
lable at ScienceDirect

Digital Investigation xxx (2016) 1e7
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
Modern windows hibernation file analysis

Joe T. Sylve a, b, *, Vico Marziale a, Golden G. Richard III b

a Blackbag Technologies, Inc, San Jose, CA, USA
b Department of Computer Science, University of New Orleans, New Orleans, LA, USA
a r t i c l e i n f o

Article history:
Received 1 September 2016
Received in revised form
22 October 2016
Accepted 16 December 2016
Available online xxx

Keywords:
Microsoft windows
Memory analysis
Memory forensics
Hibernation file
Digital forensics
* Corresponding author.
E-mail addresses: joe.sylve@gmail.com (J.T.

(V. Marziale), golden@cs.uno.edu (G.G. Richard).

http://dx.doi.org/10.1016/j.diin.2016.12.003
1742-2876/© 2016 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Sylve, et al
j.diin.2016.12.003
a b s t r a c t

This paper presents the first analysis of the new hibernation file format that is used in Windows versions
8, 8.1, and 10. We also discuss several changes in the hibernation and shutdown behavior of Windows
that will have a direct impact on digital forensic practitioners who use hibernation files as sources of
evidence.

© 2016 Elsevier Ltd. All rights reserved.
Introduction

Starting with Windows 2000, Microsoft introduced a hiberna-
tion facility that allows a system to be powered down, while still
preserving its volatile state. This is accomplished by saving the
contents of RAM and the processor context to disk in a file called
hiberfil.sys prior to shutdown.When the computer is again powered
on the volatile state is restored and the system continues from the
saved state.

Hibernation files are a good source of information for digital
forensic practitioners, because they store ephemeral data from the
contents of RAM to non-volatile storage without the need to run
specialized tools on the target device.

Memory analysis frameworks like Volatility (2007e2016) and
Rekall (2013e2016) make it easy to analyze hibernation files in
much the same way as you would a raw memory dump; however,
these tools are not compatible with hibernation files from the most
recent versions of Windows. This is because, while the original
hibernation file format is well understood, Microsoft changed the
hibernation format with the release of Windows 8.

In this paper we will provide an overview of the legacy hiber-
nation file format as well as present the first analysis of the new
Sylve), vicodark@gmail.com

., Modernwindows hibernatio
format that is used in Windows 8, 8.1, and 10. We have imple-
mented support for the new format in our experimental memory
analysis framework. We also discuss several changes in the hiber-
nation and shutdown behavior of Windows that will have a direct
impact on digital forensic practitioners who use hibernation files as
sources of evidence. It is our hope that with this knowledge,
existing memory analysis tools can be instrumented to support the
new hibernation file format.

Related work

The Windows XP hibernation file format was first publicly
documented by Nicolas Ruff and Matthieu Suiche in their PacSec
2007 presentation (Ruff and Suiche, 2007). They were also the first
to note the that when hibernation is resumed only the hibernation
file header is zeroed, retaining the hibernation data until the next
hibernation event.

In 2009 Brendan Dolan-Gavitt introduced support for the hi-
bernation file into the Volatility memory analysis framework in
Dolan-Gavitt (2009).

Microsoft announced the release of Windows 8 in 2012
(Microsoft, 2012). This release changes the format of the hiberna-
tion file, breaking all existing analysis tools.

During the course of our research effort, Matthieu Suiche was
simultaneously studying the format of modern windows hiberna-
tion files. In May 2016 Suiche sent an email to the Volatility Users
mailing list, announcing a beta version of Hibr2Bin which supports
n file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/

mailto:joe.sylve@gmail.com
mailto:vicodark@gmail.com
mailto:golden@cs.uno.edu
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.12.003
http://dx.doi.org/10.1016/j.diin.2016.12.003
http://dx.doi.org/10.1016/j.diin.2016.12.003


Fig. 1. Example Windows 7 hiberfil.sys layout.

J.T. Sylve et al. / Digital Investigation xxx (2016) 1e72
Windows 8, 8.1, and 10 hibernation files (Suiche, 2016a). Hibr2Bin is
a tool that converts Windows hibernation files to raw memory
images so that they can be analyzed by memory analysis tools that
do not natively support parsing hibernation files. The updated
Hibr2Bin was released publicly in late September 2016 (Suiche,
2016b).

Hibr2Bin does not allow the direct analysis of hibernation files
and Suiche has not publicly released any description of the new
format. We have also found that Hibr2Bin fails to properly handle
hibernation files from the latest versions of Windows for reasons
we explore in Section Validation against Hibr2Bin.

Windows XP-7 hibernation format

Windows hibernation files provide non-volatile storage of the
system's processor state and physical memory in order to resume a
powered-off system to its previous state. While this feature has
been available in some capacity since Windows 2000, there are
currently two variations of hibernation files that are commonly
encountered by investigators today.

The first variationwewill discuss is thewell-known format used
by Windows XP, Vista and 7 (hereafter referred to as Windows XP-
7).

Windows hibernation files can be found at the root of the sys-
tem drive in a system-protected file called hiberfil.sys. An overview
of the layout of hiberfil.sys on Windows XP-7 can be found in Fig. 1.
Each of the relevant structures will be discussed in this section.

Windows XP-7 hibernation files generally exist in one of two
states: hibernated or restored. A file is considered in the hibernated
state when the hibernation process is completed and the system
has powered off for the first time. When the system is powered
back on, the contents of the hibernation file are restored tomemory
and the stored processor context is loaded. The first 4096 bytes of
the hibernation file are zeroed and the file is then considered in the
restored state. The file will not be modified again until the next
time a system hibernation is performed.

File header

Hibernation files in the hibernated state begin with a PO_ME-

MORY_IMAGE header. While the exact structure of the header varies
slightly among OS versions, it is defined publicly in the kernel's
debugging symbols. By using the dt command of the Microsoft
Kernel Debugger tool, WinDbg (Microsoft, 2016a), we can learn the
exact structure of the header used in a given version of Windows.
Fig. 2 shows the definition of the header from the 64-bit version of
Windows 7 SP1.

Hibernated hyberfil.sys files contain the ASCII value of hibr or
HIBR in the Signature field. While the system is in the process of
resuming from hibernation, this field is changed to the value of
rstr or RSTR. Once the system successfully resumes from hiber-
nation, the header is lost when the first 4096 bytes are zeroed.

Processor context

In order to resume execution after hibernation, hiberfil.sys
contains a stored copy of all the processor register values. This
context is stored in an OS-version-specific _KPROCESSOR_STATE

structure, whose definition can be discovered with WinDbg. The
offset of this structure inside of hiberfil.sys also depends on the OS
version. The offsets for all the relevant versions can be found in
Table 1.

Knowledge of the processor context can be valuable during the
memory analysis process. For example, during hibernation the CR3

register encodes the physical address of the system's page tables,
Please cite this article in press as: Sylve, et al., Modernwindows hibernati
j.diin.2016.12.003
and on 32-bit systems the CR4 register contains a flag which tells
whether or not page address extensions (PAE) are enabled. These
values can be discovered by reading the SpecialRegisters.Cr3

and SpecialRegisters.Cr4 members of the _KPROCESSOR_-

STATE respectively. Both of these properties must be learned in
order to successfully perform address translation during analysis.
on file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/



Fig. 2. Definition of the PO_MEMORY_IMAGE structure (Windows 7 SP1 x64).

Table 1
Starting offsets of the stored processor context.

Windows version File offset

XP 0x2000
Vista 0x4000
Vista SP1 0x1000
Vista SP2 0x1000
7 0x1000
7 SP1 0x1000

J.T. Sylve et al. / Digital Investigation xxx (2016) 1e7 3
Physical memory

Along with processor context, physical memory pages must also
be restored before resuming from hibernation. The majority of
space in the hiberfil.sys is used to store a compressed copy of the
active physical memory pages of the system.

As shown in Fig. 1, hiberfil.sys contains a linked list of table pages
that are each followed by a set of compressed blocks that we will
refer to as an XPRESS set. Together, table pages and XPRESS sets
contain the meta-data and data needed to reconstruct the state of
physical memory that is required to resume execution. This section
will discuss both of these data types.
Table pages
Table pages contain _PO_MEMORY_RANGE_ARRAY structures

that list, in order, which physical memory pages are associated with
the data contained in the next XPRESS set. These structures are
Fig. 3. Definition of Table Page structures.

Please cite this article in press as: Sylve, et al., Modernwindows hibernatio
j.diin.2016.12.003
defined in Fig. 3. Each table page starts with a _PO_MEMORY_R-

ANGE_ARRAY_LINK structure followed by a number of _PO_ME-
MORY_RANGE_ARRAY_RANGE structures as determined by the
EntryCount field of the link.

Each range defines a set of physical pages that are to be restored
with the data stored in the next XPRESS set. The pages defined in
the first range are associated with the first pages of XPRESS data.
The pages defined in the second range are associated with the next
pages of XPRESS data, and so on.

Since a table page can not exceed 4 KiB in size, only a limited
number of page ranges can be stored in a single array, thus the
NextTable field of the link may contain a page number of the next
table page in the hiberfil.sys. This page number, multiplied by 4096,
gives the offset in bytes of the next table page. The last table page
contains a NextTable value of zero.

XPRESS sets
A 4 KiB aligned XPRESS set of compression blocks follows each

table page. Each compression block starts with an IMAGE_-

EXPRESS_HEADER as defined in Fig. 4. Signature should be the 8-
byte value \x81\x81xpress. UncompressedPages encodes the
number of pages (minus one) in the block. CompressedSize en-
codes the size of the block data. If CompressedSize is equal to the
size of the number of 4 KiB pages in the block, then the data is
stored uncompressed; otherwise, the data is compressed using the
Plain LZ77 XPRESS algorithm as described inMicrosoft (2016b). The
block data immediately follows the header.

Until all pages in the ranges defined in the previous table page
are accounted for, another compression block exists in the set
immediately following the block data.

First table page
In order to analyze the physical memory pages stored in the

hibernation file we must first locate the first table page (FTP). For
hibernated hyberfil.sys files we can simply look up the value in the
FirstTablePage field of the PO_MEMORY_IMAGE header. This
field will contain a page number which can be multiplied by 4096
to calculate the offset of the FTP.

Restored hibernation files no longer contain the PO_ME-

MORY_IMAGE header, sowemust apply a scanningmethod to locate
the FTP. We start by scanning on 4 KiB boundaries from the start of
the file for the XPRESS header signature of \x81\x81xpress. Once
we locate our first signature then we know we have found our first
XPRESS set. Since XPRESS sets always follow table pages, the FTP
should be located 4096 bytes before this.

Windows 8þ hibernation format

The next variation of hibernation files was introduced with the
release of Windows 8 in 2012. As of the time of this writing that
new variation of hibernation file is still used in the latest Windows
release, Windows 10 v1607 (Windows 10 Anniversary Edition). To
the authors’ knowledge this variation has never been publicly
documented and there are no publicly available tools for analysis.

In this section we will describe for the first time how the new
format differs from the legacy XP-7 format. For brevity's sake we
Fig. 4. IMAGE_EXPRESS_HEADER structure definition.

n file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/



Fig. 6. Relevant members of PO_MEMORY_IMAGE (Windows 10 v1607 x64).

J.T. Sylve et al. / Digital Investigation xxx (2016) 1e74
will refer to the set of all windows versions from Windows 8
through the current version as Windows 8þ.

An overview of the Windows 8þ hiberfil.sys can be found in
Fig. 5. Each of the relevant components will be discussed in this
section.

File header

As with the prior version, the Windows 8þ hibernation file
begins with a PO_MEMORY_IMAGE header structure. Many new
fields have been added to this structure, and as before the structure
slightly differs between OS versions. A partial definition of
PO_MEMORY_IMAGE from the 64-bit version of Windows 10 v1607
is shown in Fig. 6.

There are now four valid Signature values: HIBR for the hi-
bernated state, RSTR for when the system is actively being resumed
from hibernation, and WAKE for after hibernation has been suc-
cessful. Windows Embedded supports an additional value of HORM.
This is to support a feature known as Hibernate Once/ResumeMany
(HORM). When enabled, HORM allows the system to always
resume from the last saved hibernation file (Microsoft, 2015). Non-
Embedded versions of Windows do not support HORM, thus this
signature value is less commonly seen by practitioners.

Unlike the previous version, restored hibernation files retain
their headers, but everything after the first 4 KiB of data is now
zeroed once the system successfully resumes from hibernation.
Because of this, restored hibernation files no longer contain pro-
cessor contexts or physical memory. This has implications to the
Fig. 5. Example Windows 8þ hiberfil.sys layout.

Please cite this article in press as: Sylve, et al., Modernwindows hibernati
j.diin.2016.12.003
forensic process that we will discuss in Section Forensic
implications windows 8þ.

Processor context

The processor context is stored in the same fashion as described
in Section Processor context with all current OS versions storing the
_KPROCESSOR_STATE structure at offset 0x1000 from the begin-
ning of hiberfil.sys.

Physical memory

The most significant change made in the Windows 8þ hiber-
nation format deals with how the physical memory pages are
stored. The notion of chained table pages, followed by XPRESS sets
of compressed blocks of data has been abandoned in favor of an
easier-to-parse approach, which will be described in this section.

Restoration sets
Windows 8þ groups physical pages of memory into one or more

sets, which we are calling restoration sets. Each restoration set is
stored in the hibernation file using the same on-disk structure, but
are loaded into memory by different stages of the hibernation
restoration process.

The FirstBootRestorePage member of the PO_MEMORY_-

IMAGE header contains the page number of the first restoration set
stored in the image. Multiplying this number by the page size of
4096 gives the offset of the BootRestorePages in bytes. This
restoration set is restored to memory in the first stage of the
resume process by the kernel's bootloader, winresume.exe. The
total number of pages in this restoration set is stored in both the
NumPagesForLoader and PerfInfo.BootPagesProcessed

fields of the file header.
An additional restoration set may also be present. If the

FirstKernelRestorePagemember of the header is non-zero, its
value gives the page number of the start of the KernelRestore-

Pages. This restoration set is restored by ntoskrnl.exe after the
bootloader turns over control. The total number of pages in this
restoration set is stored in the PerfInfo.KernelPage-

sProcessed member of the file header.
With the release of Windows 10 a FirstSecureRestorePage

member was added to the PO_MEMORY_IMAGE header. This sug-
gests that there may be a third potential restoration set, but we
have not yet encountered a hibernation file in which this member
has a non-zero value. While it is still uncertain when this restora-
tion set is used, if ever, it may be a part of the new Secure Kernel
on file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/



Fig. 8. Definition of the 32 and 64-bit page descriptors (Windows 8þ).

J.T. Sylve et al. / Digital Investigation xxx (2016) 1e7 5
Mode (SKM) facility described by Ionescu (2014). Further research
is needed to determine if this is the case and if the on-disk structure
is the same as the two known restoration sets.

Compression sets
A restoration set contains one or more compression sets (our

terminology), each of which stores the data from at most sixteen 4
KiB physical memory pages (64 KiB of data). A compression set
starts with an undocumented 32-bit little-endian com-

pression_set_header as defined in Fig. 7. The first 8 least sig-
nificant bits encode the number of page descriptors that follow the
header, if this value is either zero or greater than 16, the image is
considered corrupt and hibernation is aborted. The next 22 least
significant bits contain the size (in bytes) of the compressed data
that follows the descriptors. The most significant bit indicates the
compression algorithm used.

The compression_set_header is followed by Number-

OfDescs page descriptors. These undocumented little-endian
page_descriptor structures are 8 bytes long on 64-bit versions
of Windows and 4 bytes long on 32-bit versions of Windows. The
definitions of these structures can be found in Fig. 8. Each
descriptor defines a contiguous page set of 4 KiB pages. The four
least-significant bits encode the number of contiguous pages in the
set. The actual number of pages in the set can be found by adding
one to NumPages. The rest of the bits encode the physical page
number of the first page in the contiguous page set. The first page's
physical address can be calculated by multiplying PageNum by the
page size of 4096 bytes. The sum of the number of pages in each of
the contiguous page sets determines the total number of pages in
the compression set.

The set of page_descriptor structures are followed by
SizeOfCompressedData bytes of data. If SizeOfCom-

pressedData is equal to the size of the total number of pages in the
compression set then the page data is stored uncompressed,
otherwise the data is compressed. If the HuffmanCompressed bit is
set in the compression_set_header, the data is compressed us-
ing the LZ77þHuffman XPRESS algorithm as described in Microsoft
(2016b); otherwise the Plain LZ77 XPRESS algorithm is used.

The uncompressed data consists of the concatenated pages of
the contiguous page set in the order that they were defined. Until
all of the pages in the restoration set are accounted for, the com-
pressed data is immediately followed by the header for the next
compression set.

Verification

To verify that our analysis of the undocumented Windows 8þ
hibernation file format is correct, support for analyzing the format
was added to our experimental memory analysis framework by
creating a new address translation layer. In our framework an
address translation layer is similar to an address space class in
Volatility. It provides a layer of abstraction that translates a given
physical address to an offset inside of the uncompressed data of the
relevant compression set and returns the number of bytes
requested. This allows higher level address translation layers to
request data from the physical address space without direct
knowledge of the underlying data storage format.
Fig. 7. Definition of the page descriptor header (Windows 8þ).

Please cite this article in press as: Sylve, et al., Modernwindows hibernatio
j.diin.2016.12.003
Hibernation files were then acquired from each of the relevant
versions of Windows and processed through our framework. Each
of our analysis plugins were able to execute successfully. As an
example, Fig. 9 shows the partial output of our process listing
plugin ran against the hiberfil.sys file from a hibernated Windows
10 v1607 system.While themajority of the output shown in Fig. 9 is
parsed from _EPROCESS structures that reside in the kernel's
address space, the final displayed property of the processes' path is
read from the _PEB structure stored in each process's own address
space. This shows that both kernel space and user space memory
are successfully parsed from the hibernation file.

Additionally, since the framework powers the memory analysis
capabilities in our popular forensics tool, BlackLight (Blackbag
Technologies, 2016), it was possible to process each of the hiber-
nation files through a development version of BlackLight 2016 R3.
Each of the hibernation files produced expected results and all of
the memory analysis features worked properly.

In order to test against other memory analysis tools it was
necessary to first convert the hibernation files into raw memory
dumps. Our memory analysis framework was instrumented to
write to a file, at the appropriate offsets, the decompressed con-
tents of each page stored in the hibernation file. The missing pages
were padded with null bytes. The converted images were then
processed through both the Volatility1 and Rekall2 memory analysis
frameworks. Each of the relevant plugins in both tools gave
reasonable results for all images tested.
Validation against Hibr2Bin

Once support for modern hibernation files became available in
Hibr2Bin3 it was possible to validate our methodology against its
output. Hibr2Bin was used to convert a sample of hiberfil.sys files
collected from both 32-bit and 64-bit versions of Windows 8þ
systems to raw memory dumps. Each raw memory dump was then
hashed using the MD5 and SHA1 algorithms and compared against
hashes from dumps produced by our analysis framework as
described in Section Verification.

The majority of the images created with Hibr2Binwere identical
to those created using our methodology; However, images from the
latest versions of Windows, Windows 10 v1607, produced drasti-
cally different images.

As an example a hiberfil.syswas taken from aWindows 10 v1607
x64 system and converted to rawwith Hibr2Bin. Hibr2Bin reported
that it decompressed a total of 53,906 pages, while our analysis tool
reported that it decompressed a total of 367,296 pages. 53,906 of
these pages were from the BootRestorePages and 313,390 were
1 Volatility 2.5, commit 534374da57679dc353c974de45d27a42b81931ec.
2 Rekall 1.5.3, commit 434458fb117c7ca56503491c89cb1b55b9acf908.
3 Hibr2Bin 3.0.109.20161007.

n file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/



Fig. 9. Process listing from a Windows 10 v1607 x64 hibernation file.

J.T. Sylve et al. / Digital Investigation xxx (2016) 1e76
from the KernelRestorePages. The image produced by Hibr2Bin
could not be processed by either Volatility or Rekall, while the
image produced via our methodology worked flawlessly in both.
This is likely because the majority of pages were missing from the
Hibr2Bin image.

Since the number of BootRestorePages matched the total
reported number of collected pages from Hibr2Bin we surmised
that Hibr2Bin must only decompress the first restoration set of
pages that are restored by the boot loader, ignoring the second set
of kernel-restored pages. In all images in which Hibr2Bin produced
exact output as using our methodology, the First-

KernelRestorePagemember of the _PO_MEMORY_IMAGE header
was set to zero, meaning that the KernelRestorePages were
unused. For the remaining images, where the second restoration
set was in use we hashed each of the BootRestorePages indi-
vidually and compared them across images produced by both tools.
In all cases each of the hashes matched exactly.

Since both tools were developed completely independently and
produce comparable output we can surmise that the methodology
described in this paper is correct. Although the version of Hibr2Bin
available at the time of this writing fails to restore the Ker-

nelRestorePages, it is likely that these pages have simply been
overlooked and could be restored by future versions of the tool
using the same methods used to restore the BootRestorePages.
Analysis

In order to determine the effect on the hibernation file from
different ways of powering off the system, we performed the
following analysis.

For each version of Windows listed in Table 2 the following
procedure was followed:
Table 2
Windows versions and their release dates.

Windows version Release date

Windows 7 SP1 February 2011
Windows 8 August 2012
Windows 8.1 August 2013
Windows 10 July 2015
Windows 10 v1511 November 2015
Windows 10 v1607 August 2016

Please cite this article in press as: Sylve, et al., Modernwindows hibernati
j.diin.2016.12.003
1. Install the OS on a newly formatted hard drive.
2. Hibernate the computer with the shutdown /h command.
3. Remove the hard drive and collect the hiberfil.sys
4. Replace the hard drive and turn the computer back on, either

restoring the machine to the previously hibernated state (from
Step 2), or going through the standard startup process (from
Step 6).

5. Collect the hiberfil.sys from the live machine using FTK Imager
(Access Data, 2016).

6. Shutdown the computer and repeat Steps 3e5.

For Windows 7, Step 6 was repeated by shutting down in the
following ways:

� shutdown /s command
� shutdown from the GUI

Windows 8 introduced an additional “hybrid” shutdown mode.
Thismode is like full shutdown in that user sessions are terminated,
but like hibernation in that the running kernel is hibernated and
not fully shut down (Sinofsky, 2011). This allows for quicker boot
times since the kernel space will already be initialized. Hence, for
Windows 8þ Step 6 was repeated an additional time using the
hybrid shutdown mode:

� shutdown /s command
� shutdown /s /hybrid command
� shutdown from the GUI

Windows 7 observations

Though they are well understood, we present the Windows 7
analysis results here for ease of comparison to the Windows 8þ
results below.

When hibernated as in analysis Step 2, the resulting hibernation
file acquired in Step 3 contains the complete file header and all
expected hibernation data for the entire running state of the ma-
chine e kernel and user space; However, the hibernation file
collected after resuming from hibernation (Step 5) has the first page
zeroed out by Windows during the resume process. The hiberna-
tion file can still be analyzed by using the methods described in
Section First table page. Both methods of shutting down the system
in Step 6 left the hibernation file unchanged from the state where
the first page is zeroed.
on file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/



J.T. Sylve et al. / Digital Investigation xxx (2016) 1e7 7
Windows 8þ observations

As withWindows 7, theWindows 8þ hibernated hiberfil.sys

files from Steps 2 and 3 contained the complete file header and all
expected hibernation data, albeit in the new format.

The other collected hibernation files exhibited different behav-
iors than that of their Windows 7 counterparts. The hibernation
files collected in Step 5, after resuming from hibernation, still
contained the file header, but with the header signature changed
from RSRT to WAKE. Additionally, all data after the first page was
zeroed, rendering the hibernation file effectively useless for anal-
ysis; no memory data or processor state remains. Performing a full
shutdown from the command line using the shutdown /s com-
mand makes no changes to the (nearly empty) hibernation file.

Both shutting down the machine using either the /hybrid

switch and using the shutdown button in the GUI results in a
“hybrid” hibernation mode. In this mode, all userland sessions are
closed as during normal shutdown, and only the running kernel is
saved to the hibernation file. A valid hibernation file is produced;
however, a much smaller subset of memory is available for analysis.
The resulting file can be analyzed for kernel data (e.g., loaded
modules and _EPROCESS structures that track processes) but
without much of the process context that normally resides in
userland memory. Even in the hybrid hibernation case, any method
of restarting the machine leaves the header signature as WAKE and
all other data zeroed.

Forensic implications windows 8þ

The results of our analysis have several important implications
for forensic practitioners that analyze machines running Windows
8þ. Due to the changes in behavior introducedwithWindows 8, the
data lifetime of the stored information in the hibernation file has
been reduced to the time between hibernation and the first power-
on, while in previous versions of Windows that data would be
present until the next hibernation event. This limited lifetime has
the following implications:

� The hibernation file is no longer a reliable source of information
about a machine's state from “far in the past”. In older versions
of Windows, hibernation files could contain data from months
or even years prior if the machine was not frequently
hibernated.

� Collecting the hibernation file from a running machine is now
largely useless, as powering on the machine zeroes the bulk of
the hibernation file.

� The shutdown /s command is commonly used to shutdown
remote systems on a network. Systems that are powered down
in this fashion will contain no hibernation data. Similarly,
shutting down the system by removing the power or “pulling
the plug” will leave no hibernation data.

� Presumably, the most common way to shutdown systems is by
using the GUI. Systems that are shutdown in this fashion or by
using the shutdown /s /hybrid command will contain only
Please cite this article in press as: Sylve, et al., Modernwindows hibernatio
j.diin.2016.12.003
partial hibernation data. While these images can still contain
valuable forensic data, the lack of userland memory limits the
analysis to only a subset of the kernel structures that still reside
in non-freed pages.

� Powering down the system by forcing a hibernation using the
shutdown /h command preserves the largest amount of hi-
bernation data.

Conclusion

We have provided an overview of the legacy hibernation file
format as well as present the first analysis of the new format as
used in Windows 8, 8.1, and 10. We have implemented support for
the new format in our experimental memory analysis framework.
We have also discussed several changes in the hibernation and
shutdown behavior of Windows that will have a direct impact on
digital forensic practitioners who use hibernation files as sources of
evidence.

While we believe that with the addition of this research, hi-
bernation files will continue to be a valuable source of digital
forensic evidence, extra care must be takenwhen powering down a
target computer to ensure that the greatest amount of hibernation
data is available.

References

Access Data, February 2016. Ftk Imager Version 3.4.2 (For Use with Version 6
Products and Newer) d Accessdata. http://accessdata.com/product-download/
digital-forensics/ftk-imager-version-3.4.2.

Blackbag Technologies, October 2016. Blacklight. https://www.blackbagtech.com/
software-products/blacklight.html.

Dolan-Gavitt, B., April 2009. Add Support for Inactive Hiberfiles to Hibinfo Vola-
tilityfoundation/volatility@552c1d8. https://github.com/volatilityfoundation/
volatility/commit/552c1d813b05a0bf8d3d1ec1f64b3ba5f98403cc.

Ionescu, A., August 2014. Battle of SKM and IUM. How Windows 10 Rewrites OS
Architecture. http://www.alex-ionescu.com/blackhat2015.pdf. Presentation
given at Blackhat USA 2015.

Microsoft, October 2012. Windows 8 Arrives d News Center. https://news.
microsoft.com/2012/10/25/windows-8-arrives/.

Microsoft, July 2015. Hibernate Once/Resume Many (Horm) (Standard 8). https://
msdn.microsoft.com/en-us/library/jj980177(v¼winembedded.81).aspx.

Microsoft, July 2016a. Debugging Tools for Windows (WinDbg, KD, CDB, NTSD) e
Windows 10 Hardware Dev. https://msdn.microsoft.com/en-us/library/
windows/hardware/ff551063(v¼vs.85).aspx.

Microsoft, July 2016b. [MS-XCA]: Xpress Compression Algorithm. https://
winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-XCA/
[MS-XCA].pdf.

Ruff, N., Suiche, M., November 2007. Enter Sandman. http://www.msuiche.net/pres/
PacSec07-slides-0.4.pdf. Presentation given at PacSec 2007.

Sinofsky, S., September 2011. Delivering Fast Boot Times in Windows 8 Building
Windows 8. https://blogs.msdn.microsoft.com/b8/2011/09/08/delivering-fast-
boot-times-in-windows-8/.

Suiche, M., May 2016a. [Vol-Users] Hibr2bin Beta 1. https://www.mail-archive.com/
vol-users@volatilesystems.com/msg00053.html (Email sent to the Volatility-
Users mailing list).

Suiche, M., September 2016b. Your Favorite Memory Toolkit is Back for Free!.
https://blog.comae.io/your-favorite-memory-toolkit-is-back-f97072d33d5c#.
xq8az9jv4.

The Rekall Team, 2013e2016. The Rekall Memory Forensic Framework. http://www.
rekall-forensic.com/.

The Volatility Foundation, 2007e2016. The Volatility Framework. http://www.
volatilityfoundation.org/.
n file analysis, Digital Investigation (2016), http://dx.doi.org/10.1016/

http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.4.2
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.4.2
https://www.blackbagtech.com/software-products/blacklight.html
https://www.blackbagtech.com/software-products/blacklight.html
https://github.com/volatilityfoundation/volatility/commit/552c1d813b05a0bf8d3d1ec1f64b3ba5f98403cc
https://github.com/volatilityfoundation/volatility/commit/552c1d813b05a0bf8d3d1ec1f64b3ba5f98403cc
http://www.alex-ionescu.com/blackhat2015.pdf
https://news.microsoft.com/2012/10/25/windows-8-arrives/
https://news.microsoft.com/2012/10/25/windows-8-arrives/
https://msdn.microsoft.com/en-us/library/jj980177(v=winembedded.81).aspx
https://msdn.microsoft.com/en-us/library/jj980177(v=winembedded.81).aspx
https://msdn.microsoft.com/en-us/library/jj980177(v=winembedded.81).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-XCA/[MS-XCA].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-XCA/[MS-XCA].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-XCA/[MS-XCA].pdf
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf
http://www.msuiche.net/pres/PacSec07-slides-0.4.pdf
https://blogs.msdn.microsoft.com/b8/2011/09/08/delivering-fast-boot-times-in-windows-8/
https://blogs.msdn.microsoft.com/b8/2011/09/08/delivering-fast-boot-times-in-windows-8/
https://www.mail-archive.com/vol-users@volatilesystems.com/msg00053.html
https://www.mail-archive.com/vol-users@volatilesystems.com/msg00053.html
https://blog.comae.io/your-favorite-memory-toolkit-is-back-f97072d33d5c#.xq8az9jv4
https://blog.comae.io/your-favorite-memory-toolkit-is-back-f97072d33d5c#.xq8az9jv4
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/

	Modern windows hibernation file analysis
	Introduction
	Related work
	Windows XP-7 hibernation format
	File header
	Processor context
	Physical memory
	Table pages
	XPRESS sets
	First table page


	Windows 8+ hibernation format
	File header
	Processor context
	Physical memory
	Restoration sets
	Compression sets


	Verification
	Validation against Hibr2Bin

	Analysis
	Windows 7 observations
	Windows 8+ observations
	Forensic implications windows 8+

	Conclusion
	References


