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A modified light use efficiency (LUE) model was tested in the grasslands of central
Kazakhstan in terms of its ability to characterize spatial patterns and interannual
dynamics of net primary production (NPP) at a regional scale. In this model, the
LUE of the grassland biome (εn) was simulated from ground-based NPP measure-
ments, absorbed photosynthetically active radiation (APAR) and meteorological
observations using a new empirical approach. Using coarse-resolution satellite
data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP
was calculated from 1998 to 2008 over a large grassland region in Kazakhstan.
The modelling results were verified against scaled up plot-level observations of
grassland biomass and another available NPP data set derived from a field study
in a similar grassland biome. The results indicated the reliability of productivity
estimates produced by the model for regional monitoring of grassland NPP. The
method for simulation of εn suggested in this study can be used in grassland regions
where no carbon flux measurements are accessible.

1. Introduction

The terrestrial carbon cycle is a highly dynamic system that includes several storage
pools and flux components such as gross primary production (GPP) and net primary
production (NPP). NPP is defined as the total photosynthetic gain of vegetation per
unit ground area and per time unit, whereas GPP refers to the total amount of carbon
that is fixed from the atmosphere by vegetation during photosynthesis. NPP is the
difference between GPP and autotrophic photorespiration losses. In the past decades,
ecosystem scientists have focused on the estimation of these key variables, which are
indispensable for modelling net ecosystem exchange (NEE) between the atmosphere
and ecosystems.
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1466 P. A. Propastin et al.

Two common approaches to estimate NPP are field measurements and satellite-
based process models. The estimation of NPP by field methods involves the
extensive in situ measurements of biomass, provided turnover of all components (e.g.
aboveground, roots, understory, litter) is included (Rodin et al. 1975, Long et al. 1989,
Roberts et al. 1993, Gower et al. 1999, Scurlock and Olson 2002). Generally, the
ground-measured NPP is then defined as the rate of biomass growth (converted to
carbon) within an assessment period, and the integrated sum of this growth over the
growing period as annual NPP (Singh et al. 1975, Gower et al. 1999):

NPP =
∑

Pi, (1)

where P is the net production of dry biomass (recalculated to carbon) for each of
the plant components i. For a given period of measurement, the NPP of a vegeta-
tion stand is equal to the change in both aboveground and belowground plant mass
plus any loss over this period due to death and subsequent decomposition, herbivory
and exudation/volatilization. Equation (1) is appropriate to calculate NPP for any
ecosystem, although there are a number of estimation algorithms depending on the
field measurement method chosen for a certain study. For short-stature ecosystems,
such as grasslands, agricultural crops and tundra, area harvest is the most appropriate
measurement method to estimate NPP in field (Singh et al. 1975, Scurlock and Olson
2002). The advantages and limitations of various methodologies have been reviewed
in several published studies (Singh et al. 1975, Long et al. 1989, Roberts et al. 1993,
Scurlock and Olson 2002).

Excellent measurements of NPP have been made in several studies for site-specific
or stand-specific targets (Gower et al. 1999, Scurlock and Olson 2002). Despite their
extensive usage, in situ measurements demand considerable amounts of work and time
and yield information only for the close vicinity of the measured points. Such measure-
ments can only obtain the local NPP value but cannot provide a NPP value over large
areas. Scaling up data from ground NPP measurements is an important challenge for
understanding the carbon cycle across different spatial scales and can be carried out
using satellite-based empirical models linking spectral reflectance in satellite bands
and ground-based values of NPP (Reich et al. 1999, Lu 2006).

Another approach to estimating GPP/NPP is to use the satellite-based light use
efficiency (LUE) model, first described by Monsi and Saeki (1953) and extended
by Monteith (1977), which links the incoming solar radiation to vegetation produc-
tion through an empirical biophysical conversion factor (Running et al. 1999a, 2000,
Seaquist et al. 2003, Xiao et al. 2004). The relationships between LUE and GPP/NPP
are described by the following equations:

GPP = εgS
∑

(fPAR)(PAR), (2)

NPP = εnS
∑

(fPAR)(PAR), (3)

where PAR is the incident photosynthetically active radiation (MJ m−2) for a time
period; fPAR is the fraction of absorbed PAR by the vegetation canopy; εg is the LUE
in the GPP calculation (g C MJ−1); εn is the LUE in the NPP calculation (g C MJ−1);
and S is the environmental stress scalar. Both εg and εn are usually considered to be
biome-specific constants (Gower et al. 1999, Ruimy et al. 1999, Singsaas et al. 2001),
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NPP modelling in drylands 1467

the values of which are functions of the limiting climatic factors such as temperature,
soil moisture and water vapour deficit.

LUE models were designed based on the assumption that plants use solar radiation
for photosynthesis and assimilation of biomass. The amount of photosynthesis and
biomass accumulated is related to LUE which is influenced by many factors. Monteith
(1972) first developed the algorithm for NPP calculation using absorbed photosyn-
thetically active radiation (APAR) and LUE. The Carnegie–Ames–Stanford approach
(CASA) is the earliest simulation model using Monteith’s approach for analysing
global NPP. The global production efficiency model (GLOPEM) is another example
that uses the LUE approach together with ecological processes.

In satellite-based LUE analysis, the amount of solar radiation reaching the canopy
(PAR) is usually either derived from remotely sensed data or computed using mathe-
matical algorithms (Frouin and Pinker 1995, Seaquist and Olsson 1999). Multispectral
vegetation indices are commonly used to estimate fPAR from remotely sensed data
(Asrar et al. 1984, Xiao et al. 2004). The normalized difference vegetation index
(NDVI), computed from red (R) and near-infrared (NIR) satellite channels, has
been most often used for the estimation of fPAR (Goward and Huemmrich 1992,
Goward et al. 1994, Ruimy et al. 1994). Alternatively, fPAR can also be calcu-
lated as a function of the leaf area index (LAI) and light extinction coefficient
(Ruimy et al. 1999).

LUE models are largely based on quantitative relationships between LAI and
fPAR, or between NDVI and fPAR, and have been applied at regional to global
scales using data from the Advanced Very High Resolution Radiometer (AVHRR)
sensors (Field et al. 1995), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
(Behrenfeld et al. 2001), the Système Probatoire d’Observation de la Terre (SPOT)
sensor (Xiao et al. 2004, Propastin and Kappas 2009a) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor (Myneni et al. 1997, Running et al.
1999b, Running et al. 2000). Global estimations of NPP from AVHRR (GLOPEM)
and MODIS data (MODIS NPP/GPP product) are freely available for public use.
However, these products are not always appropriate for national or subregional stud-
ies, because the product algorithms incorporate a number of global biome-specific
parameters, which ignore their inter-regional and within-region variability.

Field-measured NPP (equation (1)) is used as ground-truth information for vali-
dation of the satellite-based NPP models (equations (2) and (3)) in diverse biomes
to ensure that the models accurately capture spatial patterns in NPP (Reich et al.
1999, Reeves et al. 2006, Fensholt et al. 2007). An extensive validation of MODIS
NPP/GPP products is in progress using ground-truth data from different regions.
The reported results of this validation revealed significant biome- and region-specific
over-/underestimations of GPP/NPP (Justice et al. 2002, Fensholt et al. 2007).
Therefore, for many regional and subregional studies, estimation of GPP/NPP using
regionally and locally tuned parameters is preferable.

Developing and applying remote-sensing-based models for carbon sequestration
has particular merit in data-impoverished regions of the world. One such region is
the former Soviet Central Asia. Even though this region is economically disadvan-
taged, it is very rich in natural resources and has good prospects for socio-economic
development. However, after the Soviet era this region has been out of the scope
of remote-sensing research. The sophisticated remote-sensing-based monitoring that
has become routine for accurately probing ecosystem processes in North America,
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1468 P. A. Propastin et al.

Europe and other intensively investigated regions has not yet been extended to Central
Asia (Gilmanov et al. 2004, Henebry 2009). Kazakhstan is the region’s largest coun-
try (2.7 × 106 km2) with an area of more than 2 × 106 km2 covered by different
types of grassland. Although the production potentials of rangeland ecosystems are
lower than those for other terrestrial ecosystems, grasslands of Kazakhstan have sig-
nificant impact on the regional and global carbon cycles because of their expanse
(Lioubimtseva et al. 2005). Grasslands also store a significant portion of their fixed
carbon below ground, where it is resistant to fire effects (Lal 2004). Following the
signing of the Kyoto Protocol by the Kazakhstan government in 2003, monitoring
carbon sequestration over the huge territory of this republic has gained great scientific
and political importance.

In this study, our aim is to design and test a modified LUE model using a new empir-
ical approach for estimating the value of the LUE parameter (εn) based on ground
measurements of grassland biomass. The modified LUE model was employed to sim-
ulate large-scale NPP dynamics in the grasslands of central Kazakhstan. Simulations
of NPP were conducted using the 4.63 km spatial resolution data from the SeaWiFS
over the period 1998–2008. The modelling results were verified against scaled NPP
observations.

2. Study area

The study area is located in the central part of Kazakhstan between 48◦ 20′ and 49◦ 30′
N latitude and 72◦ and 74◦ 10′ E longitude. It encompasses the southern margin of the
Kazakh Hills and the northern area of the Shetsky raion (district) in the Karaganda
oblast (province). The climate of the region is dry, cold and highly continental. Average
annual precipitation ranges from about 200 mm in the southern part to about 300 mm
in the northern part of the study area, with an (interannual) coefficient of variation of
20–35% (Propastin 2007, pp. 61–69). The greater part of the precipitation falls during
the warm period from March to October. The growing season starts in April and
continues until October. The average July temperature is about 25–26◦C.

Two main vegetation classes dominate the study area: short grassland, which covers
74.23% of the whole territory; and steppe grassland, which covers 25.77% (figure 1).
Both grassland categories are dominated by the genera Festuca and Stipa. Few euryxe-
rophilous forbs occur; the co-dominants are dwarf shrubs of the genus Artemisia
and sometimes of other genera, particularly Anabasis and Salsola. The proportion of
dwarf shrubs in the vegetation communities increases from steppe grassland to short
grassland. Species diversity is about 12–15 species per square metre. The height of
the canopy decreases from 30–40 cm in the north to 15–20 cm in the south of the
study area, while vegetation cover decreases from 50–70% to 20–30%, and even less
(Titlyanova 1988).

The vegetation growth in the study area is strongly dependent on precipitation
dynamics. Grasses and shrubs grow during the whole vegetative period, but their
growth is most rapid during May and early June (the period of greatest precipitation)
in the southern part and during June in the northern part of the study area (Propastin
2007, pp. 72–79; Propastin et al. 2007). During the drier summer months (July and
early August), their growth rate is slowed down. This period of semi-dormancy occurs
throughout the study region.

D
ow

nl
oa

de
d 

by
 [T

he
 N

as
a 

G
od

da
rd

 L
ib

ra
ry

] a
t 1

0:
50

 1
6 

M
ay

 2
01

3 



NPP modelling in drylands 1469

55 60 65 70 75 80 85

40

45

50

55

40

45

50

55

50

55 60 65

Russia

Kazakhstan

70 75 80 8550°E

72° E 72° 45' E

48
° 4

5'
 N

73° 30' E

Short grassland

Steppe grassland

°N

Figure 1. Location of the study region on a map of Kazakhstan and distribution of land
cover classes in the study region based on the MODIS land cover map. Closed circles represent
test sites where both biomass and vegetation structure were measured. Open circles represent
sampling plots where only vegetation structure was measured.
Note: MODIS, Moderate Resolution Imaging Spectroradiometer.

3. Data sets and methodology

3.1 Satellite data

3.1.1 Satellite-based NDVI product. We used a satellite-based NDVI data set as
input to our NPP model. The NDVI data set at 4.63 km spatial resolution covering the
period 1998–2008 was obtained from the SeaWiFS (Tucker et al. in press). The NDVI
was calculated from the R (660–680 nm) and NIR (845–885 nm) bands of SeaWiFS.

The SeaWiFS NDVI data are distributed as 30 day maximum value composites
to minimize the effects of cloud contamination (Holben 1986) based on surface
reflectances atmospherically corrected for Rayleigh and ozone effects. The composit-
ing algorithm uses spatial homogeneity tests in the NIR band to maximize spatial
coherence in addition to the maximum NDVI and minimum blue band criteria
(Pinzon et al. 2001). Primarily designed as an ocean colour instrument, the SeaWiFS
sensor requires highly accurate calibration, which is achieved by a spacecraft manoeu-
vre to scan the moon surface every lunar cycle for calibrating the sensor (lunar
calibration) (Hooker et al. 1992). The resulting stability of its sensor measurements
over time makes the SeaWiFS an excellent source of land data as well (Tucker et al.
in press).
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1470 P. A. Propastin et al.

3.1.2 Landsat data. This study used two Landsat Enhanced Thematic Mapper Plus
(ETM+) images (path 153/row 26) acquired on 19 June 2004 and 11 July 2008, respec-
tively; both had level 1 G processing, a 30 m cell size. The preprocessing of both images
included common steps for treatment of satellite data such as geometrical correction,
geo-referencing and atmospheric correction. The images were geometrically corrected
using a set of ground control points extracted from 1:100 000 topographic maps. The
images were co-registered and projected to Universal Transverse Mercator (UTM)
coordinates (World Geodetic System (WGS) 84 datum). The ETM+ digital numbers
were transformed to reflectance values using ENVI 4.3 preprocessing function. The
Landsat image from 19 June 2004 was used for deriving satellite-based models of LAI
and fPAR, whereas the Landsat ETM+ image from 11 July 2008 was used for scaling
up ground-based NPP observations.

3.2 Climate data

Ten-day temperature, air humidity and mean total cloud cover data for the period
1982–2008 at nine climate stations located in the study area were obtained from the
National Hydrometeorological Centre of Kazakhstan. The 10 day values of the vari-
ables were averaged to monthly values for each of the nine climate stations and used
for the generation of gridded maps. Gridded maps of mean monthly values for each
variable were constructed using the interpolation method co-kriging, with a digital
elevation model, scaled in metres, as a co-variable.

3.3 Field data collection

3.3.1 Sampling design. The study involved 14 test sites along a 200 km transect
across the study area (figure 1), which were established by Space Research Institute
of the Science Academy of Kazakhstan, as part of a research programme designed
to measure long-term pasture production for the major land cover types in the dis-
trict (Muratova 2007). Each of these test sites consists of a homogenous area with
a size of several hectares. The location of the sites was selected to embrace a variety
of geomorphological, hydrological and soil patterns explaining vegetation distribu-
tion throughout the district. Inside these test sites, field sampling plots for in situ
measurements of biomass and vegetation structure (LAI and fPAR) were estab-
lished. Additionally, outside the 14 test sites we established 11 sampling plots for
measurements of vegetation structure.

3.3.2 Ground-based NPP. NPP of grassland was estimated from ground data on
belowground and aboveground biomass collected at the 14 test sites at the peak of
the growing season in June 2004. In situ measurements of biomass of standing crop
(mAGB = aboveground biomass) and litter matter (mL = litter biomass) were con-
ducted with several replicates per site. The peak season mAGB and mL were measured
by destructive sampling of 1.0 m2, with samples dried and weighed at 65◦C to constant
weight to correct for moisture content. Root biomass (mBGB = belowground biomass)
was collected at each test site with four replicates by excavating a square of 1 m × 1 m
to a depth of 50 cm. The root matter was washed of soil and mineral contamina-
tion, dried at 65◦C and weighed. The original values of dry matter were converted to
carbon (g C m−2) through multiplication with the carbon proportion factor of 0.47
(Tyurmenco 1975).
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NPP modelling in drylands 1471

All published methods for NPP estimation from ground-measured biomass in grass-
lands can be grouped under seven algorithms as outlined in Scurlock and Olson
(2002). From these seven algorithms, peak aboveground biomass algorithms are com-
monly used for estimation of NPP in grasslands where only one or two measurements
per year are available (Singh et al. 1975, Long et al. 1989, Scurlock and Olson 2002).
Sometimes conversion factors have been applied to estimate the ratio of belowground
to aboveground production. The basic assumption of the peak biomass algorithms is
that any live biomass was formed in the current year and any standing dead matter
was formed by death in current year (Singh et al. 1975, Long et al. 1989, Scurlock and
Olson 2002). Similar assumptions about complete plant mortality in grasslands under-
lie parameterization of the BIOME-BioGeochemical Cycles (BIOME-BGC) (White
et al. 2000) and the MODIS NPP/GPP algorithms (Heinsch et al. 2003). The peak
biomass algorithms are particularly appropriate in temperate grasslands, where the
carbon pools in living aboveground biomass are turned over every year. But the major
error source does not account for roots turnover and biomass (contained in litter)
carried over from previous year (Long et al. 1989, Scurlock and Olson 2002).

In this study, we expanded the peak aboveground biomass algorithm (Singh et al.
1975, Long et al. 1989) by incorporating belowground and litter compartments. In the
expanding algorithm, we considered roots turnover and biomass carried over from
previous year:

NPP = mAGB + mLrdecom + mBGBrturnover, (4)

where rdecom is the relative rate of decomposition for litter and rturnover is the turnover
rate of roots. The underlying assumptions are the same as for the common peak
aboveground biomass algorithm, but some litter and belowground biomass parts
were carried over from the previous year. The relative decomposition rate of lit-
ter for grasslands (0.85) was calculated using data given by Zhang et al. (2008).
Belowground production of current year was considered by imposing a conversion
factor of 0.3 as the turnover rate of fine roots for the temperate grassland biome as in
the BIOME-BGC algorithm (White et al. 2000).

3.3.3 LAI estimations. In situ measurements of LAI and fPAR were carried out at
sampling plots established inside each of the 14 test sites and at the 11 additional
sampling plots outside the test sites. In all cases, the plot size for LAI and fPAR mea-
surements was chosen to correspond to an area observed by 3 × 3 Landsat ETM+
pixels (McCoy 2005). Each plot had a size of 90 × 90 m2. The measurements were
made in a 30 m transect spacing within each plot. In total 14 measurements were com-
pleted within each of the sampling plots, which were then averaged to mean values
over corresponding plots.

An optical method was used in this study to acquire ground-based LAI and fPAR
data for remote-sensing algorithm development. Hemispherical photography was per-
formed using a WinScanopy Image Acquisition instrument developed by REGENT
INSTRUMENTS, Toronto, ON, Canada (http://www.regentinstruments.com). The
CanEye software (INRA, d’Avignon, France, www4.paca.inra.fr/emmah_eng/.../
Production.../CAN-EYE) was employed for the processing of hemispherical pho-
tographs. Gap fraction, the proportion of unobstructed sky, was calculated at 5◦ zenith
angle intervals and used for additional calculations. LAI, fPAR and other vegetation
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1472 P. A. Propastin et al.

structure indices were calculated using routine procedures included in the CanEye
software. Calculating formulae and operation of CanEye are described in detail in
the CanEye manuals (CanEye manuals 2006) following the methods described by
Jonckheere et al. (2004) and Weiss et al. (2004).

CanEye computes LAI based on the use of a lookup table derived using the
Poisson model, that is, a reference table composed of gap fraction value in different
view zenith angles and the corresponding LAI and average leaf angle parame-
ters using an ellipsoidal leaf inclination distribution. The effective LAI is com-
puted assuming random foliage element distribution. The true LAI is corrected for
non-random distribution of foliage elements based on the clumping index, which
is calculated using the logarithmic gap averaging technique given by Lang and
Xiang (1986).

The CanEye-derived actual fPAR was calculated as the sum of two terms, weighted
by the diffuse fraction in the PAR domain: the ‘black sky’ fPAR that corresponds
to the direct component at a given solar position (date, hour and latitude) and
the ‘white sky’ (or diffuse) fPAR. The ‘black sky’ fPAR, fPARBS, is approximated
at each solar hour as the gap fraction (P0) and the corresponding solar zenith
angle (θ s):

fPARBS(θs) = P0(θs). (5)

The ‘white sky’ fPAR, fPARWS, is computed as follows:

fPARWS = 2

π
2∫

0

P0(θs) cos θs sin θsd(θs). (6)

CanEye-derived LAI and fPAR values for individual subplots were averaged to gener-
ate per-site values. The calculated per-site LAI ranges from 0.19 to 1.78 with a mean
value of 0.71, while the per-site fPAR ranges from 0.18 to 0.41 with a mean value
of 0.27. The produced ground-based LAI and fPAR data sets were then used for
developing a satellite-based LAI/fPAR data set.

3.4 Scaling up field observations

3.4.1 Scaling ground-based NPP. Ground-based NPP observations were spatially
scaled (aggregated) for comparison with the SeaWiFS-based modelled NPP by relat-
ing NPP values recorded at the 14 test sites to spectral reflectance in Landsat ETM+
data. A detailed description of the NPP scaling is given in the study by Propastin and
Kappas (2010). Here, we give only a brief explanation. The Landsat ETM+ image
acquired on 17 June 2004 was used to determine the spectral response of grassland
vegetation for creation of the NPP scaling model. A series of statistical tests were
performed to establish the most robust relationship between ground-based NPP mea-
surements and Landsat ETM+ reflectance. These tests included simple and multiple
regressions using spectral reflectance in the individual Landsat bands and Landsat-
derived vegetation indices. When extracting spectral Landsat reflectance values, we
tested different aggregation levels from 3 pixels × 3 pixels kernel placed over each
individual test site to averaging within each of the 14 test sites. Ordinary least squares
method was used to evaluate statistical significance and the accuracy of the regression
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NPP modelling in drylands 1473

relationship between ground-based NPP and Landsat reflectance. The best accuracy
model for NPP scaling was produced by employment of the NIR-corrected NDVI
(NDVIc; see Brown et al. (2000)). This model explained more than 70% of the total
variance in the ground-based NPP and showed a root mean squared error (RMSE) of
43.61 g C m−2 (Propastin and Kappas 2010):

NPP = 876.72(NDVI)c − 1.949. (7)

Equation (7) was employed to the Landsat ETM+ scene to create a fine-resolution
NPP map over the study area.

3.4.2 Scaling ground-based fPAR observations. Recent studies have proved that
fPAR is closely related to NDVI. The latter can be converted into fPAR by means of
the fPAR/NDVI relationship, the parameters of which are independent of the veg-
etation cover heterogeneity of the pixel (Myneni and Williams 1994, Ruimy et al.
1999). For a range of non-woody vegetation types, this relationship has been found
to be remarkably consistent. However, the fPAR/NDVI relationship is very sensitive
to soil reflectance and differences in sun/sensor geometry. The linear relationship for
fPAR is valid only for satellite data which are corrected for atmospheric and bidi-
rectional effects, and background contributions to the signal must be accounted for
(Myneni and Williams 1994). Otherwise, a different model, for example, asymptotic,
can be used. Since bidirectional effects and background contributions to the signal
were not considered in the SeaWiFS NDVI data set in this study, we used a non-linear
regression model between fPAR and NDVI.

The Landsat ETM+ image acquired on 11 July 2008 was used to determine an
NDVI-based model for further use with the SeaWiFS NDVI data. The model was cal-
ibrated based on the ground fPAR values obtained from hemispherical photography
(§3.3.3) and the corresponding NDVI was recorded on the 25 sampling plots:

fPAR = 2.3193(NDVI)2.1302. (8)

The model was statistically significant at the level of p < 0.01 with the value of the
coefficient of determination R2 = 0.61 (RMSE = 0.10). This model was further used
to calculate monthly fPAR for the period 1998–2008 for the SeaWiFS data set.

4. Description of the SeaWiFS-based NPP algorithm

Figure 2 shows the generalized processing stream in the NPP model. The parameters
inside the ellipsoids represent the raw data used in the model, whereas the parameters
inside the boxes are derived during the execution of the model. A detailed description
of the individual parameters, modelling steps and equations is presented in a flowchart
as follows.

4.1 Modelling photosynthetically active radiation

The PAR is defined as the domain of incoming solar radiation exploited by green
vegetation for photosynthesis (400–700 nm). Since no ground measurements of solar
radiation are available for the study area, PAR was obtained on a pixel-by-pixel basis
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NDVI

fPAR

NPP

Modelled PAR

Climate data

Field-measured
fPAR

Field-measured
NPP

f(T), f(dVP)

AVHRR and
SeaWiFS data

εn

Figure 2. Flowchart of the LUE model developed in this study.
Note: LUE, light use efficiency; AVHRR, Advanced Very High Resolution Radiometer;
SeaWiFS, Sea-viewing Wide Field-of-view Sensor; NDVI, normalized difference vegetation
index; NPP, net primary production; PAR, photosynthetically active radiation; fPAR, fraction
of absorbed PAR; εn, the LUE in the NPP; T , the effect of temperature; dVP, the effect of vapour
pressure deficit (VPD).

from the budget modelling approach, which computes the solar irradiance at the top
of the atmosphere and transforms it into the amount of solar radiance reaching the
Earth’s surface. The modelling approach calculates the solar radiance at the top of
the atmosphere as a function of the following variables: Earth–Sun distance, solar
inclination, the angle between the Earth’s orbital and equatorial planes, solar ele-
vation angle, geographical position and day of year (Monteith and Usworth 1990).
The variables of surface elevation, day length and mean total cloud cover information
were used to compute optical depth of the atmosphere and to estimate solar irradi-
ance reaching the ground. Spatial distribution of the radiation reaching the ground
strongly depends on the terrain geometry of (relief slope, exposition, aspect). These
variables were obtained from a digital terrain model and used as input to the equation
given by Alisov et al. (1956). The incoming solar energy is reduced to PAR assum-
ing a ratio of PAR to global radiation of 0.48 (Begue et al. 1991, Frouin and Pinker
1995). The amount of the APAR was calculated through multiplication of PAR with
fPAR.

4.2 LUE parameter

The LUE varies with vegetation types, and information about its values for individ-
ual vegetation types is summarized in several publications (Ruimy et al. 1995, Gower
et al. 1999, Singsaas et al. 2001). The empirical method to estimate a value of LUE
is to analyse the response of the vegetation photosynthetic rate to the incident solar
radiation absorbed by plants. Estimation of the εn parameter is commonly based on
the use of data from measurements of carbon dioxide (CO2) flux and photosynthetic
photon flux density (Ruimy et al. 1999). Alternatively, the LUE can be calculated using
ground-based biomass measurements and the amount of PAR absorbed by vegetation
(Propastin and Kappas 2009b). Through conversing equation (3), the parameter εn

may be calculated as follows:

εn = (NPP)

S
k∑

i=1
(fPARi)(PARi)

, (9)
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NPP modelling in drylands 1475

where k is the length of the growing season; i represents shorter periods (days, weeks
or months) within the growing season; PARi is the incident photosynthetically active
radiation (MJ m−2 ) for a short period i; and fPARi is the fraction of absorbed PAR by
the vegetation canopy for the period i. Replacing NPP in equation (8) with equation
(4) leads to

εn = mAGB + mLrdecom + mBGBrturnover

S
k∑

i=1
(fPARi)(PARi)

, (10)

where S is the environment stress scalar and k is the length of the growing season (in
this study – in months).

The value of εn is suggested to be a biome-specific constant, which can be used in
similarly composed ecosystems (Ruimy et al. 1995, Gower et al. 1999, Singsaas et al.
2001). This uniformity facilitates scaling up ground measurements of NPP to cover
entire regions dominated by grasslands.

4.3 Climatic determinants of LUE

LUE is affected by environmental conditions, particularly temperature and water
availability, whose effects can be modelled using simple functions (White et al. 2000,
Turner et al. 2003):

S = f (T)f (dVP), (11)

where S is the environmental stress scalar; T and dVP are the scalars for the effects of
temperature and vapour pressure deficit (VPD), respectively.

In this study, T is simulated at each time step using the equation developed for the
terrestrial ecosystem model (Reich et al. 1999):

f (T) = (T − Tmin)(T − Tmax)
(T − Tmin)(T − Tmax) − (T − Topt)2

, (12)

where Tmin, Tmax and Topt are the minimum, maximum and optimal temperatures for
photosynthetic activity, respectively. The values for the temperature parameters were
taken from White et al. (2000). If air temperature falls below Tmin, f (T) is set to 0.

The effect of water on plant photosynthesis has been estimated as a function of
soil moisture or water VPD in a number of satellite-based LUE models (Field et al.
1995, Running et al. 2000, Seaquist et al. 2003). The dVP index scales the availability
of atmospheric moisture between the values at which the photosynthesis process stops
and the optimum value corresponding to each vegetation type. The dVP function is
expressed as

f (dVP) =
⎧⎨
⎩

0 dVP > dstop
VP

(dstop
VP − dVP)/(dstop

VP − dstart
VP ) dstart

VP < dVP < dstop
VP

1 dVP < dstop
VP

. (13)
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1476 P. A. Propastin et al.

The values for minimum, maximum and optimum of VPD parameters were taken
from BIOME-BGC (White et al. 2000).

4.4 Model evaluation

After simulation of the model parameters, we calculated SeaWiFS-based NPP for the
study area. The model was run with a resolution of 4.63 km, time steps of 30 days
and time span from 1998 to 2008 using the SeaWiFS NDVI data set as input. In
general, the evaluation of a regional modelling approach is difficult. This holds espe-
cially true for the research area in central Kazakhstan. Commonly, CO2 flux data from
eddy covariance measurements are used for evaluation of satellite-based LUE models
(Running et al. 1999a). Unfortunately, there are no accessible eddy flux data from
this region. Another evaluation strategy is to compare spatial patterns of satellite-
simulated NPP data with biomass values measured at sampling plots (Reeves et al.
2006, Fensholt et al. 2007). However, a direct comparison of ground data with a
coarse-resolution product cannot be efficient, because the pixel scale of such a prod-
uct is much coarser than a sampling plot’s scale and the results of such a comparison
would be poor. In this case, biomass values measured at individual plots can be scaled
up using a fine-resolution satellite image and after that compared with the coarse-
resolution product (Reich et al. 1999, Running et al. 1999a, McCoy 2005, Reeves et al.
2006).

While the research process is still going on, three types of evaluation of the resulting
data were accomplished in this study. First, modelling results were compared with data
from the literature. Second, the modelling results were evaluated against the ground-
based NPP data from the 14 sampling sites in the study area with respect to spatial
consistency. Because of scale difference between the ground data and SeaWiFS pixel
size, we compared the SeaWiFS NPP retrieval with the Landsat ETM+ NPP estima-
tion (from equation (7)), which was aggregated to a 4.63 km resolution of SeaWiFS.
The second one was used as ground reference for the assessment of the SeaWiFS-
derived product of NPP. Further, we computed frequency distributions of the obtained
SeaWiFS-based NPP and compared them with the scaled NPP. In order to examine
the correspondence of distribution histograms, we used the F-statistics to test the null
hypothesis that the frequency distribution of two data sets is similar.

Finally, the modelled NPP data set was compared with the independent ground-
based NPP data set from the Shortandy grassland study site (Shatokhina 1988,
Gilmanov 1996) with respect to temporal consistency. This data set was used in a
number of recent studies to validate models of vegetation–soil–atmosphere interac-
tions (Gilmanov et al. 1997) and compile global NPP data sets (Scurlock and Olson
2002, Hui and Jackson 2006).

5. Results

5.1 Calibration of the NPP model

5.1.1 Ground-based NPP. Figure 3 shows the biomass of different ecosystem com-
partments and the NPP measured for the 14 test sites. The NPP ranges from 58.9 to
288.4 g C m−2, indicating an SD of 68.6 g C m−2. The mean NPP of all 14 sample plots
was 152 g C m−2 showing a variability of 44% between the individual sample plots. The
living aboveground biomass (mAGB) together with litter (mL) represents the largest car-
bon pool, whereas the belowground part (mBGB) contains about 23% of carbon (33.6
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NPP modelling in drylands 1477

Table 1. Previous estimates of primary production (GPP and NPP) in arid and semi-arid zones.

Location and
vegetation type

Estimating
technique

GPP
(g C m–2)

NPP
(g C m–2) References

Central Asia Field
observations

Dry steppe 326 Perschina and Yakovlewa
(1960), Makarowa (1971),
Gristchenco (1972),
Tyurmenco (1975),
Fartuschina (1986) and
Robinson et al. (2002)

Dry steppe 126
Dry steppe 148
Semi-desert 90–310
Semi-desert 117–189
Semi-desert 220
Semi-desert 114

Former
Czechoslovakia

Field
observations

Grassland 664 481 Tesarova and Gloser
(1976) and Rychnovska
et al. (1980)

Grassland 492 318
Global Field

observations
Grassland 70–410 Zheng et al. (2003) and

Rodin et al. (1975)Grassland 91–385
Wyoming, USA Measurements of

net ecosystem
exchange

Mixed-grass
prairie

321 Hunt et al. (2004)

Sagebrush steppe 239
Sahel, Niger
Grassland

Satellite-based
LUE model

352 169 Seaquist et al. (2003)

Central Kazakhstan Satellite-based
LUE model

Dry steppe 243 145 Propastin and Kappas
(2009a)Short grassland 211 131

Note: GPP, gross primary production; NPP, net primary production; LUE, light use efficiency.

g C m−2) from the total amount. With regard to the previously published studies on
ground-based NPP measurements in grasslands (see table 1), the ground-measured
values of NPP from this study are well within the range of NPP reported from Central
Asia and other dryland regions. The compilations of the studies from Central Asia
have defined the known range of NPP in the dry steppe biome from 126 to 326 g
C m−2 year−1 (Perschina and Yakovlewa 1960, Makarowa 1971, Tyurmenco 1975)
and in short grassland from 114 to 220 g C m−2 year−1 (Fartuschina 1986, Robinson
et al. 2002). These values are highly consistent with the values obtained in this study.
The results of this study go well with the scope of NPP values averaged globally for
grassland biomes (Rodin et al. 1975, Scurlock and Olson 2002, Zheng et al. 2003).

5.1.2 Light use efficiency. For each of the 14 NPP test plots, a value of εn was calcu-
lated using equation (10). The obtained εn values ranged from 0.51 to 0.95 g C MJ−1

with a mean value of 0.72 g C MJ−1 and an SD of 0.21 g C MJ−1 and are well within
the range of reported εn values for grassland biomes in other world regions (Ruimy
et al. 1995, Gower et al. 1999, Singsaas et al. 2001, Hill et al. 2004). The mean εn
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Figure 3. Mean NPP of different ecosystem parts and the total NPP measured at 14 test sites
in grassland of central Kazakhstan. Whiskers represent the SD.
Note: mAGB, aboveground biomass; mL, litter biomass; mBGB, belowground biomass; NPP, net
primary production; SD, standard deviation.

value from this study is very close to the value proposed by Potter et al. (1993) as the
universal LUE for estimating worldwide NPP in CASA model. For comparison, the
εn value used in the MODIS algorithm is 0.68 g C MJ−1 (Heinsch et al. 2003).

Particularly important is the comparison of the εn value from this study with LUE
used for modelling NPP of analogous grassland ecosystems of Central Asia and other
regions. Thus, Jinguo et al. (2006) found an εn value of 0.39 g C MJ−1 to be fairly
adequate for estimation of NPP over a short grassland region in the northern Hebei
Province of China, whereas Yuan et al. (2008) used an εn value of 0.61 g C MJ−1 for
modelling NPP of a mixed grassland in northern Tibet. Hill et al. (2004) empirically
determined a value of εn = 0.85 for grassland pastures in Australia. The study by
Gilmanov et al. (2004) found a LUE of GPP, εn = 2.17 g C MJ−1, for a tall grassland
ecosystem in northern Kazakhstan. The value of εg reported by Gilmanov et al. (2004)
is relatively high and is only slightly lower than the value of LUE for GPP suggested by
Ruimy et al. (1995) as the upper limit for grasslands. When we suggest that autotrophic
respiration of a grassland ecosystem is equal to about 50% of GPP, the εn from the
study by Gilmanov et al. (2004) would have a value of about 1.08 g C MJ−1. This
value would be a threshold in the εn value range compiled by Gower et al. (1999),
whereas the value of 0.72 g C MJ−1 from this study is in the centre of the range of εn

values.
This shows that the empirical method used for estimation of the εn parameter in

this study worked very effectively and the obtained mean εn value is appropriate to be
employed for scaling up NPP of grassland over the study area.

5.2 Outputs from the SeaWiFS-based NPP model

The LUE model is used to calculate NPP at a spatial resolution of 4.63 km and
a temporal resolution of 1 month over the study region. Spatial distribution of
the SeaWiFS-simulated NPP for 2004 is shown in figure 4(a). For comparison, the
Landsat-derived NPP at a 30 m spatial resolution is shown in figure 4(b). The SeaWiFS
NPP estimates varied spatially in a similar pattern to that of the Landsat-scaled NPP,
even though the patterns in scaled NPP are much finer. For the SeaWiFS simulation,
the annual NPP ranged from 64 to 302 g C m−2 with a mean NPP of 168 g C m−2 and

D
ow

nl
oa

de
d 

by
 [T

he
 N

as
a 

G
od

da
rd

 L
ib

ra
ry

] a
t 1

0:
50

 1
6 

M
ay

 2
01

3 



NPP modelling in drylands 1479

the SD was 53 g C m−2. The Landsat-scaled NPP ranged from 66 to 253 g C m−2 and
showed somewhat lower value of the mean NPP and somewhat larger SD: 161 and
53 g C m−2, respectively.

There is a distinct south–north gradient in NPP distribution over the study region.
The distribution of NPP over the study area agrees with expectations on NPP geo-
graphical distribution with respect to climate patterns. In general, the mapped NPP
patterns reflect the temperature and precipitation gradients observed in the study
area. The southern areas show low biomass production with NPP values of 100–120
g C m−2, while the northern areas demonstrate much higher NPP with values above
200 g C m−2. This pattern is driven primarily by the distribution of precipitation that
changes from about 250–280 mm in the north to about 150–180 mm in the south of
the study area. Correspondingly, the mean summer temperature increases significantly
from north to south leading to a more prolonged semi-dormancy phase of vegetation
during July–August in the south of the study area (Propastin et al. 2007).

The annual product as shown in figure 4(a) is the sum of monthly NPP values for
2004. Monthly time series of the SeaWiFS-simulated NPP for two sites located in short
grassland and dry steppe is shown in figure 5. Within temperate grasslands of Central
Asia, the principal mode of variability in vegetation productivity is generally asso-
ciated with seasonality of climatic factors. The vegetation growth starts when mean
temperature rises above 0. In the study area, this occurs in the first/second decades
of April. The vegetation growth achieves its maximum in late June to early July and
decreases persistently during the rest of the growing season. The climate-dependent
seasonal dynamics of vegetation production are captured reasonably well by the model
simulation.

In both vegetation types, plant growth starts in April when air temperature rises
above 0 (figure 5). However, NPP at the short grassland site increases more rapidly
than at the dry steppe site. At the short grassland site, the maximum monthly NPP is
commonly achieved in June, whereas the dry steppe grassland site demonstrates the
NPP peak in July despite the fact that maximum precipitation in the study region
occurs in early June. A reason for this is the delayed response of vegetation to pre-
cipitation which amounts to 30–40 days as reported for steppe grassland in the study
region (Propastin et al. 2007). The NPP at the short grassland site decreased earlier
than at the dry steppe site, reflecting the earlier senescence of herbaceous vegetation
due to drought-like conditions caused by the decreased precipitation and high tem-
peratures in July–August. These conditions raise respiration rates, which considerably

72° E(a) (b)

49
° N

48
°  N

73° E 74° E 72° E 73° E 74° E
300

250

200

150

100

g C m–2

Figure 4. Spatial distribution of the study area’s NPP simulated using (a) the 4.63 km
SeaWiFS data for 2004 and (b) the Landsat-scaled NPP at a 30 m spatial resolution.
Note: NPP, net primary production; SeaWiFS, Sea-viewing Wide Field-of-view Sensor.
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Figure 5. Seasonal dynamics of monthly NPP simulated from the SeaWiFS model for dry
steppe and short grassland.
Note: NPP, net primary production; SeaWiFS, Sea-viewing Wide Field-of-view Sensor.

decrease the carbon sequestration by grass vegetation. During the summer months, the
short grassland site generally had lower monthly NPP than the dry steppe site, which
is characterized by the more favourable climatic conditions. Thus, the mean monthly
NPP for July amounts to 83 g C m−2 for the steppe site and 51 g C m−2 for the short
grassland site. At the beginning and end of the growing season (April and October),
monthly NPP values for both vegetation types are similar.

5.3 Validation of the modelling results

A direct comparison of the modelling results with the ground-based NPP estimations
for the 14 test sites is problematic because of a mismatch in the spatial resolution
of the SeaWiFS data versus the sampling sites. The validity of the coarse-resolution
NPP data can be investigated by the analysis of the frequency distribution of NPP
values and their consistency with the Landsat-scaled NPP. Another strategy is a
pixel-by-pixel comparison of the SeaWiFS NPP with the fine-resolution Landsat
NPP aggregated to the SeaWiFS pixel resolution. In this work, both strategies were
employed for the investigation of the validity of the SeaWiFS NPP.

A histogram of NPP values at 4.63 km resolution shows similar trends to that
observed at 30 m resolution (figure 6), even though a comparison between trends
presented for the SeaWiFS NPP shows a small shift to higher values of NPP. The
F-test was carried out in order to examine whether the frequency distributions of the
Landsat-scaled NPP at 30 m and the SeaWiFS-simulated NPP at 4.63 km resolution
are similar. The F-test results proved the similarity of frequency distribution at the
p-level < 0.05.

The Landsat-scaled NPP was aggregated to a 4.63 km resolution and compared
with the SeaWiFS NPP in figure 7. Both NPP data sets show significant correla-
tion (p < 0.05) at the pixel level (R2 = 0.75, RMSE = 26.6 g C m−2). The results
reveal a high consistency of the NPP modelled by the SeaWiFS-based model with the
Landsat-scaled NPP. However, the results also show that the SeaWiFS NPP product
has a slight trend to higher values in comparison with the Landsat NPP. The SeaWiFS
NPP slightly underestimates lower NPP values in comparison with the Landsat NPP
product and overestimates higher NPP values. The reason for this may be that spatial
resolution increases the homogeneity of the area covered by a larger pixel exposing a
lower spatial variance of the NPP variable.
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Figure 6. Histograms of the NPP simulated by the 4.63 km SeaWiFS and the 30 m Landsat
scaled NPP.
Note: NPP, net primary production; SeaWiFS, Sea-viewing Wide Field-of-view Sensor.
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Figure 7. Comparison of the NPP simulated using the SeaWiFS data versus the Landsat-
scaled NPP aggregated to 4.63 km.
Note: NPP, net primary production; SeaWiFS, Sea-viewing Wide Field-of-view Sensor.

The SeaWiFS-simulated monthly NPP values for the study period 1998–2008
were merged into averaged monthly time series and compared with long-term aver-
aged monthly NPP from a similar grassland environment in Shortandy, Kazakhstan
(Shatokhina 1988, Gilmanov 1996). The Shortandy grassland site (51.0◦ N and
71.2◦ E) had an average annual precipitation of 330 mm and had species composi-
tion similar to that of the dry steppe grassland in the current study area. Comparison
of the Shortandy NPP with the SeaWiFS-simulated data showed good agreement in
terms of seasonality and NPP values for individual months (figure 8). There was good
agreement with regard to the beginning and end of the growing season. The seasonal
maximum value in both data sets occurred in June. Statistical tests proved that the
relationship between these data sets was very strong and statistically significant at
p < 0.0001 level (R2 = 0.91). The RMSE was 15.08 g C m−2 month−1 (12% of the
mean monthly value). There was a little negative bias (6.2 g C m−2 month−1) between
simulations and Shortandy NPP observations in the mean monthly NPP value. The
maximum for the SeaWiFS product was 106 g C m−2 month−1, about 8 g C m−2

month−1 lower than the maximum value at the Shortandy site. The reason for this is a
higher precipitation amount at the test site of Shortandy in comparison with the dry
steppe grassland in the study area.
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Figure 8. Monthly variations of ground-based NPP at the Shortandy test site (thin line with
circles) and dry steppe NPP modelled in this study (thick line).
Note: NPP, net primary production.

6. Conclusion

This study presented an algorithm for remote estimation of NPP over a grassland
region in central Kazakhstan using ground data of aboveground/belowground grass
biomass and vegetation structure parameters collected from field sites, climatic data
and time series of coarse-resolution SeaWiFS (4.63 km) data. This study used the well-
known Monteith LUE approach (Monteith 1977), but the most important advantage
of the model presented is the exclusive use of the variables obtained from field survey
data for calibration and validation of the model. While our model is similar to some
others to the extent that it is embedded in a LUE framework (e.g. Field et al. 1995,
Seaquist et al. 2003, Hill et al. 2004), our approach differs from others in that it uses
a new technique for estimation of the LUE parameter. This technique relates the PAR
absorbed by plants to the total NPP estimated from the field-measured peak above-
ground and belowground biomass. In comparison with the common techniques for
estimation of the LUE, such as the analysis of CO2 flux and photosynthetic photon
flux density, which demand time-consuming measurements using complex and expen-
sive equipment (Running et al. 1999a, Xiao et al. 2004), the technique used in this
study is relatively simple but very effective. Our research shows that this parameteri-
zation of LUE is both pragmatic (given the deficiency of CO2 flux data from the study
area) and biophysically realistic, as the value of LUE estimated by this approach highly
coincides with values reported in recent literature from grassland biomes in Central
Asia and other regions (Potter et al. 1993, Ruimy et al. 1995, Gower et al. 1999, Hill
et al. 2004).

To the extent possible, we have compared our derived NPP with ground-measured
NPP data to ensure that our model performed in a robust manner. This was of major
concern because a direct comparison of the modelling results with the ground-based
NPP for the 14 test sites was possible only with a strong stipulation for the significant
differences between the spatial unit size of the ground measurements and the coarse
resolution of the satellite sensors. For this reason, we used a Landsat ETM+ image for
scaling up ground NPP. The Landsat scaled NPP map was then used as ground truth
for evaluation of the SeaWiFS-based NPP product. The evaluation results detected
tight association between the scaled NPP and the modelled NPP.
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The estimates of the model were also evaluated with respect to temporal consis-
tency using a ground-based NPP data set from a similar grassland environment in
northern Kazakhstan (the Shortandy site). The monthly NPP product derived in this
study was very close to the ground-based NPP considering all phases of the growing
period. Taking into consideration all the results of the evaluation tests undertaken in
the study, the model should be evaluated as competent for estimation of NPP at the
regional level.

The work is part of a larger, ongoing effort to quantify and explain carbon bud-
get dynamics in the grassland of Kazakhstan, a region where considerable knowledge
gaps exist. Imminently, we are seeking to apply our model to the full spatial extent of
grasslands in this country in order to quantify the long-term carbon change due to
the significant reduction of anthropogenic impact during the transition time from the
socialistic to liberal capitalistic economy after the collapse of the Soviet Union.
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