := −Eθ
{

∂2

∂θj∂θk
`(θ)

}
.

It can be thought of as a measure of how hard it is to estimate θ when it is the true
parameter value. The Cramér–Rao lower bound states that if θ̃ is an unbiased estimator
of θ, then under regularity conditions,

Varθ(θ̃)− i−1(θ)

is positive semi-definite.
A remarkable fact about maximum likelihood estimators (MLEs) is that (under quite

general conditions) they are asymptotically normally distributed, asymptotically unbiased
and asymptotically achieve the Cramér–Rao lower bound.

Assume that the Fisher information matrix when there are n observations, i(n)(θ) (where
we have made the dependence on n explicit) satisfies i(n)(θ)/n → I(θ) for some positive
definite matrix I. Then denoting the maximum likelihood estimator of θ when there are
n observations by θ̂(n), under regularity conditions, as the number of observations n→∞
we have √

n(θ̂(n) − θ) d→ Nd(0, I
−1(θ)).

Returning to our linear model, if we assume in addition that εi ∼ N(0, σ2), then the
log-likelihood for (β, σ2) is

`(β, σ2) = −n
2

log(σ2)− 1

2σ2

n∑
i=1

(yi − xTi β)2.

We see that the maximum likelihood estimate of β and OLS coincide. It is easy to check
that

i(β, σ2) =

(
σ−2XTX 0

0 nσ−4/2

)
.

The general theory for MLEs would suggest that approximately
√
n(β̂−β) ∼ Np(0, nσ

2(XTX)−1);
in fact it is straight-forward to show that this distributional result is exact.
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Chapter 1

Kernel machines

Let us revisit the linear model with

Yi = xTi β
0 + εi.

For unbiased estimators of β0, their variance gives a way of comparing their quality in
terms of squared error loss. For a potentially biased estimator, β̃, the relevant quantity is

Eβ0,σ2{(β̃ − β0)(β̃ − β0)T} = E[{β̃ − E(β̃) + E(β̃)− β0}{β̃ − E(β̃) + E(β̃)− β0}T ]

= Var(β̃) + {E(β̃ − β0)}{E(β̃ − β0)}T ,

a sum of squared bias and variance terms. A crucial part of the optimality arguments
for OLS and MLEs was unbiasedness. Do there exist biased methods whose variance is
is reduced compared to OLS such that their overall prediction error is lower? Yes!—in
fact the use of biased estimators is essential in dealing with settings where the number of
parameters to be estimated is large compared to the number of observations. In the first
two chapters we’ll explore two important methods for variance reduction based on different
forms of penalisation: rather than forming estimators via optimising a least squares or log-
likelihood term, we will introduce an additional penalty term that encourages estimates
to be shrunk towards 0 in some sense. This will allow us to produce reliable estimators
that work well when classical MLEs are infeasible, and in other situations can greatly
out-perform the classical approaches.

1.1 Ridge regression

One way to reduce the variance of β̂OLS is to shrink the estimated coefficients towards 0.
Ridge regression [Hoerl and Kennard, 1970] does this by solving the following optimisation
problem

(µ̂R
λ , β̂

R
λ ) = arg min

(µ,β)∈R×Rp
{‖Y − µ1−Xβ‖2

2 + λ‖β‖2
2}.

Here 1 is an n-vector of 1’s. We see that the usual OLS objective is penalised by an
additional term proportional to ‖β‖2

2. The parameter λ ≥ 0, which controls the severity of
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the penalty and therefore the degree of the shrinkage towards 0, is known as a regularisation
parameter or tuning parameter. We have explicitly included an intercept term which is not
penalised. The reason for this is that were the variables to have their origins shifted so
e.g. a variable representing temperature is given in units of Kelvin rather than Celsius, the
fitted values would not change. However, Xβ̂ is not invariant under scale transformations
of the variables so it is standard practice to centre each column of X (hence making them
orthogonal to the intercept term) and then scale them to have `2-norm

√
n.

It is straightforward to show that after this standardisation of X, µ̂R
λ = Ȳ :=

∑n
i=1 Yi/n,

so we may assume that
∑n

i=1 Yi = 0 by replacing Yi by Yi − Ȳ and then we can remove µ
from our objective function. In this case

β̂R
λ = (XTX + λI)−1XTY.

In this form, we can see how the addition of the λI term helps to stabilise the estimator.
Note that when X does not have full column rank (such as in high-dimensional situations),
we can still compute this estimator. On the other hand, when X does have full column
rank, we have the following theorem.

Theorem 1. For λ sufficiently small (depending on β0 and σ2),

E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂R
λ − β0)(β̂R

λ − β0)T

is positive definite.

Proof. First we compute the bias of β̂R
λ . We drop the subscript λ and superscript R for

convenience.

E(β̂)− β0 = (XTX + λI)−1XTXβ0 − β0

= (XTX + λI)−1(XTX + λI − λI)β0 − β0

= −λ(XTX + λI)−1β0.

Now we look at the variance of β̂.

Var(β̂) = E{(XTX + λI)−1XT ε}{(XTX + λI)−1XT ε}T

= σ2(XTX + λI)−1XTX(XTX + λI)−1.

Thus E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂ − β0)(β̂ − β0)T is equal to

σ2(XTX)−1 − σ2(XTX + λI)−1XTX(XTX + λI)−1 − λ2(XTX + λI)−1β0β0T (XTX + λI)−1.

After some simplification, we see that this is equal to

λ(XTX + λI)−1[σ2{2I + λ(XTX)−1} − λβ0β0T ](XTX + λI)−1.

Thus E(β̂OLS − β0)(β̂OLS − β0)T − E(β̂ − β0)(β̂ − β0)T is positive definite for λ > 0 if and
only if

σ2{2I + λ(XTX)−1} − λβ0β0T

is positive definite, which is true for λ > 0 sufficiently small (we can take 0 < λ <
2σ2/‖β0‖2

2).
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The theorem says that β̂R
λ outperforms β̂OLS provided λ is chosen appropriately. To

be able to use ridge regression effectively, we need a way of selecting a good λ—we will
come to this very shortly. What the theorem doesn’t really tell us is in what situations
we expect ridge regression to perform well. To understand that, we will turn to one of the
key matrix decompositions used in statistics, the singular value decomposition (SVD).

1.1.1 The singular value decomposition and principal compo-
nents analysis

The singular value decomposition (SVD) is a generalisation of an eigendecomposition of a
square matrix. We can factorise any X ∈ Rn×p into its SVD

X = UDV T .

Here the U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices and D ∈ Rn×p has D11 ≥ D22 ≥
· · · ≥ Dmm ≥ 0 where m := min(n, p) and all other entries of D are zero. To compute
such a decomposition requires O(npmin(n, p)) operations. The rth columns of U and V
are known as the rth left and right singular vectors of X respectively, and Drr is the rth
singular value.

When n > p, we can replace U by its first p columns and D by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDV T where
U ∈ Rn×p has orthonormal columns (but is no longer square) and D is square and diagonal.
There is an equivalent version for when p > n.

Let us take X ∈ Rn×p as our matrix of predictors and suppose n ≥ p. Using the (thin)
SVD we may write the fitted values from ridge regression as follows.

Xβ̂R
λ = X(XTX + λI)−1XTY

= UDV T (V D2V T + λI)−1V DUTY

= UD(D2 + λI)−1DUTY

=

p∑
j=1

Uj
D2
jj

D2
jj + λ

UT
j Y.

Here we have used the notation (that we shall use throughout the course) that Uj is the
jth column of U . For comparison, the fitted values from OLS (when X has full column
rank) are

Xβ̂OLS = X(XTX)−1XTY = UUTY.

Both OLS and ridge regression compute the coordinates of Y with respect to the columns
of U . Ridge regression then shrinks these coordinates by the factors D2

jj/(D
2
jj + λ); if Djj

is small, the amount of shrinkage will be larger.
To interpret this further, note that the SVD is intimately connected with Principal

Components Analysis (PCA). Consider v ∈ Rp with ‖v‖2 = 1. Since the columns of X
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have had their means subtracted, the sample variance of Xv ∈ Rn, is

1

n
vTXTXv =

1

n
vTV D2V Tv.

Writing a = V Tv, so ‖a‖2 = 1, we have

1

n
vTV D2V Tv =

1

n
aTD2a =

1

n

∑
j

a2
jD

2
jj ≤

1

n
D11

∑
j

a2
j =

1

n
D2

11.

As ‖XV1‖2
2/n = D2

11/n, V1 determines the linear combination of the columns of X which
has the largest sample variance, when the coefficients of the linear combination are con-
strained to have `2-norm 1. XV1 = D11U1 is known as the first principal component of
X. Subsequent principal components D22U2, . . . , DppUp have maximum variance D2

jj/n,
subject to being orthogonal to all earlier ones—see example sheet 1 for details.

Returning to ridge regression, we see that it shrinks Y most in the smaller principal
components of X. Thus it will work well when most of the signal is in the large principal
components of X. We now turn to the problem of choosing λ.

1.2 v-fold cross-validation

Cross-validation is a general technique for selecting a good regression method from among
several competing regression methods. We illustrate the principle with ridge regression,
where we have a family of regression methods given by different λ values.

So far, we have considered the matrix of predictors X as fixed and non-random. How-
ever, in many cases, it makes sense to think of it as random. Let us assume that our data
are i.i.d. pairs (xi, Yi), i = 1, . . . , n. Then ideally, we might want to pick a λ value such
that

E{(Y ∗ − x∗T β̂R
λ (X, Y ))2|X, Y } (1.2.1)

is minimised. Here (x∗, Y ∗) ∈ Rp×R is independent of (X, Y ) and has the same distribution
as (x1, Y1), and we have made the dependence of β̂R

λ on the training data (X, Y ) explicit.
This λ is such that conditional on the original training data, it minimises the expected
prediction error on a new observation drawn from the same distribution as the training
data.

A less ambitious goal is to find a λ value to minimise the expected prediction error,

E[E{(Y ∗ − x∗T β̂R
λ (X, Y ))2|X, Y }] (1.2.2)

where compared with (1.2.1), we have taken a further expectation over the training set.
We still have no way of computing (1.2.2) directly, but we can attempt to estimate it.

The idea of v-fold cross-validation is to split the data into v groups or folds of roughly equal
size: (X(1), Y (1)), . . . , (X(v), Y (v)). Let (X(−k), Y (−k)) be all the data except that in the kth
fold. For each λ on a grid of values, we compute β̂R

λ (X(−k), Y (−k)): the ridge regression
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estimate based on all the data except the kth fold. Writing κ(i) for the fold to which
(xi, Yi) belongs, we choose the value of λ that minimises

CV(λ) =
1

n

n∑
i=1

{Yi − xTi β̂R
λ (X(−κ(i)), Y (−κ(i)))}2. (1.2.3)

Writing λCV for the minimiser, our final estimate of β0 can then be β̂RλCV
(X, Y ).

Note that for each i,

E{Yi − xTi β̂R
λ (X(−κ(i)), Y (−κ(i)))}2 = E[E{Yi − xTi β̂R

λ (X(−κ(i)), Y (−κ(i)))}2|X(−κ(i)), Y (−κ(i))].
(1.2.4)

This is precisely the expected prediction error in (1.2.2) but with the training data X, Y
replaced with a training data set of smaller size. If all the folds have the same size, then
CV(λ) is an average of n identically distributed quantities, each with expected value as
in (1.2.4). However, the quantities being averaged are not independent as they share the
same data.

Thus cross-validation gives a biased estimate of the expected prediction error. The
amount of the bias depends on the size of the folds, the case when the v = n giving the
least bias—this is known as leave-one-out cross-validation. The quality of the estimate,
though, may be worse as the quantities being averaged in (1.2.3) will be highly positively
correlated. Typical choices of v are 5 or 10.

Cross-validation aims to allow us to choose the single best λ (or more generally regres-
sion procedure); we could instead aim to find the best weighted combination of regression
procedures. Returning to our ridge regression example, suppose λ is restricted to a grid of
values λ1 > λ2 > · · · > λL. We can then minimise

1

n

n∑
i=1

{
Yi −

L∑
l=1

wlx
T
i β̂

R
λl

(X(−κ(i)), Y (−κ(i)))

}2

over w ∈ RL subject to wl ≥ 0 for all l. This is a non-negative least-squares optimisation,
for which efficient algorithms are available. This is known as stacking [Wolpert, 1992,
Breiman, 1996] and it can often outperform cross-validation.

1.3 The kernel trick

The fitted values from ridge regression are

X(XTX + λI)−1XTY. (1.3.1)

An alternative way of writing this is suggested by the following

XT (XXT + λI) = (XTX + λI)XT

(XTX + λI)−1XT = XT (XXT + λI)−1

X(XTX + λI)−1XTY = XXT (XXT + λI)−1Y. (1.3.2)

Two remarks are in order:
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• Note while XTX is p × p, XXT is n × n. Computing fitted values using (1.3.1)
would require roughly O(np2 + p3) operations. If p � n this could be extremely
costly. However, our alternative formulation would only require roughly O(n2p+n3)
operations, which could be substantially smaller.

• We see that the fitted values of ridge regression depend only on inner products
K = XXT between observations (note Kij = xTi xj).

Now suppose that we believe the signal depends quadratically on the predictors:

Yi = xTi β +
∑
k,l

xikxilθkl + εi.

We can still use ridge regression provided we work with an enlarged set of predictors

xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip.

This will give us O(p2) predictors. Our new approach to computing fitted values would
therefore have complexity O(n2p2 + n3), which could be rather costly if p is large.

However, rather than first creating all the additional predictors and then computing
the new K matrix, we can attempt to directly compute K. To this end consider

(1 + xTi xj)
2 =

(
1 +

∑
k

xikxjk

)2

= 1 + 2
∑
k

xikxjk +
∑
k,l

xikxilxjkxjl.

Observe this amounts to an inner product between vectors of the form

(1,
√

2xi1, . . . ,
√

2xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip)
T . (1.3.3)

Thus if we set
Kij = (1 + xTi xj)

2 (1.3.4)

and plug this into the formula for the fitted values, it is exactly as if we had performed
ridge regression on an enlarged set of variables given by (1.3.3). Now computing K using
(1.3.4) would require only p operations per entry, so O(n2p) operations in total. It thus
seems we have improved things by a factor of p using our new approach. This is a nice
computational trick, but more importantly for us it serves to illustrate some general points.

• Since ridge regression only depends on inner products between observations, rather
than fitting non-linear models by first mapping the original data xi ∈ Rp to φ(xi) ∈ Rd

(say) using some feature map φ (which could, for example introduce quadratic effects),
we can instead try to directly compute k(xi, xj) = 〈φ(xi), φ(xj)〉.

• In fact rather than thinking in terms of feature maps, we can instead try to think
about an appropriate measure of similarity k(xi, xj) between observations. Modelling
in this fashion is sometimes much easier.

We will now formalise and extend what we have learnt with this example.
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1.4 Kernels

We have seen how a model with quadratic effects can be fitted very efficiently by replacing
the inner product matrix (known as the Gram matrix ) XXT in (1.3.2) with the matrix
in (1.3.4). It is then natural to ask what other non-linear models can be fitted efficiently
using this sort of approach.

We won’t answer this question directly, but instead we will try to understand the sorts
of similarity measures k that can be represented as inner products between transformations
of the original data.

That is, we will study the similarity measures k : X × X → R from the input space X
to R for which there exists a feature map φ : X → H where H is some (real) inner product
space with

k(x, x′) = 〈φ(x), φ(x′)〉. (1.4.1)

Recall that an inner product space is a real vector space H endowed with a map 〈·, ·〉 :
H×H → R that obeys the following properties.

(i) Symmetry: 〈u, v〉 = 〈v, u〉.

(ii) Linearity: for a, b ∈ R 〈au+ bw, v〉 = a〈u, v〉+ b〈w, v〉.

(iii) Positive-definiteness: 〈u, u〉 ≥ 0 with equality if and only if u = 0.

Definition 1. A positive definite kernel or more simply a kernel (for brevity) k is a
symmetric map k : X ×X → R for which for all n ∈ N and all x1, . . . , xn ∈ X , the matrix
K with entries

Kij = k(xi, xj)

is positive semi-definite.

A kernel is a little like an inner product, but need not be bilinear in general. However,
a form of the Cauchy–Schwarz inequality does hold for kernels.

Proposition 2.
k(x, x′)2 ≤ k(x, x)k(x′, x′).

Proof. The matrix (
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

)
must be positive semi-definite so in particular its determinant must be non-negative.

First we show that any inner product of feature maps will give rise to a kernel.

Proposition 3. k defined by k(x, x′) = 〈φ(x), φ(x′)〉 is a kernel.
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Proof. Let x1, . . . , xn ∈ X , α1, . . . , αn ∈ R and consider∑
i,j

αik(xi, xj)αj =
∑
i,j

αi〈φ(xi), φ(xj)〉αj

=

〈∑
i

αiφ(xi),
∑
j

αjφ(xj)

〉
≥ 0.

Showing that every kernel admits a representation of the form (1.4.1) is slightly more
involved, and we delay this until after we have studied some examples.

1.4.1 Examples of kernels

Proposition 4. Suppose k1, k2, . . . are kernels.

(i) If α1, α2 ≥ 0 then α1k1 + α2k2 is a kernel. If limm→∞ km(x, x′) =: k(x, x′) exists for
all x, x′ ∈ X , then k is a kernel.

(ii) The pointwise product k = k1k2 is a kernel.

Linear kernel. k(x, x′) = xTx′.

Polynomial kernel. k(x, x′) = (1 +xTx′)d. To show this is a kernel, we can simply note
that 1 + xTx′ gives a kernel owing to the fact that 1 is a kernel and (i) of Proposition 4.
Next (ii) and induction shows that k as defined above is a kernel.

Gaussian kernel. The highly popular Gaussian kernel is defined by

k(x, x′) = exp

(
− ‖x− x

′‖2
2

2σ2

)
.

For x close to x′ it is large whilst for x far from x′ the kernel quickly decays towards 0.
The additional parameter σ2 known as the bandwidth controls the speed of the decay to
zero. Note it is less clear how one might find a corresponding feature map and indeed any
feature map that represents this must be infinite dimensional.

To show that it is a kernel first decompose ‖x−x′‖2
2 = ‖x‖2

2 + ‖x′‖2
2− 2xTx′. Note that

by Proposition 3,

k1(x, x′) = exp

(
− ‖x‖

2
2

2σ2

)
exp

(
− ‖x

′‖2
2

2σ2

)
is a kernel. Next writing

k2(x, x′) = exp(xTx′/σ2) =
∞∑
r=0

(xTx′/σ2)r

r!

and using (i) of Proposition 4 shows that k2 is a kernel. Finally observing that k = k1k2

and using (ii) shows that the Gaussian kernel is indeed a kernel.
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Sobolev kernel. Take X to be [0, 1] and let k(x, x′) = min(x, x′). Note this is the
covariance function of Brownian motion so it must be positive definite.

Jaccard similarity kernel. Take X to be the set of all subsets of {1, . . . , p}. For
x, x′ ∈ X with x ∪ x′ 6= ∅ define

k(x, x′) =
|x ∩ x′|
|x ∪ x′|

and if x ∪ x′ = ∅ then set k(x, x′) = 1. Showing that this is a kernel is left to the example
sheet.

1.4.2 Reproducing kernel Hilbert spaces

Theorem 5. For every kernel k there exists a feature map φ taking values in some inner
product space H such that

k(x, x′) = 〈φ(x), φ(x′)〉. (1.4.2)

Proof. We will take H to be the vector space of functions of the form

f(·) =
n∑
i=1

αik(·, xi), (1.4.3)

where n ∈ N, xi ∈ X and αi ∈ R. Our feature map φ : X → H will be

φ(x) = k(·, x). (1.4.4)

We now define an inner product on H. If f is given by (1.4.3) and

g(·) =
m∑
j=1

βjk(·, x′j) (1.4.5)

we define their inner product to be

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j). (1.4.6)

We need to check this is well-defined as the representations of f and g in (1.4.3) and
(1.4.5) need not be unique. To this end, note that

n∑
i=1

m∑
j=1

αiβjk(xi, x
′
j) =

n∑
i=1

αig(xi) =
m∑
j=1

βjf(x′j). (1.4.7)

The first equality shows that the inner product does not depend on the particular expansion
of g whilst the second equality shows that it also does not depend on the expansion of f .
Thus the inner product is well-defined.
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First we check that with φ defined as in (1.4.4) we do have relationship (1.4.2). Observe
that

〈k(·, x), f〉 =
n∑
i=1

αik(xi, x) = f(x), (1.4.8)

so in particular we have

〈φ(x), φ(x′)〉 = 〈k(·, x), k(·, x′)〉 = k(x, x′).

It remains to show that it is indeed an inner product. It is clearly symmetric and (1.4.7)
shows linearity. We now need to show positive definiteness.

First note that
〈f, f〉 =

∑
i,j

αik(xi, xj)αj ≥ 0 (1.4.9)

by positive definiteness of the kernel. Now from (1.4.8),

f(x)2 = (〈k(·, x), f〉)2.

If we could use the Cauchy–Schwarz inequality on the right-hand side, we would have

f(x)2 ≤ 〈k(·, x), k(·, x)〉〈f, f〉, (1.4.10)

which would show that if 〈f, f〉 = 0 then necessarily f = 0; the final property we need
to show that 〈·, ·〉 is an inner product. However, in order to use the traditional Cauchy–
Schwarz inequality we need to first know we’re dealing with an inner product, which is
precisely what we’re trying to show!

Although we haven’t shown that 〈·, ·〉 is an inner product, we do have enough infor-
mation to show that it is itself a kernel. We may then appeal to Proposition 2 to obtain
(1.4.10). With this in mind, we argue as follows. Given functions f1, . . . , fm and coefficients
γ1, . . . , γm ∈ R, we have∑

i,j

γi〈fi, fj〉γj =

〈∑
i

γifi,
∑
j

γjfj

〉
≥ 0

where we have used linearity and (1.4.9), showing that it is a kernel.

To further discuss the space H we recall some facts from analysis. Any inner product
space B is also a normed space: for f ∈ B we may define ‖f‖2

B := 〈f, f〉B. Recall that a
Cauchy sequence (fm)∞m=1 in B has ‖fm − fn‖B → 0 as n,m→∞. A normed space where
every Cauchy sequence has a limit (in the space) is called complete, and a complete inner
product space is called a Hilbert space.

Hilbert spaces may be thought of as the (potentially) infinite-dimensional analogues of
finite-dimensional Euclidean spaces. For later use we note that if V is a closed subspace
of a Hilbert space B, then any f ∈ B has a decomposition f = u+ v with u ∈ V and

v ∈ V ⊥ := {v ∈ B : 〈v, u〉B = 0 for all u ∈ V }.
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By adding the limits of Cauchy sequences to H (from Theorem 5) we can make H a
Hilbert space. Indeed, note that if (fm)∞m=1 ∈ H is Cauchy then since by (1.4.10) we have

|fm(x)− fn(x)| ≤
√
k(x, x)‖fm − fn‖H,

we may define function f ∗ : X → R by f ∗(x) = limm→∞ fm(x). We can check that all such
f ∗ can be added to H to create a Hilbert space.

In fact, the completion of H is a special type of Hilbert space known as a reproducing
kernel Hilbert space (RKHS).

Definition 2. A Hilbert space B of functions f : X → R is a reproducing kernel Hilbert
space (RKHS) if for all x ∈ X , there exists kx ∈ B such that

f(x) = 〈kx, f〉 for all f ∈ B.

The function

k : X × X → R
(x, x′) 7→ 〈kx, kx′〉 = kx′(x)

is known as the reproducing kernel of B.

By Proposition 3 the reproducing kernel of any RKHS is a (positive definite) kernel, and
Theorem 5 shows that to any kernel k is associated a (unique) RKHS that has reproducing
kernel k.

Examples

Linear kernel. Here H = {f : f(x) = βTx, β ∈ Rp} and if f(x) = βTx then ‖f‖2
H =

‖β‖2
2.

Sobolev kernel. It can be shown that H is roughly the space of continuous functions
f : [0, 1] → R with f(0) = 0 that are differentiable almost everywhere, and for which∫ 1

0
f ′(x)2dx < ∞. It contains the class of Lipschitz functions (functions f : [0, 1] → R for

which there exists some L with |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [0, 1]) that are 0 at
the origin. The norm is (∫ 1

0

f ′(x)2dx

)1/2

.

Though the construction of the RKHS from a kernel is explicit, it can be challenging to
understand precisely the space and the form of the norm.
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1.4.3 The representer theorem

To recap, what we have shown so far is that replacing the matrix XXT in the definition of
an algorithm byK derived form a positive definite kernel is essentially equivalent to running
the same algorithm on some mapping of the original data, though with the modification
that instances of xTi xj become 〈φ(xi), φ(xj)〉.

But what exactly is the optimisation problem we are solving when performing kernel
ridge regression? Clearly it is determined by the kernel or equivalently by the RKHS. Note
we know that an alternative way of writing the usual ridge regression optimisation is

arg min
f∈H

{ n∑
i=1

{Yi − f(xi)}2 + λ‖f‖2
H

}
(1.4.11)

where H is the RKHS corresponding to the linear kernel. The following theorem shows in
particular that kernel ridge regression (i.e. ridge regression replacing XXT with K) with
kernel k is equivalent to the above with H now being the RKHS corresponding to k.

Theorem 6 (Representer theorem, [Kimeldorf and Wahba, 1970, Schölkopf et al., 2001]).
Let c : Rn ×X n ×Rn → R be an arbitrary loss function, and let J : [0,∞)→ R be strictly
increasing. Let x1, . . . , xn ∈ X , Y ∈ Rn. Finally, let f ∈ H where H is an RKHS with
reproducing kernel k, and let Kij = k(xi, xj) i, j = 1, . . . , n. Then f̂ minimises

Q1(f) := c(Y, x1, . . . , xn, f(x1), . . . , f(xn)) + J(‖f‖2
H)

over f ∈ H iff. f̂(·) =
∑n

i=1 α̂ik(·, xi) and α̂ ∈ Rn minimises Q2 over α ∈ Rn where

Q2(α) = c(Y, x1, . . . , xn, Kα) + J(αTKα).

Proof. Suppose f̂ minimisesQ1. We may write f̂ = u+v where u ∈ V := span{k(·, x1), . . . , k(·, xn)}
and v ∈ V ⊥. Then

f̂(xi) = 〈k(·, xi), u+ v〉 = 〈k(·, xi), u〉 = u(xi).

Meanwhile, by Pythagoras’ theorem we have J(‖f̂‖2
H) = J(‖u‖2

H + ‖v‖2
H) ≥ J(‖u‖2

H) with

equality iff. v = 0. Thus by optimality of f̂ , v = 0, so f̂(·) =
∑n

i=1 αik(·, xi) for α ∈ Rn.

Now observe that if f̂ takes this form, then ‖f̂‖2
H = αTKα, so Q1(f̂) = Q2(α). Then by

optimality of f̂ , we have that α must minimise Q2.
Now suppose α̂ minimises Q2 and f̂(·) =

∑n
i=1 α̂ik(·, xi). Note that Q1(f̂) = Q2(α̂).

If f̃ ∈ H has Q1(f̃) ≤ Q1(f̂), by the argument above, writing f̃ = u + v with u ∈ V ,
v ∈ V ⊥, we know that Q1(u) ≤ Q1(f̃). But by optimality of α̂ we have Q1(f̂) ≤ Q1(u), so
Q1(f̂) = Q1(f̃).

Consider the result specialised the ridge regression objective. We see that (1.4.11) is
essentially equivalent to minimising

‖Y −Kα‖2
2 + λαTKα,
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and you may check (see example sheet 1) that the minimiser α̂ satisfies Kα̂ = K(K +
λI)−1Y . Thus (1.4.11) is indeed an alternative way of expressing kernel ridge regression.

Viewing the result in the opposite direction gives a more “sensational” perspective. If
you had set out trying to minimise Q1, it might appear completely hopeless as H could be
infinite-dimensional. However, somewhat remarkably we see that this reduces to finding
the coefficients α̂i which solve the simple(r) optimisation problem Q2.

The result also tells us how to form predictions: given a new observation x, our predic-
tion for f(x) is

f̂(x) =
n∑
i=1

α̂ik(x, xi).

1.5 Kernel ridge regression

We have seen how the kernel trick allows us to solve a potentially infinite-dimensional
version of ridge regression. This may seem impressive, but ultimately we should judge
kernel ridge regression on its statistical properties e.g. predictive performance. Consider a
setting where

Yi = f 0(xi) + εi, E(ε) = 0, Var(ε) = σ2I.

We shall assume that f 0 ∈ H where H is an RKHS with reproducing kernel k. By scaling
σ2, we may assume ‖f 0‖H ≤ 1. Let K be the kernel matrix Kij = k(xi, xj) with eigenvalues
d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. We will see that the predictive performance depends delicately
on these eigenvalues.

Let f̂λ be the estimated regression function from kernel ridge regression with kernel k:

f̂λ = arg min
f∈H

{ n∑
i=1

{Yi − f(xi)}2 + λ‖f‖2
H

}
.

Theorem 7. The mean squared prediction error (MSPE) may be bounded above in the
following way:

1

n
E
{ n∑

i=1

{f 0(xi)− f̂λ(xi)}2

}
≤ σ2

n

n∑
i=1

d2
i

(di + λ)2
+

λ

4n
(1.5.1)

≤ σ2

n

1

λ

n∑
i=1

min(di/4, λ) +
λ

4n
.

Proof. We know from the representer theorem that(
f̂λ(x1), . . . , f̂λ(xn)

)T
= K(K + λI)−1Y.

You will show on the example sheet that(
f 0(x1), . . . , f 0(xn)

)T
= Kα,
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for some α ∈ Rn, and moreover that ‖f 0‖2
H ≥ αTKα. Let the eigendecomposition of K be

given by K = UDUT with Dii = di and define θ = UTKα. We see that n times the LHS
of (1.5.1) is

E‖K(K + λI)−1(Uθ + ε)− Uθ‖2
2 = E‖DUT (UDUT + λI)−1(Uθ + ε)− θ‖2

2

= E‖D(D + λI)−1(θ + UT ε)− θ‖2
2

= ‖{D(D + λI)−1 − I}θ‖2
2 + E‖D(D + λI)−1UT ε‖2

2.

To compute the second term, we use the ‘trace trick’:

E‖D(D + λI)−1UT ε‖2
2 = E[{D(D + λI)−1UT ε}TD(D + λI)−1UT ε]

= E[tr{D(D + λI)−1UT εεTUD(D + λI)−1}]
= σ2tr{D(D + λI)−1D(D + λI)−1}

= σ2

n∑
i=1

d2
i

(di + λ)2
.

For the first term, we have

‖{D(D + λI)−1 − I}θ‖2
2 =

n∑
i=1

λ2θ2
i

(di + λ)2
.

Now as θ = DUTα note that θi = 0 when di = 0. Let D+ be the diagonal matrix with ith
diagonal entry equal to D−1

ii if Dii > 0 and 0 otherwise. Then∑
i:di>0

θ2
i

di
= ‖
√
D+θ‖2

2 = αTKUD+UTKα = αTUDD+DUTα = αTKα ≤ 1.

By Hölder’s inequality we have

n∑
i=1

θ2
i

di

diλ
2

(di + λ)2
≤ max

i=1,...,n

diλ
2

(di + λ)2
≤ λ/4,

using the inequality (a+ b)2 ≥ 4ab in the final line. Finally note that

d2
i

(di + λ)2
≤ min{1, d2

i /(4diλ)} = min(λ, di/4)/λ.

To interpret this result further, it will be helpful to express it in terms of µ̂i := di/n
(the eigenvalues of K/n) and λn := λ/n. We have

1

n
E
{ n∑

i=1

{f 0(xi)− f̂λ(xi)}2

}
≤ σ2

λn

1

n

n∑
i=1

min(µ̂i/4, λn) + λn/4 =: δn(λn). (1.5.2)
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Here we have treated the xi as fixed, but we could equally well think of them as
random. Consider a setup where the xi are i.i.d. and independent of ε. If we take a
further expectation on the RHS of (1.5.2), our result still holds true (the µ̂i are random in
this setting). Ideally we would like to then replace Emin(µ̂i/4, λn) with a quantity more
directly related to the kernel k.

Mercer’s theorem is helpful in this regard. This guarantees (under some mild conditions)
an eigendecomposition for kernels, which are somewhat like infinite-dimensional analogues
of symmetric positive semi-definite matrices. Under certain technical conditions, we may
write

k(x, x′) =
∞∑
j=1

µjej(x)ej(x
′)

where given some density p(x) on X , the eigenfunctions ej and corresponding eigenvalues
µj obey the integral equation

µjej(x
′) =

∫
X
k(x, x′)ej(x)p(x)dx,

and the ej form an orthonormal basis of H in the sense that∫
X
ei(x)ej(x)p(x)dx = 1{i=j}.

One can further show that (ignoring a multiplicative constant)

E
(

1

n

n∑
i=1

min(µ̂i/4, λn)

)
≤ 1

n

∞∑
i=1

min(µi/4, λn).

When k is the Sobolev kernel and p(x) is the uniform density on [0, 1], we find the eigen-
values satisfy

µj/4 =
1

π2(2j − 1)2
.

Thus

∞∑
i=1

min(µi/4, λn) ≤ λn
2

(
1√
π2λn

+ 1

)
+

1

π2

∫ ∞
{(π2λn)−1/2+1}/2

1

(2x− 1)2
dx

=
√
λn/π + λn/2 = O(

√
λn)

as λn → 0. Putting things together, we see that

E(δn(λn)) = O

(
σ2

nλ
1/2
n

+ λn

)
.

Thus an optimal λn ∼ (σ2/n)2/3 gives an error rate of order (σ2/n)2/3.
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In fact, one can show that this is the best error rate one can achieve with any estimator
in this problem. More generally Yang et al. [2015] shows that for essentially any RKHS H
we have

inf
f̂

sup
f0:‖f0‖H≤1

E
{

1

n

n∑
i=1

{f 0(xi)− f̂(xi)}2

}
≥ c inf

λn
δn(λn)

where c > 0 is a constant and f̂ is allowed to range over all (measurable) functions of
the data Y,X. The conclusion is that kernel ridge regression is the optimal regression
procedure up to a constant factor in terms of MSPE when the true signal f 0 is from an
RKHS.

1.6 Other kernel machines

Thus far we have we have only considered applying the kernel trick to ridge regression,
which as we have seen has attractive theoretical properties as a regression method. However
the kernel trick and the representer theorem are much more generally applicable. In settings
where the Yi are not continuous but are in {−1, 1} (e.g. labels for spam and ham, fraud
and not fraud etc.), popular approaches include kernel logistic regression and the support
vector machine (SVM) [Cortes and Vapnik, 1995].

1.6.1 The support vector machine

Consider first the simple case where the data in the two classes {xi}i:Yi=1 and {xi}i:Yi=−1

are separable by a hyperplane through the origin, so there exists β ∈ Rp with ‖β‖2 = 1
such that Yiβ

Txi > 0 for all i. Note β would then be a unit normal vector to a plane that
separates the two classes.
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There may be an infinite number of planes that separate the classes, in which case
it seems sensible to use the plane that maximises the margin between the two classes.
Consider therefore the following optimisation problem.

max
β∈Rp,M≥0

M

subject to Yix
T
i β/‖β‖2 ≥M, i = 1, . . . , n.

Note that by normalising β above we need not impose the constraint that ‖β‖2 = 1.
Suppose now that the classes are not separable. One way to handle this is to replace

the constraint Yix
T
i β/‖β‖2 ≥ M with a penalty for how far over the margin boundary

xi is. This penalty should be zero if xi is on the correct side of the boundary (i.e. when
Yix

T
i β/‖β‖2 ≥M), and should be equal to the distance over the boundary, M−YixTi β/‖β‖2

otherwise. It will in fact be more convenient to penalise according to 1− YixTi β/(‖β‖2M)
in the latter case, which is the distance measured in units of M . This penalty is invariant
to β undergoing any positive scaling, so we may set ‖β‖2 = 1/M , thus eliminating M from
the objective function. Switching max 1/‖β‖2 with min ‖β‖2

2 and adding the penalty we
arrive at

arg min
β∈Rp

‖β‖2
2 + λ

n∑
i=1

(1− YixTi β)+,

where (·)+ denotes the positive part. Replacing λ with 1/λ we can write the objective in
the more familiar-looking form

arg min
β∈Rp

n∑
i=1

(1− YixTi β)+ + λ‖β‖2
2.

Thus far we have restricted ourselves to hyperplanes through the origin but we would more
generally want to consider any translate of these i.e. any hyperplane. This can be achieved
by allowing ourselves to translate the xi by an arbitrary vector b, giving

arg min
β∈Rp,b∈Rp

n∑
i=1

(1− Yi(xi − b)Tβ)+ + λ‖β‖2
2,

or equivalently

(µ̂, β̂) = arg min
(µ,β)∈R×Rp

n∑
i=1

{1− Yi(xTi β + µ)}+ + λ‖β‖2
2. (1.6.1)

This final objective defines the support vector classifier ; given a new observation x predic-
tions are obtained via sgn(µ̂+ xT β̂).

Note that the objective in (1.6.1) may be re-written as

(µ̂, f̂) = arg min
(µ,f)∈R×H

n∑
i=1

[1− Yi{f(xi) + µ}]+ + λ‖f‖2
H, (1.6.2)
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where H is the RKHS corresponding to the linear kernel. The representer theorem (more
specifically the variant in question 10 of example sheet 1) shows that (1.6.2) for an arbitrary
RKHS with kernel k and kernel matrix K is equivalent to the support vector machine

(µ̂, α̂) = arg min
(µ,α)∈R×Rn

n∑
i=1

[1− Yi{KT
i α + µ}]+ + λαTKα.

Predictions at a new x are given by

sgn

(
µ̂+

n∑
i=1

α̂ik(x, xi)

)
.

1.6.2 Logistic regression

Recall that standard logistic regression may be motivated by assuming

log

(
P(Yi = 1)

P(Yi = −1)

)
= xTi β

0

and picking β̂ to maximise the log-likelihood. This leads to (see example sheet) the fol-
lowing optimisation problem:

arg min
β∈Rp

n∑
i=1

log{1 + exp(−YixTi β)}.

The ‘kernelised’ version is given by

arg min
f∈H

{ n∑
i=1

log[1 + exp{−Yif(xi)}] + λ‖f‖2
H

}
,

where H is an RKHS. As in the case of the SVM, the representer theorem gives a finite-
dimensional optimisation that is equivalent to the above.
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1.7 Large-scale kernel machines

We introduced the kernel trick as a computational device that avoided performing cal-
culations in a high or infinite dimensional feature space and, in the case of kernel ridge
regression reduced computation down to forming the n × n matrix K and then inverting
K + λI. This can be a huge saving, but when n is very large, this can present serious
computational difficulties. Even if p is small, the O(n3) cost of inverting K+λI may cause
problems. What’s worse, the fitted regression function is a sum over n terms:

f̂(·) =
n∑
i=1

α̂ik(xi, ·).

Even to evaluate a prediction at a single new observation requires O(n) computations
unless α̂ is sparse.

In recent years, there has been great interest in speeding up computations for kernel
machines. We will discuss one exciting approach based on random feature expansions.
Given a kernel k, the key idea is to develop a random map

φ̂ : X → Rb

with b small such that E{φ̂(x)T φ̂(x′)} = k(x, x′). In a sense we are trying to reverse the
kernel trick by approximating the kernel using a random feature map. To increase the
quality of the approximation of the kernel, we can consider

x 7→ 1√
L

(φ̂1(x), . . . , φ̂L(x)) ∈ RLb

with each (φ̂l(x))Ll=1 being i.i.d. for each x. Let Φ be the matrix with ith row given by

(φ̂1(xi), . . . , φ̂L(xi))/
√
L. We may then run our learning algorithm replacing the initial

matrix of predictors X with Φ. For example, when performing ridge regression, we can
compute

(ΦTΦ + λI)−1ΦTY,

which would require O(nL2b2 + L3b3) operations: a cost linear in n. Predicting a new
observation would cost O(Lb).

The work of Rahimi and Recht [2007] proposes a construction of such a random map-
ping φ̂ for shift-invariant kernels, that is kernels for which there exists a function h with
k(x, x′) = h(x − x′) for all x, x′ ∈ X = Rp. A useful property of such kernels is given by
Bochner’s theorem.

Theorem 8 (Bochner’s theorem). Let k : Rp × Rp → R be a continuous kernel. Then k
is shift-invariant if and only if there exists some c > 0 and distribution F on Rp such that
when W ∼ F

k(x, x′) = cEei(x−x′)TW = cE cos((x− x′)TW ).
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To make use of this theorem, first observe the following. Let u ∼ U [−π, π], x, y ∈ R.
Then

2E cos(x+ u) cos(y + u) = 2E{(cosx cosu− sinx sinu)(cos y cosu− sin y sinu)}.

Now as u
d
= −u, E cosu sinu = E cos(−u) sin(−u) = −E cosu sinu = 0. Also of course

cos2 u+ sin2 u = 1 so E cos2 u = E sin2 u = 1/2. Thus

2E cos(x+ u) cos(y + u) = cos x cos y + sinx sin y = cos(x− y).

Given a shift-invariant kernel k with associated distribution F , suppose W ∼ F and
let u ∼ U [−π, π] independently. Define

φ̂(x) =
√

2c cos(W Tx+ u).

Then

Eφ̂(x)φ̂(x′) = 2cE[E{cos(W Tx+ u) cos(W Tx′ + u)|W}]
= cE cos((x− x′)TW ) = k(x, x′).

As a concrete example of this approach, let us take the Gaussian kernel k(x, x′) = exp{−‖x−
x′‖2

2/(2σ
2)}. Note that if W ∼ N(0, σ−2I), it has characteristic function E(eit

TW ) =
e−‖t‖

2
2/(2σ

2) so we may take φ̂(x) =
√

2 cos(W Tx+ u).
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Chapter 2

The Lasso and beyond

2.1 Model selection

Let us revisit the linear model Y = Xβ0 + ε where E(ε) = 0, Var(ε) = σ2I. In many
modern datasets, there are reasons to believe there are many more variables present than
are necessary to explain the response. Let S be the set S = {k : β0

k 6= 0} and suppose
s := |S| � p.

The MSPE of OLS is

1

n
E‖Xβ0 −Xβ̂OLS‖2

2 =
1

n
E{(β0 − β̂OLS)TXTX(β0 − β̂OLS)}

=
1

n
E[tr{(β0 − β̂OLS)(β0 − β̂OLS)TXTX}]

=
1

n
tr[E{(β0 − β̂OLS)(β0 − β̂OLS)T}XTX]

=
1

n
tr(Var(β̂OLS)XTX) =

p

n
σ2.

If we could identify S and then fit a linear model using just these variables, we’d obtain
an MSPE of σ2s/n which could be substantially smaller than σ2p/n. Furthermore, it can
be shown that parameter estimates from the reduced model are more accurate. The smaller
model would also be easier to interpret.

We now briefly review some classical model selection strategies.

Best subset regression

A natural approach to finding S is to consider all 2p possible regression procedures each
involving regressing the response on a different sets of explanatory variables XM where
M is a subset of {1, . . . , p}. We can then pick the best regression procedure using cross-
validation (say). For general design matrices, this involves an exhaustive search over all
subsets, so this is not really feasible for p > 50.
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Forward selection

This can be seen as a greedy way of performing best subsets regression. Given a target
model size m (the tuning parameter), this works as follows.

1. Start by fitting an intercept only model.

2. Add to the current model the predictor variable that reduces the residual sum of
squares the most.

3. Continue step 2 until m predictor variables have been selected.

2.2 The Lasso estimator

The Least absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996] estimates
β0 by β̂L

λ , where (µ̂L, β̂L
λ ) minimise

1

2n
‖Y − µ1−Xβ‖2

2 + λ‖β‖1 (2.2.1)

over (µ, β) ∈ R× Rp. Here ‖β‖1 is the `1-norm of β: ‖β‖1 =
∑p

k=1 |βk|.
Like ridge regression, β̂L

λ shrinks the OLS estimate towards the origin, but there is
an important difference. The `1 penalty can force some of the estimated coefficients to be
exactly 0. In this way the Lasso can perform simultaneous variable selection and parameter
estimation. As we did with ridge regression, we can centre and scale the X matrix, and
also centre Y and thus remove µ from the objective. Define

Qλ(β) =
1

2n
‖Y −Xβ‖2

2 + λ‖β‖1. (2.2.2)

Now the minimiser(s) of Qλ(β) will also be the minimiser(s) of

‖Y −Xβ‖2
2 subject to ‖β‖1 ≤ ‖β̂L

λ‖1.

Similarly, with the Ridge regression objective, we know that β̂R
λ minimises ‖Y − Xβ‖2

2

subject to ‖β‖2 ≤ ‖β̂R
λ ‖2.

Now the contours of the OLS objective ‖Y − Xβ‖2
2 are ellipsoids centred at β̂OLS,

while the contours of ‖β‖2
2 are spheres centred at the origin, and the contours of ‖β‖1 are

‘diamonds’ centred at 0.
The important point to note is that the `1 ball {β ∈ Rp : ‖β‖1 ≤ ‖β̂L

λ‖1} has corners
where some of the components are zero, and it is likely that the OLS contours will intersect
the `1 ball at such a corner.
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2.2.1 Prediction error of the Lasso with no assumptions on the
design

A remarkable property of the Lasso is that even when p � n, it can still perform well in
terms of prediction error. Suppose the columns of X have been centred and scaled (as we
will always assume from now on unless stated otherwise) and assume the normal linear
model (where we have already centred Y ),

Y = Xβ0 + ε− ε̄1 (2.2.3)

where ε ∼ Nn(0, σ2I).

Theorem 9. Let β̂ be the Lasso solution when

λ = Aσ

√
log(p)

n
.

With probability at least 1− 2p−(A2/2−1)

1

n
‖X(β0 − β̂)‖2

2 ≤ 4Aσ

√
log(p)

n
‖β0‖1.

Proof. From the definition of β̂ we have

1

2n
‖Y −Xβ̂‖2

2 + λ‖β̂‖1 ≤
1

2n
‖Y −Xβ0‖2

2 + λ‖β0‖1.

Rearranging,
1

2n
‖X(β0 − β̂)‖2

2 ≤
1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Now |εTX(β̂ − β0)| ≤ ‖XT ε‖∞‖β̂ − β0‖1. Let Ω = {‖XT ε‖∞/n ≤ λ}. Lemma 13 below
shows that P(Ω) ≥ 1− 2p−(A2/2−1). Working on the event Ω, we obtain

1

2n
‖X(β0 − β̂)‖2

2 ≤ λ‖β0 − β̂‖1 + λ‖β0‖1 − λ‖β̂‖1,

1

n
‖X(β0 − β̂)‖2

2 ≤ 4λ‖β0‖1, by the triangle inequality.

2.2.2 Basic concentration inequalities

The proof of Theorem 9 relies on a lower bound for the probability of the event Ω. A union
bound gives

P(‖XT ε‖∞/n > λ) = P(∪pj=1|XT
j ε|/n > λ)

≤
p∑
j=1

P(|XT
j ε|/n > λ).
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Now XT
j ε/n ∼ N(0, σ2/n), so if we obtain a bound on the tail probabilities of normal

distributions, the argument above will give a bound for P(Ω).
Motivated by the need to bound normal tail probabilities, we will briefly discuss the

topic of concentration inequalities that provide such bounds for much wider classes of
random variables. Concentration inequalities are vital for the study of many modern
algorithms and in our case here, they will reveal that the attractive properties of the Lasso
presented in Theorem 9 hold true for a variety of non-normal errors.

We begin our discussion with the simplest tail bound, Markov’s inequality, which states
that given a non-negative random variable W ,

P(W ≥ t) ≤ E(W )

t
.

This immediately implies that given a strictly increasing function ϕ : R→ [0,∞) and any
random variable W ,

P(W ≥ t) = P{ϕ(W ) ≥ ϕ(t)} ≤ E(ϕ(W ))

ϕ(t)
.

Applying this with ϕ(t) = eαt (α > 0) yields the so-called Chernoff bound :

P(W ≥ t) ≤ inf
α>0

e−αtEeαW .

Consider the case when W ∼ N(0, σ2). Recall that

EeαW = eα
2σ2/2. (2.2.4)

Thus

P(W ≥ t) ≤ inf
α>0

eα
2σ2/2−αt = e−t

2/(2σ2).

Note that to arrive at this bound, all we required was (an upper bound on) the moment
generating function (mgf) of W (2.2.4).

Sub-Gaussian variables

Definition 3. We say a random variable W with mean µ = E(W ) is sub-Gaussian if there
exists σ > 0 such that

Eeα(W−µ) ≤ eα
2σ2/2

for all α ∈ R. We then say that W is sub-Gaussian with parameter σ.

Proposition 10 (Sub-Gaussian tail bound). If W is sub-Gaussian with parameter σ and
E(W ) = µ then

P(W − µ ≥ t) ≤ e−t
2/(2σ2).
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As well as Gaussian random variables, the sub-Gaussian class includes bounded random
variables.

Lemma 11 (Hoeffding’s lemma). If W is mean-zero and takes values in [a, b], then W is
sub-Gaussian with parameter (b− a)/2.

The following proposition shows that analogously to how a linear combination of jointly
Gaussian random variables is Gaussian, a linear combination of sub-Gaussian random
variables is also sub-Gaussian.

Proposition 12. Let (Wi)
n
i=1 be a sequence of independent mean-zero sub-Gaussian ran-

dom variables with parameters (σi)
n
i=1 and let γ ∈ Rn. Then γTW is sub-Gaussian with

parameter
(∑

i γ
2
i σ

2
i

)1/2

.

Proof.

E exp
(
α

n∑
i=1

γiWi

)
=

n∏
i=1

E exp(αγiWi)

≤
n∏
i=1

exp(α2γ2
i σ

2
i /2)

= exp
(
α2

n∑
i=1

γ2
i σ

2
i /2
)
.

We can now prove a more general version of the probability bound required for Theo-
rem 9.

Lemma 13. Suppose (εi)
n
i=1 are independent, mean-zero and sub-Gaussian with common

parameter σ. Note that this includes ε ∼ Nn(0, σ2I). Let λ = Aσ
√

log(p)/n. Then

P(‖XT ε‖∞/n ≤ λ) ≥ 1− 2p−(A2/2−1).

Proof.

P(‖XT ε‖∞/n > λ) ≤
p∑
j=1

P(|XT
j ε|/n > λ).

But ±XT
j ε/n are both sub-Gaussian with parameter (σ2‖Xj‖2

2/n
2)1/2 = σ/

√
n. Thus the

RHS is at most
2p exp(−A2 log(p)/2) = 2p1−A2/2.

When trying to understand the impact of the design matrix X on properties of the
Lasso, it will be helpful to have a tail bound for a product of sub-Gaussian random variables.
Bernstein’s inequality, which applies to random variables satisfying the condition below, is
helpful in this regard.
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Definition 4 (Bernstein’s condition). We say that the random variable W with EW = µ
satisfies Bernstein’s condition with parameter (σ, b) where σ, b > 0 if

E(|W − µ|k) ≤ 1

2
k!σ2bk−2 for k = 2, 3, . . . .

Proposition 14 (Bernstein’s inequality). Let W1,W2, . . . be independent random variables
with E(Wi) = µ. Suppose each Wi satisfies Bernstein’s condition with parameter (σ, b).
Then

E(eα(Wi−µ)) ≤ exp

(
α2σ2/2

1− b|α|

)
for all |α| < 1/b

P
(

1

n

n∑
i=1

Wi − µ ≥ t

)
≤ exp

(
− nt2

2(σ2 + bt)

)
for all t ≥ 0.

Proof. Fix i and let W = Wi. We have

E(eα(W−µ)) = 1 + αE(W − µ) +
∞∑
k=2

αk
E{(W − µ)k}

k!

≤ 1 +
σ2α2

2

∞∑
k=2

|α|k−2bk−2

= 1 +
σ2α2

2

1

1− |α|b
≤ exp

(
α2σ2/2

1− b|α|

)
,

provided |α| < 1/b and using the inequality eu ≥ 1+u in the final line. For the probability
bound, first note that

E exp

( n∑
i=1

α(Wi − µ)/n

)
=

n∏
i=1

E exp{α(Wi − µ)/n}

≤ exp

(
n

(α/n)2σ2/2

1− b|α/n|

)
for |α|/n < 1/b. Then we use the Chernoff method and set α/n = t/(bt+σ2) ∈ [0, 1/b).

Lemma 15. Let W,Z be mean-zero and sub-Gaussian with parameters σW and σZ respec-
tively. Then the product WZ satisfies Bernstein’s condition with parameter (8σWσZ , 4σWσZ).

Proof. In order to use Bernstein’s inequality (Proposition 14) we first obtain bounds on
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the moments of W and Z. Note that W 2k =
∫∞

0
1{x<W 2k}dx. Thus by Fubini’s theorem

E(W 2k) =

∫ ∞
0

P(W 2k > x)dx

= 2k

∫ ∞
0

t2k−1P(|W | > t)dt substituting t2k = x

≤ 4k

∫ ∞
0

t2k−1 exp{−t2/(2σ2
W )}dt by Proposition 10

= 4kσ2
W

∫ ∞
0

(2σ2
Wx)k−1e−xdx substituting t2/(2σ2

W ) = x

= 2k+1σ2k
Wk!.

Next note that for any random variable Y ,

|E(Y − EY )k| ≤ E|Y − EY |k

= 2kE|Y/2− EY/2|k

≤ 2k−1(E|Y |k + |EY |k) by Jensen’s inequality applied to t 7→ |t|k,
≤ 2kE|Y |k.

Therefore

E(|WZ − EWZ|k) ≤ 2kE|WZ|k

≤ 2k(EW 2k)1/2(EZ2k)1/2 by Cauchy–Schwarz

≤ 2k2k+1σkWσ
k
Zk!

=
k!

2
(8σWσZ)2(4σWσZ)k−2.

2.2.3 Some facts from optimisation theory and convex analysis

In order to study the Lasso in detail, it will be helpful to review some basic facts from
optimisation and convex analysis.

Convexity

A set A ⊆ Rd is convex if

x, y ∈ A⇒ (1− t)x+ ty ∈ A for all t ∈ (0, 1).

In certain settings it will be convenient to consider functions that take, in addition to real
values, the value ∞. Denote R̄ = R ∪ {∞}. A function f : Rd → R̄ is convex if

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y)
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for all x, y ∈ Rd and t ∈ (0, 1), and f(x) <∞ for at least one x. [This is in fact known in
the literature as a proper convex function]. It is strictly convex if the inequality is strict for
all x, y ∈ Rd, x 6= y and t ∈ (0, 1). Define the domain of f , to be dom f = {x : f(x) <∞}.
Note that when f is convex, dom f must be a convex set.

Proposition 16. (i) Let f1, . . . , fm : Rd → R̄ be convex functions with dom f1 ∩ · · · ∩
dom fm 6= ∅. Then if c1, . . . , cm ≥ 0, c1f1 + · · · cmfm is a convex function.

(ii) If f : Rd → R is twice continuously differentiable then

(a) f is convex iff. its Hessian H(x) is positive semi-definite for all x,

(b) f is strictly convex if H(x) is positive definite for all x.

The Lagrangian method

Consider an optimisation problem of the form

minimise f(x), subject to g(x) = 0 (2.2.5)

where g : Rd → Rb. Suppose the optimal value is c∗ ∈ R. The Lagrangian for this problem
is defined as

L(x, θ) = f(x) + θTg(x)

where θ ∈ Rb. Note that

inf
x∈Rd

L(x, θ) ≤ inf
x∈Rd:g(x)=0

L(x, θ) = c∗

for all θ. The Lagrangian method involves finding a θ∗ such that the minimising x∗ on the
LHS satisfies g(x∗) = 0. This x∗ must then be a minimiser in the original problem (2.2.5).

Subgradients

Definition 5. A vector v ∈ Rd is a subgradient of a convex function f : Rd → R̄ at x if

f(y) ≥ f(x) + vT (y − x) for all y ∈ Rd.

The set of subgradients of f at x is called the subdifferential of f at x and denoted ∂f(x).

In order to make use of subgradients, we will require the following two facts:

Proposition 17. Let f : Rd → R̄ be convex, and suppose f is differentiable at x ∈
int(dom f). Then ∂f(x) = {∇f(x)}.

Proposition 18. Let f, g : Rd → R̄ be convex with int(dom f) ∩ int(dom g) 6= ∅ and let
α > 0. Then

∂(αf)(x) = α∂f(x) = {αv : v ∈ ∂f(x)},
∂(f + g)(x) = ∂f(x) + ∂g(x) = {v + w : v ∈ ∂f(x), w ∈ ∂g(x)}.
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The following easy (but key) result is often referred to in the statistical literature as the
Karush–Kuhn–Tucker (KKT) conditions, though it is actually a much simplified version
of them.

Proposition 19. x∗ ∈ arg min
x∈Rd

f(x) if and only if 0 ∈ ∂f(x∗).

Proof.

f(y) ≥ f(x∗) for all y ∈ Rd ⇔ f(y) ≥ f(x∗) + 0T (y − x) for all y ∈ Rd

⇔ 0 ∈ ∂f(x∗).

Let us now compute the subdifferential of the `1-norm. First note that ‖ · ‖1 : Rd → R
is convex. Indeed it is a norm so the triangle inequality gives ‖tx + (1 − t)y‖1 ≤ t‖x‖1 +
(1− t)‖y‖1. We introduce some notation that will be helpful here and throughout the rest
of the course.

For x ∈ Rd and A = {k1, . . . , km} ⊆ {1, . . . , d} with k1 < · · · < km, by xA we will mean
(xk1 , . . . , xkm)T . Similarly if X has d columns we will write XA for the matrix

XA = (Xk1 · · ·Xkm).

Further in this context, by Ac, we will mean {1, . . . , d}\A. Additionally, when in subscripts
we will use the shorthand −j = {j}c and −jk = {j, k}c. Note these column and component
extraction operations will always be considered to have taken place first before any further
operations on the matrix, so for example XT

A = (XA)T . Finally, define

sgn(x1) =


−1 if x1 < 0

0 if x1 = 0

1 if x1 > 0,

and
sgn(x) = (sgn(x1), . . . , sgn(xd))

T .

Proposition 20. For x ∈ Rd let A = {j : xj 6= 0}. Then

∂‖x‖1 = {v ∈ Rd : ‖v‖∞ ≤ 1 and vA = sgn(xA)}

Proof. For j = 1, . . . , d, let

gj : Rd → R
x 7→ |xj|.

Then ‖ · ‖ =
∑

j gj(·) so by Proposition 18, ∂‖x‖1 =
∑

j ∂gj(x). When x has xj 6= 0, gj
is differentiable at x so by Proposition 17 ∂gj(x) = {sgn(xj)ej} where ej is the jth unit
vector. When xj = 0, if v ∈ ∂gj(x) we must have

gj(y) ≥ gj(x) + vT (y − x) for all y ∈ Rd,
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so
|yj| ≥ vT (y − x) for all y ∈ Rd. (2.2.6)

we claim that the above holds iff. vj ∈ [−1, 1] and v−j = 0. For the ‘if’ direction, note
that vT (y − x) = vjyj ≤ |yj|. Conversely, set y−j = x−j + v−j and yj = 0 in (2.2.6) to get
0 ≥ ‖v−j‖2

2, so v−j = 0. Then take y with y−j = x−j to get |yj| ≥ vjyj for all yj ∈ R, so
|vj| ≤ 1. Forming the set sum of the subdifferentials then gives the result.

2.2.4 Lasso solutions

Equipped with these tools from convex analysis, we can now fully characterise the solutions
to the Lasso. We have that β̂L

λ is a Lasso solution if and only if 0 ∈ ∂Qλ(β̂
L
λ ), which is

equivalent to
1

n
XT (Y −Xβ̂L

λ ) = λν̂,

for ν̂ with ‖ν̂‖∞ ≤ 1 and writing Ŝλ = {k : β̂L
λ,k 6= 0}, ν̂Ŝλ = sgn(β̂L

λ,Ŝλ
).

Lasso solutions need not be unique (e.g. if X has duplicate columns), though for most
reasonable design matrices, Lasso solutions will be unique. We will often tacitly assume
Lasso solutions are unique in the statement of our theoretical results. It is however straight-
forward to show that the Lasso fitted values are unique.

Proposition 21. Xβ̂L
λ is unique.

Proof. Fix λ and suppose β̂(1) and β̂(2) are two Lasso solutions giving an optimal objective
value of c∗. Now for t ∈ (0, 1), by strict convexity of ‖ · ‖2

2,

‖Y − tXβ̂(1) − (1− t)Xβ̂(2)‖2
2 ≤ t‖Y −Xβ̂(1)‖2

2 + (1− t)‖Y −Xβ̂(2)‖2
2,

with equality if and only if Xβ̂(1) = Xβ̂(2). Since ‖ · ‖1 is also convex, we see that

c∗ ≤ Qλ(tβ̂
(1) + (1− t)β̂(2))

= ‖Y − tXβ̂(1) − (1− t)Xβ̂(2)‖2
2/(2n) + λ‖tβ̂(1) + (1− t)β̂(2)‖1

≤ t‖Y −Xβ̂(1)‖2
2/(2n) + (1− t)‖Y −Xβ̂(2)‖2

2/(2n) + λ‖tβ̂(1) + (1− t)β̂(2)‖1

≤ t{‖Y −Xβ̂(1)‖2
2/(2n) + λ‖β̂(1)‖1}+ (1− t){‖Y −Xβ̂(2)‖2

2/(2n) + λ‖β̂(2)‖1}
= tQ(β̂(1)) + (1− t)Q(β̂(2)) ≤ c∗.

Equality must prevail throughout this chain of inequalities, so Xβ̂(1) = Xβ̂(2).

2.2.5 Variable selection

Consider now the “noiseless” version of the high-dimensional linear model (2.2.3), Y =
Xβ0. The case with noise can dealt with by similar arguments to those we’ll use below
when we work on an event that ‖XT ε‖∞ is small (see example sheet).

Let S = {k : β0
k 6= 0}, N = {1, . . . , p} \ S and assume wlog that S = {1, . . . , s}, and

also that rank(XS) = s.
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Theorem 22. Let λ > 0 and define ∆ = XT
NXS(XT

SXS)−1sgn(β0
S). If ‖∆‖∞ ≤ 1 and for

k ∈ S,
|β0
k| > λ|sgn(β0

S)T [{ 1
n
XT
SXS}−1]k|, (2.2.7)

then there exists a Lasso solution β̂L
λ with sgn(β̂L

λ ) = sgn(β0). As a partial converse, if

there exists a Lasso solution β̂L
λ with sgn(β̂L

λ ) = sgn(β0), then ‖∆‖∞ ≤ 1.

Remark 1. We can interpret ‖∆‖∞ as the maximum in absolute value over k ∈ N of the
dot product of sgn(β0

S) and (XT
SXS)−1XT

SXk, the coefficient vector obtained by regressing
Xk on XS. The condition ‖∆‖∞ ≤ 1 is known as the irrepresentable condition.

Proof. Fix λ > 0 and write β̂ = β̂L
λ and Ŝ = {k : β̂k 6= 0} for convenience. The KKT

conditions for the Lasso give
1

n
XTX(β0 − β̂) = λν̂

where ‖ν̂‖∞ ≤ 1 and ν̂Ŝ = sgn(β̂Ŝ). We can expand this into

1

n

(
XT
SXS XT

SXN

XT
NXS XT

NXN

)(
β0
S − β̂S
−β̂N

)
= λ

(
ν̂S
ν̂N

)
. (2.2.8)

We prove the converse first. If sgn(β̂) = sgn(β0) then ν̂S = sgn(β0
S) and β̂N = 0. The

top block of (2.2.8) gives

β0
S − β̂S = λ( 1

n
XT
SXS)−1sgn(β0

S).

Substituting this into the bottom block, we get

λ 1
n
XT
NXS( 1

n
XT
SXS)−1sgn(β0

S) = λν̂N .

Thus as ‖ν̂N‖∞ ≤ 1, we have ‖∆‖∞ ≤ 1.
For the positive statement, we need to find a β̂ and ν̂ such that sgn(β̂S) = sgn(β0

S) and

β̂N = 0, for which the KKT conditions hold. We claim that taking

(β̂S, β̂N) = (β0
S − λ( 1

n
XT
SXS)−1sgn(β0

S), 0)

(ν̂S, ν̂N) = (sgn(β0
S), ∆)

satisfies (2.2.8). We only need to check that sgn(β0
S) = sgn(β̂S), but this follows from

(2.2.7).

2.2.6 Prediction and estimation

Consider again the model Y = Xβ0 + ε− ε̄1 where the components of ε are independent
mean-zero sub-Gaussian random variables with common parameter σ. Let S, s and N be
defined as in the previous section. As we have noted before, in an artificial situation where
S is known, we could apply OLS on XS and have an MSPE of σ2s/n. Under a so-called
compatibility condition on the design matrix, we can obtain a similar MSPE for the Lasso.
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Definition 6. Given a matrix of predictors X ∈ Rn×p and support set S, define

φ2 = inf
β∈Rp:βS 6=0, ‖βN‖1≤3‖βS‖1

1
n
‖Xβ‖2

2
1
s
‖βS‖2

1

,

where s = |S| and we take φ ≥ 0. The compatibility condition is that φ2 > 0.

Note that if XTX/n has minimum eigenvalue cmin > 0 (so necessarily p ≤ n), then
φ2 > cmin. Indeed by the Cauchy–Schwarz inequality,

‖βS‖1 = sgn(βS)TβS ≤
√
s‖βS‖2 ≤

√
s‖β‖2.

Thus

φ2 ≥ inf
β 6=0

1
n
‖Xβ‖2

2

‖β‖2
2

= cmin.

Although in the high-dimensional setting we would have cmin = 0, the fact that the infimum
in the definition of φ2 is over a restricted set of β can still allow φ2 to be positive even in
this case, as we discuss after the presentation of the theorem.

Theorem 23. Suppose the compatibility condition holds and let β̂ be the Lasso solution
with λ = Aσ

√
log(p)/n for A > 0. Then with probability at least 1− 2p−(A2/8−1), we have

1

n
‖X(β0 − β̂)‖2

2 + λ‖β̂ − β0‖1 ≤
16λ2s

φ2
=

16A2 log(p)

φ2

σ2s

n
.

Proof. As in Theorem 9 we start with the “basic inequality”:

1

2n
‖X(β̂ − β0)‖2

2 + λ‖β̂‖1 ≤
1

n
εTX(β̂ − β0) + λ‖β0‖1.

We work on the event Ω = {2‖XT ε‖∞/n ≤ λ} where after applying Hölder’s inequality,
we get

1

n
‖X(β̂ − β0)‖2

2 + 2λ‖β̂‖1 ≤ λ‖β̂ − β0‖1 + 2λ‖β0‖1. (2.2.9)

Lemma 13 shows that P(Ω) ≥ 1− 2p−(A2/8−1).
To motivate the rest of the proof, consider the following idea. We know

1

n
‖X(β̂ − β0)‖2

2 ≤ 3λ‖β̂ − β0‖1.

If we could get

3λ‖β̂ − β0‖1 ≤
cλ√
n
‖X(β̂ − β0)‖2

for some constant c > 0, then we would have that ‖X(β̂ − β0)‖2
2/n ≤ c2λ2 and also

3λ‖β0 − β̂‖1 ≤ c2λ2.
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Returning to the actual proof, write a = ‖X(β̂−β0)‖2
2/(nλ). Then from (2.2.9) we can

derive the following string of inequalities:

a+ 2(‖β̂N‖1 + ‖β̂S‖1) ≤ ‖β̂S − β0
S‖1 + ‖β̂N‖1 + 2‖β0

S‖1

a+ ‖β̂N‖1 ≤ ‖β̂S − β0
S‖1 + 2‖β0

S‖1 − 2‖β̂S‖1

a+ ‖β̂N − β0
N‖1 ≤ 3‖β0

S − β̂S‖1

a+ ‖β̂ − β0‖1 ≤ 4‖β0
S − β̂S‖1,

the final inequality coming from adding ‖β0
S − β̂S‖1 to both sides.

Now using the compatibility condition with β = β̂ − β0 we have

1

n
‖X(β̂ − β0)‖2

2 + λ‖β0 − β̂‖1 ≤ 4λ‖β0
S − β̂S‖1

≤ 4λ

φ

√
s

n
‖X(β̂ − β0)‖2. (2.2.10)

From this we get
1√
n
‖X(β̂ − β0)‖2 ≤

4λ
√
s

φ
,

and substituting this into the RHS of (2.2.10) gives the result.

The compatibility condition and random design

How strong is the compatibility condition? In order to answer this question, we shall think
of X as random and try to understand what conditions on the population covariance matrix
Σ0 := E(XTX/n) imply that X satisfies a compatibility condition with high probability.
To this end let us define

φ2
Σ(S) = inf

β:‖βS‖1 6=0,‖βN‖1≤3‖βS‖1

βTΣβ

‖βS‖2
1/|S|

where Σ ∈ Rp×p. Note then our φ2 = φ2
Σ̂

(S) where Σ̂ := XTX/n and S is the support set

of β0. The following result shows that if Σ̂ is close to a matrix Σ̌ for which φ2
Σ̌

(S) > 0,
then also φ2

Σ̂
(S) > 0.

Lemma 24. Suppose φ2
Σ̌

(S) > 0 and maxjk |Σ̂jk − Σ̌jk| ≤ φ2
Σ̌

(S)/(32|S|). Then φ2
Σ̂

(S) ≥
φ2

Σ̌
(S)/2.

Proof. In the following we suppress dependence on S. Let s = |S| and let t = φ2
Σ̌
/(32s).

We have

|βT (Σ̌− Σ̂)β| ≤ ‖β‖1‖(Σ̌− Σ̂)β‖∞ (Hölder)

≤ t‖β‖2
1 (Hölder again).
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If ‖βN‖1 ≤ 3‖βS‖1 then

‖β‖1 = ‖βN‖1 + ‖βS‖1 ≤ 4‖βS‖1 ≤ 4

√
βT Σ̌β

φΣ̌/
√
s
.

Thus if ‖βN‖1 ≤ 3‖βS‖1,

βT Σ̌β −
φ2

Σ̌

32s

16βT Σ̌β

φ2
Σ̌
/s

=
1

2
βT Σ̌β ≤ βT Σ̂β.

We may now apply this this with Σ̌ = Σ0. To make the result more readily interpretable,
we shall state it in an asymptotic framework. Imagine a sequence of design matrices with
n and p growing, each with their own compatibility condition. We will however suppress
the asymptotic regime in the notation.

Theorem 25. Suppose the rows of X are i.i.d. and each entry of X is mean-zero sub-
Gaussian with parameter v. Suppose s

√
log(p)/n→ 0 (and p > 1) as n→∞. Let

φ2
Σ̂,s

= min
S:|S|=s

φ2
Σ̂

(S)

φ2
Σ0,s = min

S:|S|=s
φ2

Σ0(S),

and suppose the latter is bounded away from 0. Then P(φ2
Σ̂,s
≥ φ2

Σ0,s/2)→ 1 as n→∞.

Proof. In view of Lemma 24, we need only show that

P(max
jk
|Σ̂jk − Σ0

jk| ≥ φ2
Σ0,s/(32s))→ 0.

Let t = φ2
Σ0,s/(32s). By a union bound and then Lemma 15 we have

P(max
jk
|Σ̂jk − Σ0

jk| ≥ φ2
Σ0,s/(32s)) < p2 max

jk
P
(∣∣∣ n∑

i=1

XijXik/n− Σ0
jk

∣∣∣ ≥ t
)

≤ 2 exp

(
− nt2

2(64v4 + 4v2t))
+ 2 log(p)

)
≤ c1 exp(−c2n/s

2 + c3 log(p))→ 0.

Corollary 26. Suppose the rows of X are independent with distribution Np(0,Σ
0). Suppose

the diagonal entries of Σ0 are bounded above and the minimum eigenvalue of Σ0, cmin is
bounded away from 0. Then P(φ2

Σ̂,s
≥ cmin/2)→ 1 provided s

√
log(p)/n→ 0.
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2.2.7 Computation

One of the most efficient ways of computing Lasso solutions is to use a optimisation tech-
nique called coordinate descent. This is a quite general way of minimising a function
f : Rd → R and works particularly well for functions of the form

f(x) = g(x) +
d∑
j=1

hj(xj)

where g is convex and differentiable and each hj : R→ R is convex (and so continuous). We
start with an initial guess of the minimiser x(0) (e.g. x(0) = 0) and repeat for m = 1, 2, . . .

x
(m)
1 = arg min

x1∈R
f(x1, x

(m−1)
2 , . . . , x

(m−1)
d )

x
(m)
2 = arg min

x2∈R
f(x

(m)
1 , x2, x

(m−1)
3 , . . . , x

(m−1)
d )

...

x
(m)
d = arg min

xd∈R
f(x

(m)
1 , x

(m)
2 , . . . , x

(m)
d−1, xd).

Tseng [2001] proves that provided A0 = {x : f(x) ≤ f(x(0))} is compact, then every
converging subsequence of x(m) will converge to a minimiser of f .

Corollary 27. Suppose A0 is compact. Then

(i) There exists a minimiser of f , x∗ and f(x(m))→ f(x∗).

(ii) If x∗ is the unique minimiser of f then x(m) → x∗.

Proof. f is a continuous function so it attains its infimum on the compact set A0. Sup-
pose f(x(m)) 9 f(x∗). Then there exists ε > 0 and a subsequence (x(mj))∞j=0 such that

f(x(mj)) ≥ f(x∗)+ε for all j. Note that since f(x(m)) ≤ f(x(m−1)), we know that x(m) ∈ A0

for all m. Thus if A0 is compact then any subsequence of (x(m))∞m=0 has a further sub-
sequence that converges by the Bolzano–Weierstrass theorem. Let x̃ be the limit of the
converging subsequence of (x(mj))∞j=0. Then f(x̃) ≥ f(x∗) + ε, contradicting the result of
Tseng [2001]. Thus (i) holds. The proof of (ii) is similar.

We can replace individual coordinates by blocks of coordinates and the same result
holds. That is if x = (x1, . . . , xB) where now xb ∈ Rdb and

f(x) = g(x) +
B∑
b=1

hb(xb)

with g convex and differentiable and each hb : Rdb → R convex, then block coordinate
descent can be used.
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We often want to solve the Lasso on a grid of λ values λ0 > · · · > λL (for the purposes
of cross-validation for example). To do this, we can first solve for λ0, and then solve at
subsequent grid points by using the solution at the previous grid points as an initial guess
(known as a warm start). An active set strategy can further speed up computation. This
works as follows: For l = 1, . . . , L

1. Initialise Al = {k : β̂L
λl−1,k

6= 0}.

2. Perform coordinate descent only on coordinates in Al obtaining a solution β̂ (all
components β̂k with k /∈ Al are set to zero).

3. Let V = {k : |XT
k (Y −Xβ̂)|/n > λl}, the set of coordinates which violate the KKT

conditions when β̂ is taken as a candidate solution.

4. If V is empty, we set β̂L
λl

= β̂. Else we update Al = Al ∪ V and return to 2.

2.3 Extensions of the Lasso

We can add an `1 penalty to many other log-likelihoods, or more generally other loss
functions besides the squared-error loss that arises from the normal linear model. For
Lasso-penalised generalised linear models, such as logistic regression, similar theoretical
results to those we have obtained are available and computations can proceed in a similar
fashion to above.

2.3.1 Structural penalties

The Lasso penalty encourages the estimated coefficients to be shrunk towards 0 and some-
times exactly to 0. Other penalty functions can be constructed to encourage different types
of sparsity.

Group Lasso

Suppose we have a partition G1, . . . , Gq of {1, . . . , p} (so ∪qk=1Gk = {1, . . . , p}, Gj ∩Gk = ∅
for j 6= k). The group Lasso penalty [Yuan and Lin, 2006] is given by

λ

q∑
j=1

mj‖βGj‖2.

The multipliers mj > 0 serve to balance cases where the groups are of very different sizes;
typically we choose mj =

√
|Gj|. This penalty encourages either an entire group G to

have β̂G = 0 or β̂k 6= 0 for all k ∈ G. Such a property is useful when groups occur through
coding for categorical predictors or when expanding predictors using basis functions.
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Fused Lasso

If there is a sense in which the coefficients are ordered, so β0
j is expected to be close to

β0
j+1, a fused Lasso penalty [Tibshirani et al., 2005] may be appropriate. This takes the

form

λ1

p−1∑
j=1

|βj − βj+1|+ λ2‖β‖1,

where the second term may be omitted depending on whether shrinkage towards 0 is
desired. As an example, consider the simple setting where Yi = µ0

i + εi, and it is thought
that the (µ0

i )
n
i=1 form a piecewise constant sequence. Then one option is to minimise over

µ ∈ Rn, the following objective

1

n
‖Y − µ‖2

2 + λ
n−1∑
i=1

|µi − µi+1|.

2.3.2 Reducing the bias of the Lasso

One potential drawback of the Lasso is that the same shrinkage effect that sets many
estimated coefficients exactly to zero also shrinks all non-zero estimated coefficients towards
zero. One possible solution is to take Ŝλ = {k : β̂L

λ,k 6= 0} and then re-estimate β0
Ŝλ

by OLS

regression on XŜλ
.

Another option is to re-estimate using the Lasso on XŜλ
; this procedure is known as

the relaxed Lasso [Meinshausen, 2007]. The adaptive Lasso [Zou, 2006] takes an initial
estimate of β0, β̂init (e.g. from the Lasso) and then performs weighted Lasso regression:

β̂adapt
λ = arg min

β∈Rp:βŜc
init

=0

{
1

2n
‖Y −Xβ‖2

2 + λ
∑
k∈Ŝinit

|βk|
|β̂init
k |

}
,

where Ŝinit = {k : β̂init
k 6= 0}.

Yet another approach involves using a family of non-convex penalty functions pλ,γ :
[0,∞)→ [0,∞) and attempting to minimise

1

2n
‖Y −Xβ‖2

2 +

p∑
k=1

pλ,γ(|βk|).

A prominent example is the minimax concave penalty (MCP) [Zhang, 2010] which takes

p′λ(u) =

(
λ− u

γ

)
+

.

One disadvantage of using a non-convex penalty is that there may be multiple local minima
which can make optimisation problematic. However, typically if the non-convexity is not
too severe, coordinate descent can produce reasonable results.
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Chapter 3

Graphical modelling and causal
inference

So far we have considered the problem of relating a particular response to a large collection
of explanatory variables.

In some settings however, we do not have a distinguished response variable and instead
we would like to better understand relationships between all the variables. In other sit-
uations, rather than being able to predict variables, we would like to understand causal
relationships between them. Representing relationships between random variables through
graphs will be an important tool in tackling these problems.

3.1 Graphs

Definition 7. A graph is a pair G = (V,E) where V is a set of vertices or nodes and
E ⊆ V × V with (v, v) /∈ E for any v ∈ V is a set of edges.

Let Z = (Z1, . . . , Zp)
T be a collection of random variables. The graphs we will consider

will always have V = {1, . . . , p} so V indexes the random variables.
Let j, k ∈ V .

• We say there is an edge between j and k and that j and k are adjacent if either
(j, k) ∈ E or (k, j) ∈ E.

• An edge (j, k) is undirected if also (k, j) ∈ E; otherwise it is directed and we may
write j → k to represent this.

• If all edges in the graph are (un)directed we call it an (un)directed graph. We can
represent graphs as pictures: for example, we can draw the graph when p = 4 and
E = {(2, 1), (3, 4), (2, 3)} as
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Z1

Z3

Z2

Z4

If instead we have E = {(1, 2), (2, 1), (2, 4), (4, 2)} we get the undirected graph

Z1

Z3

Z2

Z4

• A graph G1 = (V1, E1) is a subgraph of G = (V,E) if V1 ⊆ V and E1 ⊆ E and a
proper subgraph if either of these are proper inclusions.

• Say j is a parent of k and k is a child of j if j → k. The sets of parents and children
of k will be denoted pa(k) and ch(k) respectively.

• A set of three nodes is called a v-structure if one node is a child of the two other
nodes, and these two nodes are not adjacent.

• The skeleton of G is a copy of G with every edge replaced by an undirected edge.

• A path from j to k is a sequence j = j1, j2, . . . , jm = k of (at least two) distinct
vertices such that jl and jl+1 are adjacent. Such a path is a directed path if jl → jl+1

for all l. We then call k a descendant of j. The set of descendants of j will be denoted
de(j). If jl−1 → jl ← jl+1, jl is called a collider (relative to the path).

• A directed cycle is (almost) a directed path but with the start and end points the
same. A partially directed acyclic graph (PDAG) is a graph containing no directed
cycles. A directed acyclic graph (DAG) is a directed graph containing no directed
cycles.

• In a DAG, a path between j1 and jm (j1, j2, . . . , jm) is blocked by a set S with neither j1

nor jm in S whenever there is a node jl such that one of the following two possibilities
hold:

1. jl ∈ S and we don’t have jl−1 → jl ← jl+1

2. jl−1 → jl ← jl+1 and neither jl nor any of its descendants are in S.

• Given a triple of subsets of nodes A,B, S, we say S separates A from B if every path
from a node in A to a node in B contains a node in S.
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• If G is a DAG, given a triple of subsets of nodes A,B, S, we say S d-separates A from
B if S blocks every path from A to B.

• The moralised graph of a DAG G is the undirected graph obtained by adding edges
between (marrying) the parents of each node and removing all edge directions.

Proposition 28. Given a DAG G with V = {1, . . . , p}, we say that a permutation π of V
is a topological (or causal) ordering of the variables if it satisfies

π(j) < π(k) whenever k ∈ de(j).

Every DAG has a topological ordering.

Proof. We use induction on the number of nodes p. Clearly the result is true when p = 1.
Now we show that in any DAG, we can find a node with no parents. Pick any node

and move to one of its parents, if possible. Then move to one of the new node’s parents,
and continue in this fashion. This procedure must terminate since no node can be visited
twice, or we would have found a cycle. The final node we visit must therefore have no
parents, which we call a source node.

Suppose then that p ≥ 2, and we know that all DAGs with p−1 nodes have a topological
ordering. Find a source s (wlog s = p) and form a new DAG G̃ with p−1 nodes by removing
the source (and all edges emanating from it). Note we keep the labelling of the nodes in
this new DAG the same. This smaller DAG must have a topological order π̃. A topological
ordering π for our original DAG is then given by π(s) = 1 and π(k) = π̃(k)+1 for k 6= s.

3.2 Conditional independence graphs

We would like to understand which variables may be ‘related’ to each other. Trying to find
pairs of variables that are independent and so unlikely to be related to each other is not
necessarily a good way to proceed as each variable may be correlated with a large number
of variables without being directly related to them. A better approach is to use conditional
independence.

Definition 8. If X, Y and Z are random vectors with a joint density fXY Z (w.r.t. a
product measure µ) then we say X is conditionally independent of Y given Z, and write

X ⊥⊥ Y |Z

if
fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z).

Equivalently
X ⊥⊥ Y |Z ⇐⇒ fX|Y Z(x|y, z) = fX|Z(x|z).
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We will first look at how undirected graphs can be used to visualise conditional inde-
pendencies between random variables; thus in the next few subsections by graph we will
mean undirected graph.

Let Z = (Z1, . . . , Zp)
T be a collection of random variables with joint law P and consider

a graph G = (V,E) where V = {1, . . . , p}. A reminder of our notation: −k and −jk when
in subscripts denote the sets {1, . . . , p} \ {k} and {1, . . . , p} \ {j, k} respectively.

Definition 9. We say that P satisfies the pairwise Markov property w.r.t. G if for any pair
j, k ∈ V with j 6= k and (j, k), (k, j) /∈ E,

Zj ⊥⊥ Zk|Z−jk.

Note that the complete graph that has edges between every pair of vertices will satisfy
the pairwise Markov property for any P . The minimal graph satisfying the pairwise Markov
property w.r.t. a given P is called the conditional independence graph (CIG) for P .

Definition 10. We say P satisfies the global Markov property w.r.t. G if for any triple
(A,B, S) of disjoint subsets of V such that S separates A from B, we have

ZA ⊥⊥ ZB|ZS.

Proposition 29. If P has a positive density (w.r.t. some product measure) then if it
satisfies the pairwise Markov property w.r.t. a graph G, it also satisfies the global Markov
property w.r.t. G and vice versa.

3.3 Gaussian graphical models

Estimating the CIG given samples from P is a difficult task in general. However, in the
case where P is multivariate Gaussian, things simplify considerably as we shall see. We
begin with some notation. For a matrix M ∈ Rp×p, and sets A,B ⊆ {1, . . . , p}, let MA,B

be the |A| × |B| submatrix of M consisting of those rows and columns of M indexed by
the sets A and B respectively. The submatrix extraction operation is always performed
first (so e.g. MT

k,−k = (Mk,−k)
T ).

3.3.1 Normal conditionals

Now let Z ∼ Np(µ,Σ) with Σ positive definite. Note ΣA,A is also positive definite for any
A.

Proposition 30.

ZA|ZB = zB ∼ N|A|(µA + ΣA,BΣ−1
B,B(zB − µB), ΣA,A − ΣA,BΣ−1

B,BΣB,A)
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Proof. Idea: write ZA = MZB+(ZA−MZB) with matrixM ∈ R|A|×|B| such that ZA−MZB
and ZB are independent, i.e. such that

Cov(ZB, ZA −MZB) = ΣB,A − ΣB,BM
T = 0.

This occurs when we take MT = Σ−1
B,BΣB,A. Because ZA −MZB and ZB are indepen-

dent, the distribution of ZA −MZB conditional on ZB = zB is equal to its unconditional
distribution. Now

E(ZA −MZB) = µA − ΣA,BΣ−1
B,BµB

Var(ZA −MZB) = ΣA,A + ΣA,BΣ−1
B,BΣB,BΣ−1

B,BΣB,A − 2ΣA,BΣ−1
B,BΣB,A

= ΣA,A − ΣA,BΣ−1
B,BΣB,A.

Since MZB is a function of ZB and ZA − MZB is normally distributed, we have the
result.

3.3.2 Nodewise regression

Specialising to the case where A = {k} and B = Ac we see that when conditioning on
Z−k = z−k, we may write

Zk = mk + zT−kΣ
−1
−k,−kΣ−k,k + εk,

where

mk = µk − Σk,−kΣ
−1
−k,−kµ−k

εk|Z−k = z−k ∼ N(0, Σk,k − Σk,−kΣ
−1
−k,−kΣ−k,k).

Note that if the jth element of the vector of coefficients Σ−1
−k,−kΣ−k,k is zero, then the

distribution of Zk conditional on Z−k will not depend at all on the jth component of Z−k.
Then if that jth component was Zj′ , we would have that Zk|Z−k = z−k has the same
distribution as Zk|Z−j′k = z−j′k, so Zk ⊥⊥ Zj|Z−j′k.

Thus given x1, . . . , xn
i.i.d.∼ Z and writing

X =

x
T
1
...
xTn

 ,

we may estimate the coefficient vector Σ−1
−k,−kΣ−k,k by regressing Xk on X{k}c and including

an intercept term.
The technique of neighbourhood selection [Meinshausen and Bühlmann, 2006] involves

performing such a regression for each variable, using the Lasso. There are two options for
populating our estimate of the CIG with edges based on the Lasso estimates. Writing Ŝk
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for the selected set of variables when regressing Xk on X{k}c , we can use the “OR” rule

and put an edge between vertices j and k if and only if k ∈ Ŝj or j ∈ Ŝk. An alternative is

the “AND” rule where we put an edge between j and k if and only if k ∈ Ŝj and j ∈ Ŝk.
Another popular approach to estimating the CIG works by first directly estimating Ω,

as we’ll now see.

3.3.3 The precision matrix and conditional independence

The following facts about blockwise inversion of matrices will help us to interpret the mean
and variance in Proposition 30.

Proposition 31. Let M ∈ Rp×p be a symmetric positive definite matrix and suppose

M =

(
P QT

Q R

)
with P and R square matrices. The Schur complement of R is P − QTR−1Q =: S. We
have that S is positive definite and

M−1 =

(
S−1 −S−1QTR−1

−R−1QS−1 R−1 +R−1QS−1QTR−1

)
.

Furthermore det(M) = det(S)det(R).

Let Ω = Σ−1 be the precision matrix. Note that Σk,k − Σk,−kΣ
−1
−k,−kΣ−k,k = Ω−1

kk , and

more generally that Var(ZA|ZAc) = Ω−1
A,A. Also, we see that Σ−1

−k,−kΣ−k,k = −Ω−1
kk Ω−k,k, so

(Σ−1
−k,−kΣ−k,k)j = 0⇔

{
Ωj,k = 0 for j < k

Ωj+1,k = 0 for j ≥ k.

Thus
Zk ⊥⊥ Zj|Z−jk ⇔ Ωjk = 0.

This motivates another approach to estimating the CIG.

3.3.4 The Graphical Lasso

Recall that the density of Np(µ,Σ) is

f(z) =
1

(2π)p/2det(Σ)1/2
exp

(
− 1

2
(z − µ)TΣ−1(z − µ)

)
.

The log-likelihood of (µ,Σ) based on an i.i.d. sample x1, . . . , xn is

`(µ,Ω) =
n

2
log det(Ω)− 1

2

n∑
i=1

(xi − µ)TΩ(xi − µ).
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Write

X̄ =
1

n

n∑
i=1

xi, S =
1

n

n∑
i=1

(xi − X̄)(xi − X̄)T .

Then
n∑
i=1

(xi − µ)TΩ(xi − µ) =
n∑
i=1

(xi − X̄ + X̄ − µ)TΩ(xi − X̄ + X̄ − µ)

=
n∑
i=1

(xi − X̄)TΩ(xi − X̄) + n(X̄ − µ)TΩ(X̄ − µ)

+ 2
n∑
i=1

(xi − X̄)TΩ(X̄ − µ).

Also,
n∑
i=1

(xi − X̄)TΩ(xi − X̄) =
n∑
i=1

tr{(xi − X̄)TΩ(xi − X̄)}

=
n∑
i=1

tr{(xi − X̄)(xi − X̄)TΩ}

= ntr(SΩ).

Thus
`(µ,Ω) = −n

2
{tr(SΩ)− log det(Ω) + (X̄ − µ)TΩ(X̄ − µ)}

and
max
µ∈Rp

`(µ,Ω) = −n
2
{tr(SΩ)− log det(Ω)}.

Hence the maximum likelihood estimate of Ω, Ω̂ML can be obtained by solving

min
Ω:Ω�0

{− log det(Ω) + tr(SΩ)},

where Ω � 0 means Ω is positive definite. One can show that the objective is convex and
we are minimising over a convex set. As

∂

∂Ωjk

log det(Ω) = (Ω−1)kj = (Ω−1)jk,

∂

∂Ωjk

tr(SΩ) = Skj = Sjk,

if X has full column rank so S is positive definite, Ω̂ML = S−1.
The graphical Lasso [Yuan and Lin, 2007] penalises the log-likelihood for Ω and solves

min
Ω:Ω�0

{− log det(Ω) + tr(SΩ) + λ‖Ω‖1},

where ‖Ω‖1 =
∑

j,k |Ωjk|; this results in a sparse estimate of the precision matrix from
which an estimate of the CIG can be constructed. Often the ‖Ω‖1 is modified such that
the diagonal elements are not penalised.
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3.4 Structural equation models

Conditional independence graphs give us some understanding of the relationships between
variables. However they do not tell us how, if we were to set the kth variable to a particular
value, say 0.5, then how the distribution of the other values would be altered. Yet this is
often the sort of question that we would like to answer.

In order to reach this more ambitious goal, we introduce the notion of structural equation
models (SEMs). These give a way of representing the data generating process. We will now
have to make use of not just undirected graphs but other sorts of graphs (and particularly
DAGs), so by graph we will now mean any sort of graph satisfying definition 7.

Definition 11. A structural equation model S for a random vector Z ∈ Rp is a collection
of p equations

Zk = hk(ZPk , εk), k = 1, . . . , p

where

• ε1, . . . , εp are all independent random variables;

• Pk ⊆ {1, . . . , p} \ {k} are such that the graph with edges given by Pk being pa(k) is
a DAG.

Example 3.4.1. Consider the following (totally artificial) SEM which has whether you
are taking this course (Z1 = 1) depending on whether you went to the statistics catch up
lecture (Z2 = 1) and whether you have heard about machine learning (Z3 = 1). Suppose

Z3 = ε3 ∼ Bern(1/4)

Z2 = 1{ε2(1+Z3)>1/2} ε2 ∼ U [0, 1]

Z1 = 1{ε1(Z2+Z3)>1/2} ε1 ∼ U [0, 1].

The corresponding DAG is

Z1

Z3Z2

Note that an SEM for Z determines its law. Indeed using a topological ordering π for
the associated DAG, we can write each Zk as a function of επ−1(1), επ−1(2), . . . , επ−1(π(k)).
Importantly, though, we can use it to tell us much more than simply the law of Z: for
example we can query properties of the distribution of Z after having set a particular
component to any given value. This is what we study next.
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3.5 Interventions

Given an SEM S, we can replace one (or more) of the structural equations by a new
structural equation, for example for a chosen variable k we could replace the structural
equation Zk = hk(ZPk , εk) by Zk = h̃k(Z̃P̃k , ε̃k). This gives us a new structural equation

model S̃ which in turn determines a new joint law for Z.
When we have h̃k(Z̃P̃k , ε̃k) = a for some a ∈ R, so we are setting the value of Zk to

be a, we call this a (perfect) intervention. Expectations and probabilities under this new
law for Z are written by adding |do(Zk = a) e.g. E(Zj|do(Zk = a)). Note that this will in
general be different from the conditional expectation E(Zj|Zk = a).

Example 3.4.1 continued. After the intervention do(Z2 = 1) (everyone is forced to go
to the statistics catch-up lecture), we have a new SEM S̃:

Z3 = ε3 ∼ Bern(1/4)

Z2 = 1

Z1 = 1{ε1(1+Z3)>1/2} ε1 ∼ U [0, 1].

Thus P(Z1 = 1|do(Z2 = 1)) = 1
4

3
4

+ 3
4

1
2

= 9
16

. On the other hand,

P(Z1 = 1|Z2 = 1) =
∑

j∈{0,1}

P(Z1 = 1|Z2 = 1, Z3 = j)P(Z3 = j|Z2 = 1)

=
1

P(Z2 = 1)

∑
j∈{0,1}

P(Z1 = 1|Z2 = 1, Z3 = j)P(Z2 = 1|Z3 = j)P(Z3 = j)

=
1

1
4

3
4

+ 3
4

1
2

(
3

4

3

4

1

4
+

1

2

1

2

3

4

)
=

7

12
6= 9

16
.

3.6 The Markov properties on DAGs

The DAG of an SEM can encode a number of conditional independencies present in the
law of the random vector Z. To understand this, we first introduce Markov properties on
DAGs similar to the Markov properties on undirected graphs we have already studied.

Let P be the joint law of Z and suppose it has a density f .

Definition 12. Given a DAG G, we say P satisfies the

(i) Markov factorisation property w.r.t. the DAG G if

f(z1, . . . , zp) =

p∏
k=1

f(zk|zpa(k)).
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(ii) global Markov property w.r.t. the DAG G if for all disjoint A,B, S ⊆ {1, . . . , p},

A,B d-separated by S ⇒ ZA ⊥⊥ ZB|ZS.

Theorem 32. If P has a density f (with respect to a product measure), then all Markov
properties in definition 12 are equivalent.

In view of this, we will henceforth use the term Markov to mean global Markov.

Proposition 33. Let P be the law of an SEM with DAG G. Then P obeys the Markov
factorisation property w.r.t. G.

Thus we can read off from the DAG of an SEM a great deal of information concerning the
distribution it generates. We can use this to help us calculate the effects of interventions.

We have seen now how an SEM can be used to not only query properties of the joint
distribution, but also to determine the effects of certain perturbations to the system. In
many settings, we may not have a prespecified SEM to work with, but instead we’d like to
learn the DAG from observational data. This is the problem we turn to next.

3.7 Causal structure learning

Given a sample of observations from P , we would like to determine the DAG which gener-
ated it. We can think of this task in terms of two subtasks: firstly we need to understand
how to extract information concerning P from a sample, which is a traditional statistical
question of the sort we are used to; secondly, given P itself, we need to relate this to the
DAG which generated it. The latter problem is unique to casual inference and we discuss
this first.

3.7.1 Three obstacles

There are three obstacles to causal structure learning. The first two are more immediate
but the last is somewhat subtle.

Causal minimality

We know that if P is generated by an SEM with DAG G, then P will be Markov w.r.t. G.
Conversely, one can show that if P is Markov w.r.t. a DAG G, then there is also an SEM
with DAG G that could have generated P . But P will be Markov w.r.t. a great number of
DAGs, e.g. Z1 and Z2 being independent can be represented by

Z1 = 0× Z2 + ε1 = ε1, Z2 = ε2.

This motivates the following definition.

Definition 13. P satisfies causal minimality with respect to G if it is (global) Markov
w.r.t. G but not to a proper subgraph of G with the same nodes.
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Markov equivalent DAGs

It is possible for two different DAGs to satisfy the same collection of d-separations e.g.

Z1 Z2 Z1 Z2

For a DAG G, let

M(G) = {distributions P : P satisfies the global Markov property w.r.t. G}.

Definition 14. We say two DAGs G1 and G2 are Markov equivalent if M(G1) =M(G2).

Proposition 34. Two DAGs are Markov equivalent if and only if they have the same
skeleton and v-structures.

The set of all DAGs that are Markov equivalent to a DAG can be represented by a
completed PDAG (CPDAG) which contains an edge (j, k) if and only if one member of the
Markov equivalence class does. We can only ever hope to obtain the Markov equivalence
class i.e. the CPDAG of a DAG with which P satisfies causal minimality (unless we place
restrictions on the functional forms of the SEM equations).

Faithfulness

Consider the following SEM.

Z1 = ε1

Z2 = αZ1 + ε2

Z3 = βZ1 + γZ2 + ε3,

where ε ∼ N3(0, I). Then (Z1, Z2, Z3) ∼ N3(0,Σ) = P 0 with

Σ =

 1 α β + αγ
α α2 + 1 αβ + γ(α2 + 1)

β + αγ αβ + γ(α2 + 1) β2 + γ2(α2 + 1) + 2βγα + 1

 .

If β + αγ = 0 e.g. if β = −1, α, γ = 1, then Z1 ⊥⊥ Z3. We claim that in this case P 0 can
also be generated by the SEM

Z̃1 = ε̃1

Z̃2 = Z̃1 + α̃Z̃3 + ε̃2

Z̃3 = ε̃3.

Here the ε̃j are independent with ε̃1 ∼ N(0, 1), ε̃3 ∼ N(0, 2), α̃ = 1/2 and ε̃3 ∼ N(0, 1/2).
Writing the DAGs for the two SEMs above as G and G̃, note that P 0 satisfies causal
minimality w.r.t. both G and G̃.
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Definition 15. We say P is faithful to the DAG G if it is Markov w.r.t. G and for all
disjoint A,B, S ⊆ {1, . . . , p},

A,B d-separated by S ⇐ ZA ⊥⊥ ZB|ZS.

Faithfulness demands that all conditional independencies in P are represented in the
DAG. In our example P 0 is not faithful to G, but it is faithful to G̃.

3.7.2 The PC algorithm

Proposition 35. If nodes j and k in a DAG G are adjacent, then no set can d-separate
them. If they are not adjacent and π is a topological order with π(j) < π(k), then they are
d-separated by pa(k).

Proof. Consider a path j = j1, . . . , jm = k. We may assume we don’t have jm−1 → k
as otherwise the path would be blocked since jm−1 ∈ pa(k). Let l be the largest l′ with
jl′−1 → jl′ ← jl′+1; this must exist as otherwise we would have a directed path from k to j
contradicting the topological ordering. In order for the path to be active, jl′ must have a
descendant in pa(k), but this would introduce a cycle.

This shows in particular that any non-adjacent nodes must have a d-separating set. If
we assume that P is faithful w.r.t. a DAG G, we can check whether nodes j and k are
adjacent in G by testing whether there is a set S with Zj ⊥⊥ Zk|ZS. If there is no such set
S, j and k must be adjacent. This allows us to recover the skeleton of G.

Proposition 36. Suppose we have a triple of nodes j, k, l in a DAG and the only non-
adjacent pair is j, k (i.e. in the skeleton j − l − k).

(i) If the nodes are in a v-structure (j → l← k) then no S that d-separates j and k can
contain l.

(ii) If there exists an S that d-separates j and k and l /∈ S, then we must have j → l← k.

Proof. For (i) note that any set containing l cannot block the path j, l, k. For (ii) note we
know that the path j, l, k is blocked by S, so we must have j → l← k.

This last result then allows us to find the v-structures given the skeleton and a d-
separating set S(j, k) corresponding to each absent edge. Given a skeleton and v-structures,
it may be possible to orient further edges by making use of the acyclicity of DAGs; we do
not cover this here.
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Algorithm 1 First part of the PC algorithm: finding the skeleton.

Set Ĝ to be the complete undirected graph. Set ` = −1.
repeat

Increment `→ `+ 1.
repeat

Select a (new) ordered pair of nodes j, k that are adjacent in Ĝ and such that
|adj(Ĝ, j) \ {k}| ≥ `.
repeat

Choose new S ⊆ adj(Ĝ, j) \ {k} with |S| = `.
If Zj ⊥⊥ Zk|ZS then delete edges (j, k) and (k, j) and set S(j, k) = S(k, j) = S.

until edges (j, k), (k, j) are deleted or all relevant subsets have been chosen.
until all relevant ordered pairs have been chosen.

until for every ordered pair j, k that are adjacent in Ĝ we have |adj(Ĝ, j) \ {k}| < `.

Population version

The PC-algorithm, named after its inventors Peter Spirtes and Clarke Glymour [Spirtes
et al., 2000], exploits the fact that we need not search over all sets S but only subsets of
either pa(j) or pa(k) for efficiency. The version assumes P is known and so conditional
independencies can be queried directly. A sample version that is applicable in practice is
given in the following subsection. We denote the set of nodes that are adjacent to a node
j in graph G by adj(G, j).

Suppose P is faithful to DAG G0. At each stage of the Algorithm 1 we must have that
the skeleton is a subgraph of Ĝ. By the end of the algorithm, for each pair j, k adjacent in
Ĝ, we would have searched through adj(Ĝ, j) and adj(Ĝ, k) for sets S such that Zj ⊥⊥ Zk|ZS.
If P were faithful to G0 then, we would know that j and k must be adjacent in G0. That
is the output of Algorithm 1 would be the skeleton of G0.

Algorithm 2 Second part of the PC algorithm: finding the v-structures

for all pairs of non-adjacent variables j, k (in skeleton Ĝ) with common neighbour l do
If l /∈ S(j, k) then orient j → l← k.

end for

Sample version

The sample version of the PC algorithm replaces the querying of conditional independence
with a conditional independence test applied to data x1, . . . , xn. The level of the test
α will be a tuning parameter of the method. If the data are assumed to be multivariate
normal, the (sample) partial correlation can be used to test conditional independence since
if Zj ⊥⊥ Zk|ZS then

Corr(Zj, Zk|ZS) := ρjk·S = 0.
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To compute the sample partial correlation, we regress Xj and Xk on XS and compute the
correlation between the resulting residuals.
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Chapter 4

Multiple testing and
high-dimensional inference

In many modern applications, we may be interested in testing many hypotheses simul-
taneously. Suppose we are interested in testing null hypotheses H1, . . . , Hm of which m0

are true and m − m0 are not (we do not mention the alternative hypotheses explicitly).
Consider the following contingency table:

Claimed non-significant Claimed significant (reject) Total

True null hypotheses N00 N01 m0

False null hypotheses N10 N11 m−m0

Total m−R R m

The Njj are unobserved random variables; R is observed.
Suppose we have p-values p1, . . . , pm associated with H1, . . . , Hm and Hi, i ∈ I0 are the

true null hypotheses, so
P(pi ≤ α) ≤ α

for all α ∈ [0, 1], i ∈ I0. Traditional approaches to multiple testing have sought to control
the familywise error rate (FWER) defined by

FWER = P(N01 ≥ 1)

at a prescribed level α; i.e. find procedures for which FWER ≤ α. The simplest such
procedure is the Bonferroni correction, which rejects Hi if pi ≤ α/m.

Theorem 37. Using Bonferroni correction,

P(N01 ≥ 1) ≤ E(N01) ≤ m0α

m
≤ α.
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Proof. The first inequality comes from Markov’s inequality. Next

E(N01) = E
(∑

i∈I0

1{pi≤α/m}

)
=
∑
i∈I0

P(pi ≤ α/m)

≤ m0α

m
.

A more sophisticated approach is the closed testing procedure.

4.1 The closed testing procedure

Given our family of hypotheses {Hi}mi=1, define the closure of this family to be

{HI : I ⊆ {1, . . . ,m}, I 6= ∅}

where HI = ∩i∈IHi is known as an intersection hypothesis (HI is the hypothesis that all
Hi i ∈ I are true).

Suppose that for each I, we have an α-level test φI taking values in {0, 1} for testing
HI (we reject if φI = 1), so under HI ,

PHI (φI = 1) ≤ α.

The φI are known as local tests.
The closed testing procedure [Marcus et al., 1976] is defined as follows:

Reject HI if and only if for all J ⊇ I,

HJ is rejected by the local test φJ .

Typically we only make use of the individual hypotheses that are rejected by the procedure
i.e. those rejected HI where I is a singleton.

We consider the case of 4 hypotheses as an example. Suppose the underlined hypotheses
are rejected by the local tests.

H1234

H123 H124 H134 H234

H12 H13 H14 H23 H24 H34

H1 H2 H3 H4

• Here H1 is rejected be the closed testing procedure.

• H2 is not rejected by the closed testing procedure as H24 is not rejected by the local
test.
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• H23 is rejected by the closed testing procedure.

Theorem 38. The closed testing procedure makes no false rejections with probability 1−α.
In particular it controls the FWER at level α.

Proof. Assume I0 is not empty (as otherwise no rejection can be false anyway). Define the
events

A = {at least one false rejection} ⊇ {N01 ≥ 1},
B = {reject HI0 with the local test} = {φI0 = 1}.

In order for there to be a false rejection, we must have rejected HI0 with the local test.
Thus B ⊇ A, so

FWER ≤ P(A) ≤ P(φI0 = 1) ≤ α.

Different choices for the local tests give rise to different testing procedures. Holm’s
procedure takes φI to be the Bonferroni test i.e.

φI =

{
1 if mini∈I pi ≤ α

|I|

0 otherwise.

It can be shown (see example sheet) that Holm’s procedure amounts to ordering the p-
values p1, . . . , pm as p(1) ≤ · · · ≤ p(m) with corresponding hypothesis tests H(1), . . . , H(m),
so (i) is the index of the ith smallest p-value, and then performing the following.

Step 1. If p(1) ≤ α/m reject H(1), and go to step 2. Otherwise accept H(1), . . . , H(m) and
stop.

Step i. If p(i) ≤ α/(m−i+1), reject H(i) and go to step i+1. Otherwise accept H(i), . . . , H(m).

Step m. If p(m) ≤ α, reject H(m). Otherwise accept H(m).

The p-values are visited in ascending order and rejected until the first time a p-value exceeds
a given critical value. This sort of approach is known (slightly confusingly) as a step-down
procedure.

4.2 The False Discovery Rate

A different approach to multiple testing does not try to control the FWER, but instead
attempts to control the false discovery rate (FDR) defined by

FDR = E(FDP)

FDP =
N01

max(R, 1)
,
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where FDP is the false discovery proportion. Note the maximum in the denominator is
to ensure division by zero does not occur. The FDR was introduced in Benjamini and
Hochberg [1995], and it is now widely used across science, particularly biostatistics.

The Benjamini–Hochberg procedure attempts to control the FDR at level α and works
as follows. Let

k̂ = max

{
i : p(i) ≤

iα

m

}
.

Reject H(1), . . . , H(k̂) (or perform no rejections if k̂ is not defined).

Theorem 39. Suppose that the pi, i ∈ I0 are independent, and independent of {pi :
i /∈ I0}. Then the Benjamini–Hochberg procedure controls the FDR at level α; in fact
FDR ≤ αm0/m.

Proof. For each i ∈ I0, let Ri denote the number of rejections we get by applying a modified
Benjamini–Hochberg procedure to

p\i := {p1, p2, . . . , pi−1, pi+1, . . . , pm}

with cutoff

k̂i = max

{
j : p

\i
(j) ≤

α(j + 1)

m

}
,

where p
\i
(j) is the jth smallest p-value in the set p\i.

For r = 1, . . . ,m and i ∈ I0, note that{
pi ≤

αr

m
, R = r

}
=

{
pi ≤

αr

m
, p(r) ≤

αr

m
, p(s) >

αs

m
for all s > r

}
=

{
pi ≤

αr

m
, p
\i
(r−1) ≤

αr

m
, p
\i
(s−1) >

αs

m
for all s > r

}
=

{
pi ≤

αr

m
, Ri = r − 1

}
.
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Thus

FDR = E
(

N01

max(R, 1)

)
=

m∑
r=1

E
(
N01

r
1{R=r}

)
=

m∑
r=1

1

r
E
(∑

i∈I0

1{pi≤αr/m}1{R=r}

)

=
m∑
r=1

1

r

∑
i∈I0

P(pi ≤ αr/m, R = r)

=
m∑
r=1

1

r

∑
i∈I0

P(pi ≤ αr/m)P(Ri = r − 1)

≤ α

m

∑
i∈I0

m∑
r=1

P(Ri = r − 1)

=
αm0

m
.

4.3 Inference in high-dimensional regression

Consider the normal linear model Y = Xβ0 + ε where ε ∼ Nn(0, σ2I). In the low-
dimensional setting, the fact that β̂OLS − β0 ∼ Np(0, σ

2(XTX)−1) allows us to form con-
fidence intervals for components of β0

j and perform hypothesis tests with H0 : β0
j = 0, for

example.
One might hope that studying the distribution of β̂L

λ − β0 would enable us to perform
these tasks in the high-dimensional setting when p � n. However, the distribution of
β̂L
λ − β0 is intractable and depends delicately on the unknown β0, making it unsuitable as

a basis for establishing confidence intervals.
Whilst several methods have been proposed over the years, typically they have involved

placing conditions on the unknown β0, other than the usual assumption of sparsity. Given
that the task is to perform inference for β0, such conditions are undesirable. In the last
couple of years, there has been a breakthrough on this front [Zhang and Zhang, 2014,
Van de Geer et al., 2014], and here we will aim to cover the main ideas in this exciting
development. Our treatment follows Van de Geer et al. [2014].

We begin our investigation by considering the KKT conditions of the Lasso. Fix λ > 0
and let β̂ be the Lasso estimator with tuning parameter λ. Recall that the KKT conditions
give

1

n
XT (Y −Xβ̂) = λν̂

where ‖ν̂‖∞ ≤ 1 and writing Ŝ = {k : β̂k 6= 0}, ν̂Ŝ = sgn(β̂Ŝ). Setting Σ̂ = XTX/n and
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rearranging we have

Σ̂(β̂ − β0) + λν̂ =
1

n
XT ε.

The key idea is now to form an approximate inverse Θ̂ of Σ̂. Then we have

β̂ + λΘ̂ν̂ − β0 =
1

n
Θ̂XT ε+

1√
n

∆

where ∆ =
√
n(Θ̂Σ̂− I)(β0 − β̂). Define

b̂ = β̂ + λΘ̂ν̂ = β̂ + Θ̂XT (Y −Xβ̂)/n,

which we shall refer to as the debiased Lasso. If we choose Θ̂ such that ∆ is small, we will
have b̂− β0 ≈ Θ̂XT ε/n, which can be used as a basis for performing inference.

We already know that under a compatibility condition on the design matrixX, ‖β̂−β0‖1

is small (Theorem 23) with high probability. If we can also show that the `∞-norms of
rows of Θ̂Σ̂− I are small, we can leverage this fact using Hölder’s inequality to show that
‖∆‖∞ is small. Let θ̂j be the jth row of Θ̂. Then ‖(Σ̂Θ̂T − I)j‖∞ ≤ η is equivalent to

1

n
‖XT
−jXθ̂j‖∞ ≤ η and |XT

j Xθ̂j/n− 1| ≤ η.

The first of these inequalities is somewhat reminiscent of the KKT conditions for the Lasso.
Let

γ̂(j) = arg min
γ∈Rp−1

{
1

2n
‖Xj −X−jγ‖2

2 + λj‖γ‖1

}
. (4.3.1)

Further let

τ̂ 2
j = XT

j (Xj −X−j γ̂(j))/n =
1

n
‖Xj −X−j γ̂(j)‖2

2 + λj‖γ̂(j)‖1;

see the example sheet for the final equality. Then set

θ̂j = − 1

τ̂ 2
j

(γ̂
(j)
1 , . . . , γ̂

(j)
j−1, − 1, γ̂

(j)
j , . . . , γ̂

(j)
p−1)T .

↑
jth position

Note that by construction,

Xθ̂j =
Xj −X−j γ̂(j)

XT
j (X −X−j γ̂(j))/n

.

Thus XT
j Xθ̂j/n = 1 and by the KKT conditions of the Lasso optimisation (4.3.1), we have

τ̂ 2
j ‖XT

−jXθ̂j‖∞/n ≤ λj.
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Thus with the choice of Θ̂ defined as above, we have

‖∆‖∞ ≤
√
n‖β̂ − β0‖1 max

j

λj
τ̂ 2
j

When can we expect λj/τ̂
2
j to be small? One way of answering this is to consider a random

design setting. Let us assume that each row of X is independent and distributed as Np(0,Σ)
where Σ is positive definite. Write Ω = Σ−1. From Proposition 30 and our study of the
neighbourhood selection procedure (see also Section 3.3.3), we know that for each j, we
can write

Xj = X−jγ
(j) + ε(j), (4.3.2)

where ε
(j)
i |X−j

i.i.d.∼ N(0,Ω−1
jj ) and γ(j) = −Ω−1

jj Ω−j,j. Theorem 23 can therefore be used to

understand properties of γ̂(j) and hence the τ̂ 2
j . In order to apply this result however, we

need γ(j) to be sparse. Let us therefore define

sj =
∑
k 6=j

1{Ωkj 6=0}

and smax = max(maxj sj, s). In order to make the following result more easily interpretable,
we will consider an asymptotic regime where X, s, smax etc. are all allowed to change as
n→∞, though we suppress this in the notation. We will consider σ as constant.

Theorem 40. Suppose the minimum eigenvalue of Σ is always at least cmin > 0 and
maxj Σjj ≤ 1. Suppose further that smax

√
log(p)/n → 0. Then there exists constants

A1, A2 such that setting λ = λj = A1

√
log(p)/n, we have

√
n(b̂− β0) = W + ∆

W |X ∼ Np(0, σ
2Θ̂Σ̂Θ̂T ),

and as n, p→∞,
P(‖∆‖∞ > A2s log(p)/

√
n)→ 0.

Proof. Consider the sequence of events Λn described by the following properties:

• φ2
Σ̂,s
≥ cmin/2 and φ2

Σ̂−j,−j ,sj
≥ cmin/2 for all j,

• 2‖XT ε‖∞/n ≤ λ and 2‖XT
−jε

(j)‖∞/n ≤ λ for all j,

• ‖ε(j)‖2
2/n ≥ Ω−1

jj (1− 4
√

log(p)/n) for all j.

You will show on the example sheet that then P(Λn)→ 1 for A1 sufficiently large. In the
following we work on Λn, and c1, c2, . . . will be constants.

By Theorem 23, we have

‖β̂ − β0‖1 ≤ c1s
√

log(p)/n.
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We now seek a lower bound for the τ̂ 2
j . Consider the linear models in (4.3.2). Note that

the maximum eigenvalue of Ω is at most c−1
min so Ωjj ≤ c−1

min. Also, Ω−1
jj = Var(Xij|Xi,−j) ≤

Var(Xij) = Σjj ≤ 1. Thus applying Theorem 23 to the linear models (4.3.2), we know that

‖γ(j) − γ̂(j)‖1 ≤ c2sj
√

log(p)/n.

Then

τ̂ 2
j ≥

1

n
‖Xj −X−j γ̂(j)‖2

2 ≥
1

n
‖ε(j)‖2

2 −
2

n
‖XT
−jε

(j)‖∞‖γ(j) − γ̂(j)‖1

≥ Ω−1
jj (1− 4

√
log(p)/n)− c4smax log(p)

n
≥ cmin/2

for all j when n is sufficiently large. Putting things together we see that on Λn,

‖∆‖∞ ≤ λ
√
n‖β̂ − β0‖1 max

j
τ̂−2
j

≤ 2A1

√
log(p)(c1s

√
log(p)/n)/cmin ≤ A2s log(p)/

√
n

where A2 = 2c1A1/cmin. Thus

P(‖∆‖∞ > A2s log(p)/
√
n) ≤ P(Λc

n)→ 0.

4.3.1 Using the debiased Lasso in practice

Theorem 40 shows in particular that

√
n(b̂j − β0

j ) ≈ Wj

where Wj ∼ N(0, σ2(Θ̂Σ̂Θ̂T )jj). Let (Θ̂Σ̂Θ̂T )jj = dj. The approximate equality above
suggests constructing (1-α)-level confidence intervals of the form[

b̂j − zα/2σ
√
dj/
√
n, b̂j + zα/2σ

√
dj/
√
n
]
,

where zα is the upper α point of a standard normal. The only unknown quantity in the
confidence interval above is σ: this can be estimated [Sun and Zhang, 2012].
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