[Modified slides from] Visualization Analysis \& Design Full-Day Tutorial

Tamara Munzner
Department of Computer Science University of British Columbia
Sanger Institute / European Bioinformatics Institute
June 2014, Cambridge UK

Outline

- Visualization Analysis Framework Session I 9:30-10:45am
- Introduction: Definitions
- Analysis: What,Why, How
- Marks and Channels
- Idiom Design Choices, Part 2 Session 3 I:I5pm-2:45pm
-Manipulate: Change, Select, Navigate
-Facet:Juxtapose, Partition, Superimpose
-Reduce: Filter, Aggregate, Embed
- Idiom Design Choices Session 2 II:00am-I2:15pm
- Arrange Tables
- Arrange Spatial Data
-Arrange Networks and Trees
- Map Color
- Guidelines and Examples

Session 4 3-4:30pm

- Rules of Thumb
- Validation
-BioVis Analysis Example

Encode

Θ Map
from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I/̌_ 1))
\rightarrow Shape
$+\bigcirc \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

Manipulate
Facet

Reduce

\oplus
Change

Θ Juxtapose

Θ Select

Θ Navigate
$\because \because$
Θ Filter

Θ Aggregate

Θ Embed

Θ Superimpose

Arrange tables

Θ Express Values

Θ Separate, Order, Align Regions
\rightarrow Separate
\rightarrow Order

\rightarrow Align

$$
\rightarrow 1 \mathrm{Key}
$$

$\rightarrow 2$ Keys
List
\square Matrix
\#
$\rightarrow 3$ Keys
Volume

\rightarrow Many Keys
Recursive Subdivision

Keys and values

```
\(\rightarrow\) Tables
```

- key
- independent attribute
- used as unique index to look up items

Attributes (columns)

\rightarrow Multidimensional Table

-0, I, 2, many...Express Values

$\rightarrow 2$ Keys
$\rightarrow 3$ Keys
Volume

\rightarrow Many Keys Recursive Subdivision

Idiom: scatterplot

Θ Express Values

- express values
- quantitative attributes

- no keys, only values
- data
- 2 quant attribs
-mark: points
- channels
- horiz + vert position
-tasks

- find trends, outliers, distribution, correlation, clusters
- scalability
- hundreds of items

Some keys: Categorical regions

\rightarrow Order

\rightarrow Align

- regions: contiguous bounded areas distinct from each other - using space to separate (proximity)
-following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Idiom: bar chart

- one key, one value
- data
- I categ attrib, I quant attrib -mark: lines
- channels

Animal Type

Animal Type

- length to express quant value
- spatial regions: one per mark
- separated horizontally, aligned vertically
- ordered by quant attrib » by label (alphabetical), by length attrib (data-driven)
- task
- compare, lookup values
- scalability
- dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
- data
- 2 categ attrib, I quant attrib
- mark: vertical stack of line marks

- glyph: composite object, internal structure from multiple marks
- channels
- length [quant]
- color hue [categ]
[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 200 I.]
- spatial regions: one per glyph [categ]
- aligned: full glyph, lowest bar component
- unaligned: other bar components
- task
- part-to-whole relationship
- scalability

Idiom: streamgraph

- generalized stacked graph
- emphasizing horizontal continuity
- vs vertical items
- data
- I categ key attrib (artist)
- I ordered key attrib (time)
- I quant value attrib (counts)
- derived data
- geometry: layers, where height encodes counts
- I quant attrib (layer ordering)
- scalability
- hundreds of time keys
- dozens to hundreds of artist keys
- more than stacked bars, since most layers don't extend across whole chart

Idiom: line chart

- one key, one value
- data
- 2 quant attribs
-mark: points
- line connection marks between them - channels
- aligned lengths to express quant value

- separated and ordered by key attrib into horizontal regions
- task
- find trend
- connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib -bar charts if categorical - line charts if ordered
- do not use line charts for categorical key attribs
- violates expressiveness principle
- implication of trend so strong that it overrides semantics!
-"The more male a person is, the taller he/she is"

Idiom: heatmap

- two keys, one value
- data
- 2 categ attribs (gene, experimental condition)
- I quant attrib (expression levels)
-marks: area
- separate and align in 2D matrix
- indexed by 2 categorical attributes
- channels
- color by quant attrib
- (ordered diverging colormap)
- task
- find clusters, outliers
- scalability
- IM items, 100 s of categ levels, ~ 10 quant attrib levels

Idiom: cluster heatmap

- in addition
- derived data
- 2 cluster hierarchies
- dendrogram
- parent-child relationships in tree with connection line marks
- leaves aligned so interior branch heights easy to compare
- heatmap

- marks (re-)ordered by cluster hierarchy traversal
Θ Axis Orientation

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
- rectilinear axes, point mark
- all possible pairs of axes
- scalability
- one dozen attribs
- dozens to hundreds of items
- parallel coordinates

- parallel axes, jagged line representing item

Table
-rectilinear axes, item as point

- axis ordering is major challenge (or opportunity!)
- scalability

Table			
Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

- dozens of attribs

Task: Correlation

- scatterplot matrix

- positive correlation
- diagonal low-to-high
- negative correlation
- diagonal high-to-low
- uncorrelated
- parallel coordinates
- positive correlation
- parallel line segments
- negative correlation
- all segments cross at halfway point
- uncorrelated

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:I (20I0), 3-28.]

Idioms: radial bar chart, star plot

- radial bar chart
- radial axes meet at central ring, line mark
- star plot
- radial axes, meet at central point, line mark
- bar chart
-rectilinear axes, aligned vertically

- accuracy
- length unaligned with radial
- less accurate than aligned with rectilinear

Idioms: radar chart

- radar plot
- radial axes, meet at central point
- what is the mark?
- how does it effect expressiveness?

Idioms: pie chart, polar area chart

- pie chart
- area marks with angle channel
-accuracy: angle/area much less accurate than line length

- polar area chart
- area marks with length channel
- more direct analog to bar charts

- data
- I categ key attrib, I quant value attrib
- task

- part-to-whole judgements

Idioms: normalized stacked bar chart

- task
- part-to-whole judgements
- normalized stacked bar chart
- stacked bar chart, normalized to full vert height
- single stacked bar equivalent to full pie
- high information density: requires narrow rectangle
- pie chart
-information density: requires large circle

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
-Chap 7:Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, I 993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones

