
ModSpec: An Open, Flexible Specification Framework for
Multi-Domain Device Modelling

David Amsallem and Jaijeet Roychowdhury
University of California, Berkeley

Abstract—We describe ModSpec, a MATLAB/Octave based specification
format suitable for modelling devices across a wide variety of application
domains, including circuits, optics, fluidics and biology. The ModSpec
format and associated API are centered around describing the nonlinear
differential equations at the core of any device model. The format is open,
general and easy to use, and is supported by toolchains that translate
and automatically differentiate models, set up equations for systems of
interacting devices, and provide simulation facilities. We illustrate the
use of ModSpec for modelling semiconductor, photovoltaic, fluidic and
neuronal devices and systems.

I. INTRODUCTION

Specifying and incorporating “device models”1 correctly and speedily
is crucial for effective modelling and simulation. This is true not
only in electronics, but in many other domains, including large-scale
energy distribution systems and systems biology. Device models of
interest can range from simple ones with a few equations relating
inputs and outputs directly, to complex ones with thousands of lines of
code describing equations with internal state and involving hundreds
of device parameters [1], [2]. Simple, non-redundant specification
formats, especially ones that make it easy to test and validate models
incrementally, can greatly facilitate speedy and error-free device
model development.

For microelectronic devices, the model coding API (in the C lan-
guage) of the open-source simulator SPICE3 [3]–[5] has long served
as a de-facto standard for specifying device models. While SPICE3’s
API and coding conventions have the great advantage of being open,
their use for model specification suffers from serious disadvantages,
including lack of modularity with respect to numerical algorithms2,
lack of automatic differentiation and suitability for only one sim-
ulator. Efforts over the past decade to overcome these limitations
have resulted in the Verilog-A Compact Model Extension (VA-CME)
standard [8] for model specification. VA-CME is supported by tools
[9], [10] that translate specifications into source and executable code
targeted for specific simulators.

While the VA-CME specification language is a great improvement
over SPICE3 and is being adopted in the microelectronics industry,
it has limitations in terms of its suitability for multiple physical
domains, ease of use and generality:

1) VA-CME is designed for microelectronic devices. At its core,
it relies on electrical network concepts (like nodes and branch
currents), which may not be suited to devices from other
domains – a general form for which are nonlinear differ-
ential equation systems that do not necessarily derive from
network/graph structures. As such, VA-CME is not a natural
choice for modelling devices in multi-domain systems (e.g.,
systems that include biological and micro-electronic elements).

2) In many communities – including parts of the semiconductor
modelling community – persons interested in writing device
models are not familiar with Verilog-A, VA-CME or similar
language constructs. The learning curve is a deterrent to the
model development process.

1Examples of “devices” include the well-known BSIM [1] and PSP [2]
MOS transistor models in microelectronics; beams and cantilevers in me-
chanics; and neurons (or portions of neurons) in systems biology.

2Algorithms such as the Newton-Raphson method and the Backward-Euler,
Trapezoidal and Gear methods for numerical integration [6], [7], are hard-
coded into each device model.

3) Currently-available VA-CME toolchains are predominantly
commercial and closed. Few, if any, truly open and functional
translators are available, especially for open simulators. This
has impeded the adoption of VA-CME to an extent, especially
in academia.

4) VA-CME does not provide general support for stochastic mod-
elling – e.g., it is not currently possible to model non-stationary
noise sources in models.

In this paper, we present ModSpec, a MATLAB/Octave based model
specification format, together with associated tools for translation
and simulation. Rather than being tied to any single application
domain, ModSpec is centered around the equations that constitute
the substance of any device model. The specification deals directly
with the underlying nonlinear differential equations that prescribe
relationships between the inputs and outputs of a device while
accounting for internal state. ModSpec comes with “equation en-
gines” that automatically set up equation systems for collections
of interacting devices, and a MATLAB/Octave simulator for such
equations. ModSpec allows implicit forms for differential equations,
hence inputs and outputs do not have to be identified explicitly; this
provides flexibility in modelling and in devising different types of
equation engines. Any outputs that are available explicitly may be so
specified, and can be used by equation engines to form more compact
equation systems.

The ModSpec specification is free of redundancies; automatic dif-
ferentiation (in MATLAB/Octave, using the vecvalder package
developed as part of this work) is used to generate the derivatives
needed by solution algorithms. A comprehensive MATLAB/Octave
API, used for accessing the device, is an integral part of ModSpec.
The API also provides facilities for device-specific aids to algorithms,
such as initialization and limiting [11] for Newton-Raphson – these
are cleanly separated from the device’s differential equations and may
be taken advantage of by any simulator.

The use of MATLAB/Octave for ModSpec provides ease-of-use
and accessibility advantages, making it possible for users with
minimal programming background, and from diverse communities,
to develop device models quickly and correctly. The interactivity of
the MATLAB/Octave environments is important in enabling incre-
mental model development, refinement and validation. ModSpec’s
API makes it possible to test and debug device models directly,
without the need for invoking equation engines or simulators, which
are layered modularly “on top of” the ModSpec specification. Being
fully Octave compatible [12], ModSpec is immediately accessible
to individuals and groups without the resources to buy MATLAB
licenses. ModSpec and the equation and simulation engines we
provide are open and freely usable and will be released publicly.

To illustrate its utility, we present example ModSpec descriptions of a
semiconductor model, photovoltaic cells (which span microelectron-
ics and optics), fluidic devices and compartmental neuronal structures.
Using equation engines we have developed for electronic networks
and neuronal structures, we build equation systems for networks of
devices. We simulate these equations, finding nonlinear quiescent
steady states and transient responses, using a MATLAB/Octave based
simulator we have developed. The case of neuronal structures is
especially interesting as it illustrates the multiphysics capabilities
of the ModSpec framework: both electric potential propagation and
dynamics of concentration of ions are handled.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 367

The ModSpec framework is also a significant enabler for advanced
simulation and macromodelling algorithms: we illustrate this by
applying nonlinear macromodelling techniques to reduce ModSpec
descriptions of compartmental neuronal structures. The resulting
reduced models also conform to the ModSpec API, hence can be used
as drop-in replacements for the original ModSpec device models. We
present simulation results comparing such reduced models with the
originals.

The remainder of the paper is organized as follows. In Section II,
we describe the core of ModSpec, i.e., how the nonlinear differential
equations of device models are organized to enable model specifi-
cation, and provide a simple illustrated example. We also describe
ModSpec’s algorithm-specific aids. In Section III, we describe
toolchains that take ModSpec device specifications, set up equations
for systems of interacting devices, and simulate them. An important
component of such toolchains is the vecvalder package, which
enables automatic differentiation in MATLAB/Octave. In Section IV,
we present examples of the use of ModSpec for photovoltaic, fluidic
and neuronal devices, and illustrate its use for facilitating nonlinear
reduced order modelling.

II. MODEL SPECIFICATION

A. Framework

network interface
Core

(branches and currents)

network interface

Fig. 1. Core and network interface
layers for a given device.

The presentation of the model
specification (ModSpec)
framework is deliberately
made general and abstract
in this section so as to
handle the widest possible
number of devices from
multiple domains. In this
paper, the usefulness of
such an approach will be
illustrated with multiple
examples pertaining to circuit
simulation, as well as neuron modeling.

As depicted in Fig. 1, we make a distinction between the “core”
of the model and its “network interface” layer. At its core, the
device is assumed to provide constitutive relationships between next
input/ouput quantities. In a resistor, for example, the I/O quantities
of interest are its branch voltage vb and branch current ib, hence
next = 2. In general, for electrical devices, there will be next = 2n
such quantities (voltages and currents) where n denotes the number
of external branches, as depicted in Fig. 23. In essence, the device
specifies n equations that relate the external I/O quantities – e.g., for
a resistor, the equation vb−Rib = 0.

Fig. 2. Device with n external
branches.

Observe that a
device’s branch volt-
ages/currents/charges/fluxes
are not immediately related to
network-level quantities such
as node voltages. The network
interface layer (Fig. 1)
provides relationships that
connect core I/O and network-
level quantities – e.g., for a
resistor connected between
nodes with node voltages
v+ and v−, vb = v+ − v−,
i+ = ib, i− = −ib, with i+
and i− being the node currents due to the resistor. Separating the
core and network interface layers is useful for cases where devices
do not necessarily connect to networks. For example, two resistors
augmented by any two other equations that lead to a well-formed

3This is for the case of no charges/fluxes; when charges and fluxes are
present, next can be > 2n.

square system of equations in the resistors’ I/O variables can be
modelled using ModSpec.

In the remainder of this section, electrical devices will be used for
illustration; however, the framework is flexible enough to apply to
many other domains (see Section IV). In general, there will be n
differential-algebraic equations relating the 2n external quantities.
There is no a priori assumption whatsoever in the ModSpec regarding
which of these external quantities are inputs and which are outputs.
We assume that l ∈ [0,n] of the external I/O quantities are outputs,
specified explicitly by l equations.

Those quantities are gathered in a vector z ∈ Rl and the remaining
2n− l external unknowns stored in a vector x ∈ R2n−l . In addition
to these external quantities, m ≥ 0 internal unknowns, stored in a
vector y ∈Rm can be defined as well. Note that for some devices, it
is possible to write their characteristic equation either as an explicit
or implicit equation. For instance, for a resistor, its equation can be
written explicitly as I = V

R or implicitly as f (V, I) = V − IR = 0.

The device may also be parameterized by Np parameters stored in
µµµ ∈ RNp . In the general case, there will be l explicit equations and
ni = n− l +m implicit equations. In this paper, Differential Algebraic
Equations (DAEs) are considered. These can be written in a general
form as

dqe

dt
(x,y; µµµ)+ fe(x,y, t; µµµ) = z (1)

dqi

dt
(x,y; µµµ)+ fi(x,y, t; µµµ) = 000ni , (2)

where the indices e and i respectively refer to terms appearing in the
explicit and implicit equations.

In some cases, the time dependence in the functions fi and fe can be
separated. One can then write the device DAEs as

dqe

dt
(x,y; µµµ)+ fe(x,y; µµµ)+be(t; µµµ) = z (3)

dqi

dt
(x,y; µµµ)+ fi(x,y; µµµ)+bi(t; µµµ) = 000ni . (4)

Noise terms may also be added to the DAE equations as follows:
dqe

dt
(x,y; µµµ)+ fe(x,y, t; µµµ)+Me(x,y; µµµ)ne(t; µµµ) = z (5)

dqi

dt
(x,y; µµµ)+ fi(x,y, t; µµµ)+Mi(x,y; µµµ)ni(t; µµµ) = 000ni . (6)

The matrices Mi and Me denote the noise stationary component
matrices and the vectors ne and ni are the stationary noise sources.

The model specification then defines the nonlinear operators qe, qi, fi,
fe, bi, be, Me, Mi, ne and ni. Appendix 1 presents a typical ModSpec
class for an electronic device.

Example: To illustrate this framework, a simple example, made of a
diode with a series resistor and depicted in Fig. 3, is considered. In
this case the external and internal unknowns can be chosen as

z = [Ipn], x = [Vpn], y = [Vin]. (7)

The vector of parameters µµµ = [R, Is,T]T contains the resistance value,
the saturation current in the diode as well as the temperature of usage
of the diode. The DAE operators are then

qe(y; µµµ) = qdepletion(y; µµµ)+qdiffusion(y; µµµ) (8)
qi(y; µµµ) = −qdepletion(y; µµµ)−qdiffusion(y; µµµ) (9)

where qdepletion and qdiffusion respectively denote the diffusion and
depletion caps between the node i and n. The remaining nonlinear
operators are

fe(y; µµµ) = diode(y; µµµ), fi(x,y; µµµ) =
x−y

R
−diode(y; µµµ), (10)

where diode(y; µµµ) = Id denotes the equation describing the current

368

p i n

Fig. 3. Diode with series resistor.

Id through the diode in function of the applied potential.

B. Additional Capabilities

1) Device-Specific Algorithm Support Features: In addition to the
definition of the variables of interest and the DAE operators, the
proposed framework also contains additional features needed in
practice by simulators using the models. Algorithm aids for solving
nonlinear sets of equations involving certain specific devices may be
needed. Among those, in the case of the Newton-Raphson method,
one can cite the computation of initial guesses as well as limiting
routines for nonlinear functions containing exponential terms, such
as the diode function.

2) Automatic Differentiation: The ability to compute functions
derivatives and Jacobians is critical for sensitivity analyses as well
as numerically solving nonlinear systems of equations using the
Newton-Raphson method. Forward Automatic Differentiation (AD)
is a powerful tool to achieve this goal. The recently developed
MATLAB scalar AD valder class [13] presents an innovative AD
approach through the use of classes. It is however limited by the fact
that it has not been designed to support automatic differentiation of
vector-valued function. This is an issue in the context of simulation,
when variables and sets of equations originate from the discretization
of continuous domains. In those cases, a manual definition of each
variable as a valder object is inefficient and impractical.

This fact has motivated the authors of this paper to modify and
extend the valder class to support automatic differentiation of
vector valued functions. The resulting vecvalder class has been
designed so that it is compatible with Octave as well. Appendix 2
presents some members of the vecvalder class. vecvalder is
currently ready for public release.

III. MODEL TRANSLATION, EQUATION ENGINES AND
SIMULATION

A. Library of Models

Model compilation relies on the existence of a library of models in
the ModSpec framework outlined in Section II. The current library is
implemented in MATLAB/Octave as these are de facto widely used
in the engineering community. It is expected that this library will be
translated in C in the future, enabling, after compilation, the use of
dynamically loaded libraries of models.

The models contain all the required information needed to build the
global operators of interest needed to perform either simulations,
model analysis or construction of reduced-order models. In the
case of electric circuits, such a library may contain basic two-port
components such as resistors, capacitors, diodes, generators as well
as more complex multi-port components such as semiconductors. In
the case of neuronal systems, the library contains specific models for
equations characterizing the potential propagation as well as the ions
kinetics in the neuronal cells. There are several hierarchical models
describing such kinetics and as a result, a library containing many
of these models is a useful tool for the comparison of such models
when coupled with the potential propagation equations. Hence, this
framework enables an inter-operable library of models from different
domains, which is important in several fields such as bio-electronics.

B. Parser

A given network is defined as a netlist containing the connectivity
of each component as well as its nature. By reading this netlist,

the parser subsequently builds a data structure containing the graph
connectivity of the network as well as the description of each device.

A key enabler to a variety of algorithm support is the construction
of an Application Programming Interface (API) to the data structure.
Such an API contains pointers to the location of the specific ModSpec
files in the library for each network component, the graph connec-
tivity, a function returning all the components in the data structure
corresponding to a specific device, to name just a few. In the case
of circuits, the API can return the list of all non-voltage controlled
devices, which is very useful in Modified Nodal Analysis (MNA), for
instance. For neuron modeling, the API can also return the properties
of the distal and proximal compartments of each branch, such as the
cable radius and the compartment length. These properties are then
used when setting the equations to define the junction conditions in
the network.

C. Equation Engine

As illustrated in Fig. 4, the equation engine builds the global DAE
operators, that is at the network level, in the form of anonymous
functions. This involves mapping the local variables at the devices
level to global variables. The equations are then usually built by
applying conservation laws such as Kirchhoff Current Law (KCL) for
instance. For circuits, the equation engine may use Nodal Analysis
(NA), Tableau Equations or Modified Nodal Analysis. One should
notice that the proposed model specification is completely agnostic
with respect to the method used to build the system of equations. In
the case of neurons, the equations are built by enforcing potential
continuity and KCL at the junction between branches as well as
boundary conditions.

As described in the previous subsection, the API to the data structure
is an essential tool for setting the equations. An abridged list of API
routines is reported in Appendix 3 for the cases of electronic circuits
and neuronal networks simulations. Some of the API are common
to both cases and as a result, for each application, a derived class
is defined from a common class. A full list of API routines will be
published openly in the near future.

D. Utilization of the Compiled Model

1) Simulator: Simulators can use the compiled model to perform
DC/QSS, AC, transient ODE/DAE time-stepping, periodic steady
state simulations with noise terms or not, to name just a few.
Since the DAEs are given in the form of anonymous functions,
it is straightforward to extract the expressions for the residuals
and Jacobians needed for each kind of simulation. In the case of
transient simulations, the residuals and Jacobians depend on the
time integrating scheme considered. However, because the ModSpec
framework is agnostic with respect of the model usage, it is a very
simple task to link it with any general ODE simulator.

2) Reduced-Order Model Constructor: Such a compiled model is
also particularly useful in the context of model order reduction
(MOR), where the reduced-order model constructor has to often
repeatedly query solutions or operators of the underlying high-fidelity
model. For instance, linear [14] and nonlinear [15] model reduction
methods using Krylov-based moment matching techniques, as well
as the Gappy POD method [16], require computing products of
Jacobian matrices of the dynamical system with vectors. The Discrete
Empirical Interpolation [17] and Gappy methods require evaluating
parts of the nonlinear functions fi and fe for multiple state vectors and,
as a result, relies heavily on an efficient framework for evaluating a
few components of the high-fidelity model. The ModSpec framework
can provide an efficient response to these demands for all of the
methods enumerated above.

IV. APPLICATIONS

A. BSIM3 Model

369

Fig. 4. Schematic description of the model compilation procedure.

in out

0.8 V

Fig. 5. Inverter circuit.

The first example is an in-
verter electronic system as
shown in Fig. 5. This cir-
cuit is composed of two
MOSFETs, one which is n-
type and the other p-type,
as well as voltage sources.
A single ModSpec, based on
the BSIM3v3 model [1] han-
dles both the nMOSFET and
pMOSFET types. This Mod-
Spec contains 8 external quan-
tities among which 4 exter-
nal unknowns and two inter-
nal unknowns. 406 parameters
define the model equations. A
sinusoidal input voltage Vin of
amplitude 0.4 V, DC value 0.4 V and frequency 10 MHz is applied
and the output voltage Vout of the model simulated. The results are
reported in Fig. 6. The reader can note the effectiveness of the
ModSpec framework to handle complex models such as BSIM3v3.

B. Solar Photovoltaic Cell

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

0.2

0.4

0.6

0.8

1

Time (s)

P
ot

en
ti

a
(V

)

Vin

Vout

Fig. 6. Inverter circuit output under a sinusoidal input.

Fig. 7. Solar PV circuit.

The second example
considered in this
section is a solar cell
circuit. This small
circuit, first described
in [18] is composed
of a current source in
parallel to a diode as
shown in Fig. 7. Three
models are subsequently
considered in the ModSpec format: one for the resistor, one for
the photovoltaic current source and one for the diode. The diode
ModSpec contains the PNJLIM [11] Newton limiting algorithm. For
each given irradiance G∈ {0.25,0.5,0.75,1} sun, varying the applied
potential Va leads to one of the I-V curve shown in Fig. 8. There
is exact agreement with the results reported in [18]. Furthermore,
the reader should note that unlike the code implemented in [18],
specifying separately each device in the circuit outside the Newton-
Raphson algorithm leads to a flexible and general implementation,
enabling the use of these models in other contexts such as reliability
assessment for instance [19]. Our approach contrasts with the one
in SPICE3 where every algorithm (Newton-Raphson, trapezoideal
rule, Gear 2, to name just a few) has to be recoded in every model.

Fig. 8. Solar PV circuit operating at T = 25◦C under various irradiances.

370

C. Fluidic Device

The third example is a fluidic device modeled by the nonlinear
Burger’s equation. Burger’s equation is a nonlinear PDE used to
model traffic flow or the transport of a substance, such as a gas.
Its inviscid form is

∂U
∂ t

+U
∂U
∂x

= g(x, t) (11)

where U(x, t) is the quantity of interest, and g(x, t) is a source term.
The PDE is defined in the domain (x, t) ∈D = [0,L]× [0,Tf]. Initial
and boundary conditions are also associated to the PDE:

U(x,0) = Ui(x) (12)

and
U(0, t) = Ub(t), (13)

assuming that U(0, t) > 0, ∀t ≥ 0.

The PDE can then be discretized in space using Godunov’s finite
volumes method [20], [21]., resulting in the following set of nonlinear
ODEs.

du
dt

+ f(u) = g (14)

where the state vector u(t) ∈RN contains the values ui, i = 1, · · · ,N
respectively approximating the values U(xi, t), i = 1, · · · ,N with
x0 = 0 < x1 < · · ·< xN = L. For simplicity, here, xi+1−xi = ∆x = L

N .
Similarly, g(t)∈RN contains the values gi(t) = g(xi, t). The nonlinear
function f is defined by the finite volumes approximation as

fi = [f(u)]i =
1

∆x
(Fi+ 1

2
−Fi− 1

2
) (15)

where
Fi+ 1

2
=
{

f (ui) if ui >−ui+1
f (ui+1) if ui ≤−ui+1.

(16)

There are 2 external quantities in the ModSpec, namely uinlet = u0
and uoutlet = uN . Hence 2n = 2. Since there are no explicit outputs,
l = 0 and there are 2n− l = 2 external unknowns. As a result, there
are m = N− 1 internal unknowns, namely ui, i = 1, · · · ,N− 1. One
can then check that there are indeed n− l + m = 1− 0 + N− 1 = N
implicit equations and no explicit equations.

Two parameters define the system: the length of the domain L as well
as the number of points N in the discretization of the equations. The
following vector of parameters is then defined

µµµ = [L,N]T . (17)

Using the notations from Section II, here,

x =
[

u0
uN

]
, y =

 u1
...

uN−1

 , z = []. (18)

The implicit set of equations is
dqi

dt
(x,y)+ fi(x,y; µµµ)+bi(t; µµµ) = 0, (19)

where
qi(x,y) =

[
y
x2

]
, (20)

and

fi(x,y; µµµ) =
µ2

µ1
∆F(x,y) =

µ2

µ1

[
F3

2
−F1

2
, · · · , f (x2)−FN− 1

2

]T
(21)

with

F1
2

= f (y1)+111(x1>−y1)(f (x1)− f (y1)) (22)

Fi+ 1
2

= f (yi+1)+111(yi>−yi+1)
(f (yi)− f (yi+1)), ∀i≥ 1 (23)

and

bi(t; µµµ) =−
[

g
(

µ1

µ2
, t
)

, · · · ,g
(

N
µ1

µ2
, t
)]T

. (24)

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

x

u

Fig. 9. Snapshots of the evolution of
u(t) at various times ti with Burger’s
equation.

Fig. 9 reports snapshots of
the the state vector u(t) at
various times t, as simulated
using ModSpec together with
vecvalder to compute the
Jacobians needed in the non-
linear implicit time-stepping.
Very good agreements can be
seen when compared with the
results presented in [21].

D. Neuron Modeling

1) Generalities: Neurons are
generally (but not always)
composed of three parts; a
cell body, also called soma, an
axon and dendrites attached to
the soma, as illustrated in Fig. 10 [22]. The soma integrates the input
currents injected in its dendrites by other neurons, and, under certain
conditions, will itself produce an electric current that propagates in
the axon and eventually will serve as an input for other neurons.
This motivates, as done in the remainder of this section, studying a
network made of the dendritic tree together with the soma. Depending
on the potential integration at the soma, the potential then propagates
or not in the axon.

2) The Hodgkin-Huxley Model: The Hodgkin-Huxley neuron
model [23] is a multi-compartmental model composed of a set
of coupled nonlinear partial differential equations describing the
propagation of current inside the dendrites, soma and axon. The first
set of equations, also called cable equation, describes the temporal
and spatial potential variation in the neuron elongated structures
(dendrites and axon)

d
2Ri

∂ 2V
∂x2 = Cm

∂V
∂ t

+GNam3h(V −ENa)

+GKn4(V −EK)+GL(V −EL)+ I(x, t).
(25)

Boundary conditions are associated with the potential in the soma,
considered to be uniform at a given time:

d2π

rsomaRi

∂Vsoma

∂x
= Cm

∂Vsoma

∂ t
+GNam3

somahsoma(Vsoma−ENa)

+GKn4
soma(Vsoma−EK)+GL(Vsoma−EL)+ Isoma(t).

(26)

The second set of equations models the dynamics of concentration
of Na+, K+ and Cl− (leak) ions across the cell membrane

∂m
∂ t

= αm(V)(1−m)−βm(V)m (27)

∂h
∂ t

= αh(V)(1−h)−βh(V)h (28)

∂n
∂ t

= αn(V)(1−n)−βn(V)n. (29)

V (x, t) denotes the local membrane potential, Vsoma(t) the potential
at the soma, I(x, t) and Isoma(t) the injected synaptic current, m(x, t),
h(x, t) and n(x, t) are gating variables for the ion channels correspond-
ing to respectively the Na+ ions (m and h) and K+ ions (n). The
expressions for αi(V) and βi(V), i ∈ {m,h,n} as derived originally
by Hodgkin and Huxley can be found in [23]. In this section, the
physical quantities of interest are the ones found experimentally
by Hodgkin and Huxley, namely a specific membrane capacitance
Cm = 10−2 F/m2, an axial resistivity Ri = 0.354 ohm.m, maximal
conductances GNa = 1.2 103 ohm−1m−2, GK = 3.6 102 ohm−1m−2

and GL = 3 ohm−1m−2, and equilibrium potentials ENa = 0.115

371

Fig. 10. Schematic representation of a neuron structure.

TABLE I
COMPARISON OF CPU TIMINGS WITH AND WITHOUT THE MODSPEC

FRAMEWORK

with the ModSpec without the ModSpec
framework framework

CPU Time 160 s 138 s

V, EK = −0.012 V and EL = 0.010613 V. Dendrites with radius
d = 0.476 10−3 m and length L = 5 10−2 m is here considered. The
soma has a radius rsoma = 2 10−3 m. The space and time derivative
are approximated using the approach first developed in [24]. Every
dendrite is discretized in space using 1400 compartments, resulting
in a dynamical system having a total of 5600 degrees of freedom per
dendrite.

0 0.01 0.02 0.03 0.04 0.05
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x (in m)

P
ot

en
ti

al
(i

n
V

)

Fig. 11. Several spatial snapshots of
the potential propagation in a single
dendrite.

The underlying equations as
well as the parameters of inter-
est are here again all defined
using the ModSpec frame-
work. This enables changing
these parameters in a straight-
forward fashion. The cable
equation model is defined by
one ModSpec while the equa-
tions relative to the ions con-
centration dynamics are de-
fined in a different ModSpec.
This can allow easily switch-
ing between models of differ-
ent fidelities. In the present
case, the ions model could be
straightforwardly replaced by a more complex model incorporating
more complex ions kinetics such as the A-type K+ current developed
by Connor and Stevens [25] for instance.

To illustrate the model’s predictive capabilities, an input pulse of
amplitude Imax = 8.418 10−3 A is applied at one end of the dendrite
between times ti = 0.75 10−3 s and t f = 1.25 10−3 s. The propagation
of the action potential is illustrated in Fig. 11 where multiple
snapshots of the spatial distribution of the potential are depicted.
The time histories of the potentials at three different locations of
the dendrite are plotted in Fig. 12(a). The black curve represents the
time history of the potential at the location of the current injection.
If the amplitude of the applied current is below a certain threshold,
then no propagation occurs as illustrated in Fig. 12(b). In this case
Imax = 10−3 A, all other parameters being equal. This illustrates the

nonlinear nature of the Hodgkin-Huxley model.

0 0.002 0.004 0.006 0.008 0.01

0

0.05

0.1

Time

P
ot

en
ti

al

x = 0 m
x = 0.02 m
x = 0.03 m

(a) Propagation

0 0.002 0.004 0.006 0.008 0.01

0

2

4

6

8

10
x 10

−3

Time

P
ot

en
ti

al

x = 0 m
x = 0.02 m
x = 0.03 m

(b) No propagation

Fig. 12. Transient potential propagation in a dendrite

In order to assess the efficiency of the ModSpec framework, the CPU
timings are compared when the framework is not used to perform the
simulations. As reported in Table I, using the framework adds 16%
extra computational time to the simulation for the benefit of generality
and utilization of the framework with any arbitrary network. It is also
expected that this overhead cost will disappear when the framework
is ported into C, allowing the use of pre-compiled ModSpec libraries.

Fig. 13. Dendritic trees considered.

0 0.02 0.04

0

0.05

0.1

x

V

0 0.02 0.04

0

0.05

0.1

x

V

0 0.02 0.04

0

0.05

0.1

x

V

Fig. 14. Spatial snapshot of the action
potential propagation at t = 0.007 s in
a dendritic tree with 3 branches. From
top to bottom and then left to right,
potential in branches A1, A2 and A3.

3) Neuron Networks with
Multiple Branches: Neuronal
networks made of multiple
branches are the focus of
the remainder of this paper.
More specifically, networks
constituted of a dendritic tree
and a soma will be considered.
At the junctions between 2
branches or more, potential
continuity as well as current
conservation are enforced. For
extremity branches, sealed
end boundary conditions are
imposed. Fig. 13 presents
the two dendritic networks
studied in this paper, made of
3 and 7 branches respectively.
Snapshots of the propagation of the action potential inside each tree
at t = 0.007 and t = 0.011 s respectively are reported in Figs. 14
and 15. In both cases, the current is injected at the end of the top
left-most branch as represented in Fig. 13 (branches A1 and B1).

In the case of these dendritic trees, the equation engine takes into
account the network connectivity properties in order to set the
equations preserving potential continuity and conservation of current
at the junctions.

4) Model Reduction: The proposed model specification framework is
useful for conveniently and efficiently building reduced-order models
in networks. The main idea is to first build a reduced-order model
(ROM) for a single branch of the network and then assemble as many
such ROMs as there are branches in the network. An alternative is to
build a single ROM for the entire network, as done in [26]. A main

372

0 0.05

0

0.05

0.1

x
V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V
0 0.05

0

0.05

0.1

x

V
0 0.05

0

0.05

0.1

x

V

Fig. 15. Spatial snapshot of the action potential propagation at t = 0.011 s
in a dendritic tree with 7 branches. From top to bottom and then left to right,
potential in branches B1, B2, B3, B4, B5, B6 and B7.

advantage of the new procedure presented in this paper is the ability
of building ROMs for networks of arbitrary topologies. Furthermore,
conservation and continuity laws at junctions can be enforced in a
similar fashion as in the original equation setting. Variations in the
dendrites geometrical and physical parameters can be subsequently
handled using the techniques recently developed in [27].

0 0.01 0.02 0.03 0.04 0.05

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x (in m)

P
ot

en
ti

al
(i

n
V

)

Fig. 16. Comparison of snapshots of
potential at t = 0.004 s in a single den-
drite obtained with the H-H model and
the ROM. In blue: high-fidelity model,
in red: reduced-order model.

A reduced-order basis of
dimension nROM = 30 is
first built for the potential
satisfying the cable equations.
This basis is built by Proper
Orthogonal Decomposition
(POD) using the method of
snapshots [28]. As illustrated
in Fig. 16, such a ROM
captures very well the
behavior of the underlying
high-fidelity model, which is
of size 1400.

After this training phase, ar-
bitrary dendritic trees with nb
branches is considered. Global network ROMs of dimension nROM×

0 0.02 0.04

0

0.05

0.1

x

V

0 0.02 0.04

0

0.05

0.1

x

V

0 0.02 0.04

0

0.05

0.1

x

V

Fig. 17. Comparison of snapshots of potential at t = 0.008 s in a dendritic
tree with 3 branches obtained with the H-H model and the ROM. In blue:
high-fidelity model, in red: reduced-order model. From top to bottom and then
left to right, potential in branches A1, A2 and A3.

nb = 30nb are built by assembling single branch ROMs together. The
ModSpec framework is here a valuable support since the reduced-
order basis can be added as an additional field of the model. Figs. 17
and 18 illustrate the very good agreements between the potential
propagation predicted by the ROM and the high-fidelity model in
both networks.

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

0 0.05

0

0.05

0.1

x

V

Fig. 18. Comparison of snapshots of potential at t = 0.011 s in a dendritic
tree with 7 branches obtained with the H-H model and the ROM. In blue:
high-fidelity model, in red: reduced-order model. From top to bottom and then
left to right, potential in branches B1, B2, B3, B4, B5, B6 and B7.

The ModSpec framework can be also very useful in the context of
hierarchical modeling where several types of neurons are connected
to each other as in the case of the Drosophila melanogaster depicted
in Fig. 19 [29].

V. CONCLUSIONS

Fig. 19. Ventral lateral neurons in the
Drosophila melanogaster [29].

We have developed a new
framework for device model
specification. This framework
is general enough to be ap-
plicable to devices stemming
from multiple domains as il-
lustrated by electronic and
neuronal devices in this paper.
Furthermore, this new frame-
work is flexible enough to al-
low its use within several sim-
ulation and modeling settings
and with complex networks.

Future work will focus on
the use of compiled models
within this framework, allow-
ing the definition of dynam-
ically loaded libraries with an associated API in C, as well as
constructing translators for specific simulators including commercial
ones. Another important characteristic to be added is hierarchical
specification of devices. This is particularly important for enabling
multilevel solution algorithms. Noise source specification will be
enabled within ModSpec, with support for non-stationary noise
sources. Finally, translation to and from VA-CME will be supported
as well as all its features.

VI. APPENDIX 1: MODEL SPECIFICATION FOR AN ELECTRONIC
DEVICE

class ModSpec{
%sizes
DM.nExternalQuantities; DM.nExternalUnknowns;
DM.nExplicitOutputs; DM.nInternalUnknowns;
DM.nImplicitEquations; DM.nExplicitOutputEquations;

373

DM.nNoiseSources;
% parameter support
DM.nParms; DM.Parmnames;
DM.Parmdefaults; DM.Getparms;
DM.Setparms; DM.parms;
%device properties
DM.IsVoltageControlledDevice;
% names
DM.modelName; DM.ExternalQuantityNames;
DM.ExternalUnknownNames; DM.InternalUnknownNames;
DM.ExplicitOutputNames;
% DAE functions
DM.fi; DM.fe;
DM.qi; DM.qe;
DM.bi; DM.be;
% Newton-Raphson limiting support
DM.NRLimiting;
% noise support
DAE.nNoiseSources; DAE.NoiseSourceNames;
DAE.NoiseStationaryComponentPSDmatrix;
DAE.NoiseModulationMatrix;

}

This is an example of class member (for a diode):

function out = NRLimiting(dx,x,DM)
out = pnjlim_dx(dx, x, 0.025, 0.6145);

%end NRLimiting

VII. APPENDIX 2: vecvalder: A VECTORIAL AUTOMATIC
DIFFERENTIATION CLASS IN MATLAB/OCTAVE

Some members of the vecvalder class are presented below as
well as utility subroutines. many other routines are omitted for lack
of space but will be published openly.

function h = minus(u,v)
% minus is overloaded

if ˜isa(u,’vecvalder’)
h = vecvalder(u-val2mat(v), -der2mat(v));

elseif ˜isa(v,’vecvalder’)
h = vecvalder(val2mat(u)-v, der2mat(u));

else
h = vecvalder(val2mat(u)-val2mat(v),

der2mat(u)-der2mat(v));
end

end

function h = sqrt(u)
% sqrt is overloaded

n = size(u(1).der,2);
h = vecvalder(sqrt(val2mat(u)),
der2mat(u)./repmat(2*sqrt(val2mat(u)),[1 n]));

end

function A = val2mat(u)
% Transforms the val fields into a matrix

A = zeros(size(u));
A(:) = cell2mat({u.val});

end

function A = der2mat(u)
% Transforms the der fields into a matrix

A = zeros(size(u(1).der,2),size(u,1));
A(:) = cell2mat({u.der});
A=A’;

end

VIII. APPENDIX 3: API TO THE EQUATION ENGINE

class EquationEngine{
%API functions
DS.SearchDevice(deviceName);
DS.AllDevicesModSpecs();
DS.DisplayAllDevicesModSpecs();
DS.GraphConnectivity();
DS.IncidenceMatrix();
DS.nDevices();
DS.nImplicitEqInStruct(devStruct);
DS.deviceParameters(iDevice);

}

Additional members in the derived class for circuits:

class EquationEngineCircuits{
DS.NonVoltageContrDevices();
DS.VoltageContrDevices();

}

Additional members in the derived class for neurons:

class EquationEngineNeurons{
DS.DistalCompartmentsProperties();
DS.ProximalCompartmentsProperties();
DS.SomaLocation();
}

REFERENCES

[1] W. Liu, X. Jin, J. Chen, M-C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan,
K. Hui, J. Huang, R. Tu, P.K. Ko, and Chenming Hu. Bsim 3v3.2
mosfet model users’ manual. Technical Report UCB/ERL M98/51,
EECS Department, University of California, Berkeley, 1998.

[2] Xin Li, Colin C. McAndrew, Weimin Wu, Samir Chaudhry, James Vic-
tory, and Gennady Gildenblat. Statistical modeling with the psp mosfet
model. IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, 29:599–606, 2010.

[3] T.L. Quarles. Analysis of Performance and Convergence Issues for
Circuit Simulation. PhD thesis, April 1989. Memorandum no. UCB/ERL
M89/42.

[4] ngSPICE circuit simulator. http://ngspice.sourceforge.net.
[5] Wikipedia. SPICE. http://en.wikipedia.org/wiki/SPICE.
[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numer-

ical Recipes – The Art of Scientific Computing. Cambridge University
Press, 1989.

[7] L.O. Chua and P-M. Lin. Computer-aided analysis of electronic circuits
: algorithms and computational techniques. Prentice-Hall, Englewood
Cliffs, N.J., 1975.

[8] Verilog-A Compact Model Extensions. http://www.vhdl.org/verilog-
ams/htmlpages/public-docs/Verilog-A Compact Model Extensions.pdf.

[9] Tiburon Design Automation. Tiburon DA products and documentation.
http://www.tiburon-da.com/.

[10] L. LeMaitre, W. Grabinski, and C. McAndrew. Compact Device
Modeling Using Verilog-aMS and ADMS. 2003.

[11] Jaijeet Roychowdhury. Numerical simulation and modelling of electronic
and biochemical systems. Foundations and Trends in Electronic Design
Automation, 3(2-3):97–303, December 2009.

[12] J. Eaton et. al. Octave. http://www.gnu.org/software/octave/index.html.
[13] R.D Neidinger. Introduction to automatic differentiation and matlab

object-oriented programming. SIAM review, 52(3):545–563, 2010.
[14] DS Weile, E Michielssen, E Grimme, and K Gallivan. A method for

generating rational interpolant reduced order models of two-parameter
linear systems. Applied Mathematics Letters, 12(5):93–102, 1999.

[15] C Gu and J Roychowdhury. Model reduction via projection onto
nonlinear manifolds, with applications to analog circuits and biochemical
systems. Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design, pages 85–92, 2008.

[16] K Carlberg, C Bou-Mosleh, and C Farhat. Efficient nonlinear model
reduction via a leastsquares petrov–galerkin projection and compressive
tensor approximations. International Journal for Numerical Methods in
Engineering, 86(2):155–181, 2011.

[17] S Chaturantabut and DC Sorensen. Nonlinear model reduction via
discrete empirical interpolation. SIAM Journal on Scientific Computing,
32:2737, 2010.

[18] G Walker. Evaluating mppt converter topologies using a matlab pv
model. Journal of Electrical & Electronics Engineering, Australia,
21(1):49–56, 2001.

[19] S.V. Dhople, A.Davoudi, A.D Dominguez-Garcia, and P.L Chapman.
Unified approach to reliability assessment of multiphase dc-dc converters
in photovoltaic energy-conversion systems. IEEE Transactions on Power
Electronics, 2010.

[20] Randy J. LeVeque. Finite volume methods for hyperbolic problems.
Cambridge University Press, 2002.

[21] M Rewienski and J White. Model order reduction for nonlinear
dynamical systems based on trajectory piecewise-linear approximations.
Linear Algebra and its Applications, 415(2-3):426–454, 2006.

[22] Neuron structure. http://creationwiki.org/pool/images/1/13/NEURON2.gif.
[23] E.M. Izhikevich. Dynamical Systems in Neuroscience - The Geometry of

Excitability and Bursting. MIT Press, Cambridge, Massachusetts, 2007.
[24] M Hines. Efficient computation of branched nerve equations. Interna-

tional journal of bio-medical computing, 15(1):69, 1984.
[25] J.A Connor and C.F Stevens. Inward and delayed outward membrane

currents in isolated neural somata under voltage clamp. The Journal of
Physiology, 213:1–19, Jan 1971.

[26] AR Kellems, S Chaturantabut, DC Sorensen, and SJ Cox. Morpholog-
ically accurate reduced order modeling of spiking neurons. Journal of
computational neuroscience, pages 1–18, 2010.

[27] D Amsallem and C Farhat. Interpolation method for adapting reduced-
order models and application to aeroelasticity. AIAA Journal-American
Institute of Aeronautics and Astronautics, 46(7):1803–1813, 2008.

[28] L Sirovich. Turbulence and the dynamics of coherent structures. part i:
Coherent structures. Quarterly of applied mathematics, 45(3):561–571,
1987.

[29] Drosophila melanogaster neuron network.
http://www.pnas.org/content/105/50.cover-expansion.

374

