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Abstract Modularity is appealing for solving many prob-
lems in optimization. It brings the benefits of manufactura-
bility and reconfigurability to structural optimization, and
enables a trade-off between the computational performance
of a Periodic Unit Cell (PUC) and the efficacy of non-uniform
designs in multi-scale material optimization. Here, we intro-
duce a novel strategy for concurrent minimum-compliance
design of truss modules topologies and their macroscopic
assembly encoded using Wang tiling, a formalism providing
independent control over the number of modules and their
interfaces. We tackle the emerging bilevel optimization prob-
lem with a combination of meta-heuristics and mathematical
programming. At the upper level, we employ a genetic algo-
rithm to optimize module assemblies. For each assembly, we
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obtain optimal module topologies as a solution to a convex
second-order conic program that exploits the underlying mod-
ularity, incorporating stress constraints, multiple load cases,
and reuse of module(s) for various structures. Merits of the
proposed strategy are illustrated with three representative ex-
amples, clearly demonstrating that the best designs obtained
by our method exhibited decreased compliance: from 56%
to 69% compared to the PUC designs.

Keywords modular-topology optimization, second-
order cone programming, truss microstructures, bilevel
optimization, Wang tiling
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1 Introduction

Modular structures, composed of repeated building blocks
(modules), offer multiple appealing advantages over non-
modular designs. These include more economical mass fabri-
cation, increased production productivity (Tugilimana et al.,
2017b), and better quality control (Mikkola and Gassmann,
2003). In addition, modules facilitate structural reconfigura-
bility, conversion among designs with considerably different
structural responses (Nežerka et al., 2018). Finally, the de-
sign of modular structures enables structural efficiency to be
balanced with design complexity (Tugilimana et al., 2019),
which often arises in optimal structures (Kohn and Strang,
1986).

Our approach to designing modular structures follows
recent successful applications of Wang tiles in compression
and reconstruction of heterogeneous microstructures (Novák
et al., 2012; Doškář et al., 2014; Antolin et al., 2019; Doškář
et al., 2020), where modularity suppresses artificial periodic-
ity artifacts inherent to the periodic-unit-cell approach, e.g.,
(Zeman and Šejnoha, 2007). Here, we focus on the reverse di-
rection: designing modular structures or materials composed
of a compressed set of modular LEGO R©-like building blocks.
In this endeavor, the concept of Wang tiles provides us with
a convenient mechanism for describing and controlling mod-
ule types as well as their interface types. Our approach is
explained in the simplest setting: the topology optimization
of truss structures.

Below, we review recent developments in the modular
design of truss structures (Section 1.1), and modular micro-
structures, (Section 1.2). Finally, we discuss the benefits of
our approach in Section 1.3.

1.1 Design of modular trusses

The optimal design of modular trusses appears to be a new,
to a large extent unexplored, branch of structural optimiza-
tion. In one of the pioneering works in this area of research,
Tugilimana et al. (2017b) developed a method to optimize
the topology of a single module as well as the module’s
spatially-varying rotations within the design domain. With
this method, the optimization part relies on a plastic design
formulation (Dorn et al., 1964) and thus provides lower-
bound designs only as the kinematic compatibility is ne-
glected. The need for acquiring elastic design formulation re-
sulted in a follow-up work (Tugilimana et al., 2017a), which
proposed a non-convex formulation allowing for multiple
load cases, stress constraints, multiple module types, as well
as the module reusability among structures. However, this
formulation still requires a manual definition of the module
spatial distribution within the design domains. Therefore,
Tugilimana et al. (2019) introduced a two-level approach
to optimize the topology of multiple modules as well as

their spatial placement within a structural design domain.
While the lower-level formulation they proposed additionally
extends itself to self-weight and local and global stability con-
straints, the upper-level simulated annealing with an adaptive
neighborhood ensures dynamic grouping of modules.

Another approach, that of Zawidzki and Jankowski
(2019), proposes a bilevel optimization method to optimize
the Truss-Z system (Zawidzki and Nishinari, 2012), a modu-
lar pedestrian network. In the upper-level of this approach,
the NSGA-II algorithm optimizes the module outer shape to
provide geometrically versatile structures that can construct
connected paths between pairs of access points. Lower-level
optimization then employs simulated annealing with an adap-
tive neighborhood and minimizes the module weight in the
sizing optimization of circular thin-walled sections with con-
straints on the von-Mises stresses and the Euler buckling
ratio.

Limiting the number of unique cross-section areas of
truss structures to improve constructability resulted in the use
of dynamic grouping in topology optimization. In contrast to
the former methods, where modules comprise multiple truss
elements, this approach groups individual cross-sections into
sets whose number and cardinalities are a result from the op-
timization. For example, Shea et al. (1997) adopted the shape
annealing approach with a grouping criterion based on the
optimized non-grouped cross-section areas, and Toğan and
Daloğlu (2008) employed genetic algorithms with grouping
criteria based on the internal forces and on the slenderness ra-
tios. In (Lemonge et al., 2011), a genetic algorithm extended
to multiple cardinality constraints was developed and used to
solve the frame structure sizing optimization problem.

1.2 Design of modular microstructures

Distinguished modular and structural scales in the design
of modular trusses evoke the standard multi-scale topology
optimization for the design of (meta-)material microstruc-
tures. In such settings, theoretically optimal designs occur
when microstructures vary pointwise in macro-scale design
domains (Rodrigues et al., 2002), i.e., with each macro-point
associated with an independent module type.

Since scale separation hinders the use of single-scale
methods because enormous resolution is required, the scales
are usually (de-)coupled with the inverse homogenization
approach (Sigmund, 1994). Not only does this setting intro-
duce manufacturability issues due to discontinuous material
distribution over microstructural cell interfaces (overcome
recently, e.g., in (Garner et al., 2019)), it also remains com-
putationally expensive. On the other hand, the optimized
structures tend to approach the theoretical limits of structural
efficiency (Groen and Sigmund, 2018). Aiming to allevi-
ate the computational burden, the periodic unit cell (PUC)
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approach—repeating a single, possibly graded, microstruc-
tural cell throughout the entire design domain—is often
adopted (Sigmund, 1995; Liu et al., 2008; Stromberg et al.,
2010; Liu et al., 2017); however, this significantly compro-
mises the quality of optimized designs.

Both aforementioned methods represent two extreme
cases: the multi-scale approach generates efficient structures
but requires high computational resources; the PUCs are
structurally inefficient yet computationally cheap. An inter-
mediate method thus seems preferable for balancing compu-
tational demands with structural efficiency. Such an interme-
diate method emerges from modular design, as the number
of unit cells is finite, and their number directly controls com-
putational costs.

In this context, Sivapuram et al. (2016) extended the
multi-scale optimization approach by limiting the number
of microstructures, but their approach required to predefine
the spatial placement of cells and still lacked material con-
tinuity across their boundaries. The most general methods,
published by Li et al. (2018) and Zhang et al. (2018), in-
troduced concurrent approaches to simultaneously optimize
spatial placement and the topology of a finite set of mod-
ules while ensuring the material continuity with artificially
predefined kinematical connectors.

1.3 Aims and novelty

As seen from the state-of-the-art review, the optimum design
of modular structures is a rapidly-evolving line of research
for the structural optimization community. In this contribu-
tion, we consider this inherently two-level design problem
in its original form; similarly to earlier studies (Tugilimana
et al., 2017b,a, 2019), we design optimized topologies of
modules (lower level) and the assembly plan (upper level)
concurrently. In contrast to the earlier contributions, however,
we develop a convex lower-level formulation for the topology
optimization of truss modules, while still allowing for stress
constraints, module reusability, and multiple load cases.

Thanks to convexity, we can reach true global optima for
coarse discretizations and assure that the algorithm avoids
poor local optima for module topologies. We find this con-
vex subproblem very important in this incipient phase of re-
search because it provides a rigorous answer regarding what
is achievable. Unfortunately, this convexity does not translate
into continuum topology optimization, which explains our
choice for discretization with truss elements.

Second, we adopt the formalism of corner Wang tilings to
describe the assembly plan of modules. This generalization
(Novák et al., 2012; Doškář et al., 2014; Doškář and Novák,
2016; Doškář et al., 2018; Doškář et al., 2020) of the PUC
allows us to design compressed yet non-periodic assemblies,
a novel class of connectable and reusable (micro-)structures

and materials. Contrary to (Li et al., 2018; Zhang et al., 2018),
our approach generates mechanically compatible structures
fully automatically and avoids prescribing fixed cell inter-
faces.

The rest of the paper is structured as follows. In Section 2,
we introduce the formalism of corner Wang tilings and recall
a convex elastic-design formulation for topology optimiza-
tion of trusses. Subsequently, we extend this formulation
with modularity, stress constraints, multiple load cases, and
module reusability. To handle the discreteness of the modular
assembly plan, a genetic algorithm is applied as the solver in
the upper-level optimization in Section 3. Finally, Section 4
illustrates our method with three examples, assessing the
scalability of the approach and multiple constraint types, and
leads us to the conclusion that the proposed methodology is
fairly efficient.

2 Background

2.1 Wang tilings

One of the goals of this article is to explore the merits of
Wang tilings (Wang, 1961) for the optimal design of modu-
lar structures. Wang tiles—unit squares with colored edges
and fixed orientation—constitute a formalism introduced
by Wang (1961) to visualize the ∀∃∀ decidability problem
of predicate calculus using an equivalent domino problem.
Wang considered an infinite number of copies of an arbi-
trary set of Wang tiles and investigated whether there exists
a simply-connected tiling of the infinite plane such that the
adjoining edges of neighboring tiles share the same color—
the so-called valid tilings. Contrary to Wang’s conjecture,
Berger (1966) built a tileset that covers the infinite plane
and that yet does not allow any periodic pattern to emerge,
a property proved by a reduction from the Turing machine
halting problem (Turing, 1937).

The two properties that made Wang tiles appealing in
multi-disciplinary research are notably Turing completeness
and the ability to form aperiodic patterns. While computa-
tions by self-assembly of DNA (Winfree et al., 1998; Winfree,
2000) and automated theorem proving (Wang, 1961) exploit
the Turing completeness, non-periodic patterns apply in com-
puter graphics to construct compressed yet naturally-looking
textures (Cohen et al., 2003). The latter research also pro-
vided the motivation to employ Wang tiles in compression
and reconstruction of microstructures, generalizing the con-
cept of the periodic unit cell (Novák et al., 2012; Doškář
et al., 2014; Doškář and Novák, 2016; Doškář et al., 2018;
Doškář et al., 2020).

Although traditional Wang tiles maintain information
continuity across the edges, some discontinuity artifacts
might appear in their corners. To solve this so-called corner
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Fig. 1: The complete set of corner Wang tiles over two colors.

problem (Cohen et al., 2003) and avoid these periodically re-
peating artifacts (Doškář et al., 2020), tiles with connectivity
information stored in colored corners were proposed (La-
gae and Dutré, 2006). These corner tiles form a subset of
Wang tiles, as each combination of vertex color codes de-
notes a unique edge type. Note that a reverse procedure is
not generally applicable (Doškář et al., 2020).

The corner Wang tiles proved to be preferable over the tra-
ditional Wang tiles, allowing for simpler generation of valid
tilings, reduced memory requirements, and easier generaliza-
tion to multiple dimensions (Lagae and Dutré, 2006), while
preserving the possibility of building aperiodic tilings (Lagae
et al., 2006). These findings inspired us to employ corner tiles
in this paper. In particular, we consider here the complete set
of planar corner Wang tiles over two colors, containing one
corner tile for each possible combination of color codes as
depicted in Fig. 1.

Using corner tiles, valid assemblies or tilings must satisfy
identical colorings of shared vertices over all adjacent tiles,
compare Fig. 2b and 2c. Marking each color code with an
integer value (Lagae and Dutré, 2006), any valid assembly
determines the color-code connectivity matrix C uniquely.
Note that in the case of only two vertex colors, the connec-
tivity matrix becomes Boolean, Fig. 2a. Conversely, for all
complete sets of corner tiles over a limited set of colors, any
connectivity matrix containing integer values corresponding
to the vertex codes of the set automatically defines a valid
rectangular tiling. Notice that an extension to non-rectangular
tiling with holes is straightforward, using a flattened one-
dimensional array.

2.2 Optimal truss design

Trusses are structures consisting of nodes and straight bars
which transmit axial forces only. While the optimal topol-
ogy of the least-compliant trusses under a single load case
aligns structural stiffness with the principal strains (Michell,
1904), their trajectories are not straight in general and hence
an optimal design can contain an infinite number of bars.
To overcome this undesirable property, the continuum de-
sign domain is usually discretized into the so-called ground-
structure (Dorn et al., 1964), constituting a finite-dimensional
design space formed by the sets of nn ∈ N fixed nodes and
nb ∈N potential bars. Design variables of truss topology opti-
mization then involve cross-section areas a ∈ Rnb

≥0 (Bendsøe

C =




1 1 1 0
1 1 0 1
1 0 0 0




x

y

(a)

16 8 10

8 2 5

(b)

16 14 10

8 2 5

(c)

Fig. 2: Illustration of (a) a connectivity matrix and (b) its
correspondence to a valid tiling, (c) an example of an invalid
tiling.

and Sigmund, 2003), possibly attaining zero values, so that
the structurally inefficient truss elements vanish. To this goal,
two branches of truss topology optimization commonly ap-
ply.

The traditional plastic design (Dorn et al., 1964) poses
the problem in terms of the member axial forces only, and
searches for the minimum-weight topology under the static
equilibrium constraint and bounds on allowed stresses. De-
spite neglecting the kinematic compatibility, convergence to
statically determinate1 optimal designs occurs (Sved, 1954)
when a single load case is considered (Rozvany et al., 2014)
and cross-section areas are not constrained, so that the com-
patibility conditions hold. Unfortunately, modularity vio-
lates the latter assumption by implicitly requiring equality of
cross-sections within specified sets of elements. This can be
seen, for example, by optimizing any statically indeterminate
ground structure and requiring all bars to share the same
cross-section area. Consequently, modular designs obtained
by the plastic formulation may and usually are statically in-
determinate, violate the compatibility conditions, and in turn
provide a lower bound for the objective function value only.

Therefore, the compatibility conditions must be consid-
ered, impelling us to use an elastic design formulation instead.
Here, we search for the least-compliant design (1a), subjected
to the bound on the available volume of material (1c) and the
equilibrium equation (1b), i.e.,

min
a,u

1
2

fTu (1a)

s.t. K(a)u = f, (1b)

`Ta≤V , (1c)

a≥ 0, (1d)

where, f ∈ Rndof denotes the nodal forces column vector,
ndof ∈ N refers to the number of degrees of freedom, u ∈
Rndof stands for the displacements column vector, K(a) ∈
Rndof×ndof is the structural stiffness matrix, an affine function
of the cross-section areas, ` ∈ Rnb stands for the column
vector of the bars lengths, and V ∈ R>0 denotes an upper-
bound on the total structural volume. Finally, the objective of

1 Statically determinate designs uniquely determine the axial forces
only based on the static equilibrium (Rozvany et al., 2014).
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the optimization c= 1
2 fTu, c∈R≥0, (1a) denotes compliance,

i.e., half of the work done by the external loads.
While the problem (1) is straightforward to formulate, it

lacks convexity due to the bilinear equilibrium equation (1b)
with a possibly singular stiffness matrix, and is hard to solve
(to global optimality) even for small-scale problems (Kočvara
and Outrata, 2006). However, based on (Lobo et al., 1998)
and Section 3.4.3 in (Ben-Tal and Nemirovski, 2001), we
can write (its dual) convex second-order cone programming
(SOCP) reformulation:

min
a,w,s

1Tw (2a)

s.t. `Ta≤V , (2b)

As = f, (2c)
∥∥∥∥∥

(
wi−ai√

2`i
Ei

si

)∥∥∥∥∥
2

≤ wi +ai, ∀i ∈ {1 .. nb}, (2d)

a≥ 0, (2e)

which is efficiently solvable to global optimality by interior-
point methods (Anjos and Lasserre, 2012). In Eq. (2), the
symbol s ∈ Rnb stands for the axial forces column vector,
Ei ∈ R>0 denotes the modulus of elasticity, wi ∈ R≥0 consti-
tutes the complementary strain energy, and `i is the length
of the i-th bar, respectively. Further, A ∈ Rndof×nb stands for
the static matrix relating axial, s, and nodal, f, forces. At the
optimum, the objective function (2a) attains the value of the
complementary strain energy, equal to the compliance, as
w provides a to-be-minimized upper bounds on the comple-
mentary strain energies of individual bars in the second-order
conic constraints (2d).

3 Methodology

Modularity constitutes a partitioning of a complex struc-
ture into several simpler repeated units—modules. Here, we
assume that a fixed (rectangular) structural design domain
of the size nt,y× nt,x consists of square truss modules with
a fixed orientation, see Fig. 3a. Without loss of general-
ity, the number of (employed) module types nt is at most
nt,ynt,x. With nt = nt,ynt,x, the problem is equivalent to the
non-modular design, while nt = 1 implies a single-module
periodic design.

When nt � nt,ynt,x, it may happen that each module type
neighbors with all the remaining module types, implying n2

t
ways of possible module interconnections. In this setting, it
is therefore not surprising that a single solid/high-stiffness
interface is obtained during optimization (Garner et al., 2019)
and this interface then propagates periodically through the
macro design domain. Aiming at controlling the numbers of
modules and their interface types directly, Wang tiles appear
to be a natural approach.

Therefore, we further restrict our formalism of describing
modular assembly plans to Wang tilings. For the sake of
demonstration, we consider here the complete set of corner
Wang tiles over two colors, recall Section 2.1. Consequently,
we have nt = 16 together with four independent horizontal
and vertical edge types. Discretized by trusses, these modules
are compatible by definition over the matching edges in the
sense of generating a statically admissible ground structure.

In this section, we first suitably modify the SOCP for-
mulation for truss topology optimization (2) to account for
structural modularity and to handle multiple loading condi-
tions, stress constraints, and module reusability. Ultimately,
we develop a bilevel optimization approach to optimize the
topologies of all the module types and their assemblies si-
multaneously.

3.1 Truss topology optimization extended to structural
modularity

Structural modularity is inherently prescribed in the form
of equality constraints of certain cross-section areas, con-
sequently reducing the number of unique cross-section ar-
eas within the ground structure. The developed formulation
preserves its convexity and applies when a fixed module
assembly plan C is specified a priori.

In the following text, we consider that all truss modules
share the same module ground structure inspired by the union-
jack lattice (Gurtner and Durand, 2014), see Fig. 3. Another
ground structure can be adopted though, if needed.

To secure the mechanical compatibility of modules over
their edges, the bars within each module split up into two
sets. Those located entirely inside a module—the module-
associated bars—occur only in the specific module type,
and are highlighted in blue in Fig. 3b. The second set con-
tains bars that intersect module boundaries. To preserve con-
stant cross-section areas of the inter-domain bars along their
lengths, they need to be associated with the edge types, oc-
curring in multiple modules. These edge-associated bars are
highlighted in red and green in Fig. 3b. Distinction of hori-

1

2 3

4

56
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10

11

12

13

14

15

16

13 12

11

5

7

10

2

2

(a) (b)

Fig. 3: (a) Partitioning of a design domain into modules. (b)
Bars forming each module split up into two sets—module-
associated (highlighted in blue), and edge-associated (shown
with green and red backgrounds).
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(b)

Fig. 4: (a) Module- and (b) edge-associated bars. Scattered
points represent nodes.

zontal (green) and vertical (red) bars is the consequence of
forbidden rotations in Wang tiling formalism.

To achieve identical topology of the modules and their
edge connections in all their occurrences, the bars are divided
into groups, such that all bars in the same group share the
same cross-section area. Assignment of bars to a particular
group is provided by the group vector g(C) ∈ Nnb , uniquely
for each assembly plan C. This group vector assigns a single
number in the range of {1 .. ng} to each bar of the ground
structure, where ng denotes the number of groups, i.e., the
number of unique cross-section areas.

For the complete tileset shown in Fig. 1 and the module
ground structure, Fig. 3b, we have 48 bars associated with
each module type, i.e., 16× 48 = 768 groups of module-
associated bars in total, see Fig. 4a. Similarly, each edge,
either horizontal or vertical, accommodates 3 edge-associated
bars, leading to 8×3 = 24 groups of edge-associated bars,
see Fig. 4b. Consequently, we have ng = 792 for this specific
choice of the tileset and the module ground structure.

Following the definition of the group vector, let G ∈
Bnb×ng denote the group matrix defined as

Gi, j(C)=

{
0 if j 6= gi(C),

1 if j = gi(C),
∀i∈{1 .. nb},∀ j∈{1 .. ng},

(3)

with Gi, j(C) being the element in the i-th row and j-th col-
umn of the group matrix G(C), and gi standing for the i-th
element in g. The group matrix represents a linear transfor-
mation mapping the space of the unique cross-section areas

ag ∈ Rng into the space of all cross-section areas a ∈ Rnb ,

a = G(C)ag. (4)

Because of modularity, the original topology optimization
formulation (2) must be modified, reducing the number of
cross-section areas from nb to ng, as they are substituted by
unique cross-section areas2. Moreover, a similar procedure
can be applied to reduce the number of the complementary
strain energies of bars w ∈ Rnb to wg ∈ Rng , where wg, j is
the complementary strain energy of all the bars in group j.
Consequently, the objective function reads as

1Twg, (5)

and the volume constraint (2b) transforms into

`TG(C)ag ≤V . (6)

For the second-order conic constraints (2d), we follow the
aggregation in Appendix A to receive

wg, j +ag, j ≥
∥∥∥∥∥

(
wg, j−ag, j

G:, j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2

,

∀ j ∈ {1 .. ng},
(7)

with �, �, and ◦ denoting the Hadamard (element-wise)
division, multiplication, and power; and G:, j being the j-th
column of G.

The final formulation of truss topology optimization ex-
tended to structural modularity then reads

min
ag,wg,s

1Twg (8a)

s.t. `TG(C)ag ≤V , (8b)

As = f, (8c)

wg, j +ag, j ≥
∥∥∥∥∥

(
wg, j−ag, j

G:, j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2

,

∀ j ∈ {1 .. ng},
(8d)

ag ≥ 0. (8e)

Because the number of constraints and variables in (8) de-
creases compared to the non-modular design (2), finding the
optimal topology of a modular structure is faster than obtain-
ing the optimal non-modular design. The acceleration factor
depends on the repeatability of individual module types and,
of course, on the optimization solver employed.

2 Note that if ng = nb, the problem simplifies back to non-modular
design.
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3.2 Handling stress constraints, multiple load cases, and
module reusability

In addition to modularity, we extend formulation (8) to handle
stress constraints, multiple loading scenarios, and module
reusability among multiple structures. Most importantly, all
these extensions preserve the convexity of the optimization
problem, and thus do not compromise the efficiency of the
solution.

In the case of stress constraints, let us assume that

σL ≤ σi ≤ σU, ∀i ∈ {1 .. nb}, (9)

where σL and σU are the bounds for stress in element i, σi.
To maintain convexity and avoid additional variables, we can
multiply the inequality (12) by ai and constrain the internal
forces, si, instead of the stress variables, σi, which provides
us with equivalent convex linear inequalities

σLG(C)ag ≤ s≤ σUG(C)ag. (10)

For multiple loading conditions and module reusability, we
assume that there are ns ∈ N structures subjected to nlc ∈ N
load cases, and we minimize the weighted average of the
complementary strain energies of all the load cases with
the weights ω ∈ Rnlc×ns

>0 . To minimize the number of design
variables and constraints, we aggregate the complementary
strain energies of bars with the same cross-sections across
load cases. Because this aggregation follows the steps already
outlined in Appendix A, we omit the details here for the sake
of brevity.

The final convex second-order conic formulation for opti-
mization of trusses with prescribed modularity and subjected
to stress constraints, multiple loading scenarios, and allowing
for module reusability reads as (11), where sk and fk stand
for the axial and nodal forces associated with the k-th load
case. Moreover, the superscript •(m) associates the variable •
with the m-th structure.

3.3 Modular-topology optimization

The objective function of the optimal design obtained by
solving (8) or (11) depends inherently on the specified as-
sembly plan of modules C. However, because the number
of potential valid assemblies increases with the number of
entries in C exponentially, exploring all possible combina-
tions may be untractable. Therefore, a method to efficiently
find a “good” connectivity matrix must be developed. In this
section, we propose an approach to solve this bilevel opti-
mization problem, i.e., optimizing the module topologies as
well as their assembly simultaneously. While the lower-level
problem (11) exhibits convexity, the upper-level is combina-
torial and NP-hard in general (Demaine and Demaine, 2007).
Therefore, we propose tackling the problem with a combina-
tion of mathematical programming and meta-heuristics.

The bilevel optimization problem then reads

C∗ ∈ argmin
C

1Tw∗g(C), (12)




a∗g
w∗g
s∗


 ∈ min

ag,wg,s
1Twg (11a)

s.t.
ns

∑
m=1

(
`(m)

)T
[G(C)](m) ag ≤V , (11b)

As(m)
k = f(m)

k , ∀k ∈ {1 .. nlc},∀m ∈ {1 .. ns}, (11c)

wg, j +ag, j ≥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




wg, j−ag, j

ω1,1 [G:, j(C)](1)�
[
2`(1)�E

]◦ 1
2 � s(1)1

...

ωnlc,1 [G:, j(C)](1)�
[
2`(1)�E

]◦ 1
2 � s(1)nlc

ω1,2 [G:, j(C)](2)�
[
2`(2)�E

]◦ 1
2 � s(2)1

...

ωnlc,ns [G:, j(C)](ns)�
[
2`(ns)�E

]◦ 1
2 � s(ns)

nlc




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

, ∀ j ∈ {1 .. ng}, (11d)

σL [G(C)](m) ag ≤ s(m)
k ≤ σU [G(C)](m) ag, ∀k ∈ {1 .. nlc},∀m ∈ {1 .. ns}, (11e)

ag ≥ 0. (11f)
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Algorithm 1 Genetic Algorithm
.

function GeneticAlgorithm(C, npop, ngen, nt, pt, pc, pm)
population← RandomPopulation(C,npop)
f itness← PopulationFitness(population)
for δ ←{1 .. ngen} do

elite← EliteIndividual(population, f itness)
matingPool← Selection(population, f itness,nt, pt)
population← CrossOver(matingPool, pc)
population← Mutation(population, pm)
population← AppendElite(population,elite)
population← Diversify(population)
f itness← PopulationFitness(population)

end for
return C← EliteIndividual(population)

end function

with w∗ following from (11), and the globally optimal design
is eventually recovered as

a∗ = G(C∗)a∗g(C
∗). (13)

The problem (12) is solved with (i) the globally optimal
connectivity matrix C∗ and with (ii) the globally optimal
vector of unique cross-section areas a∗g at the globally optimal
complementary strain energy c∗.

To approximately solve the upper-level assembly prob-
lem, we adopt the genetic algorithm (GA) (Holland, 1992),
a stochastic meta-heuristic optimization algorithm that simu-
lates the process of evolution by following Darwin’s “survival
of the fittest” rule (Spencer, 1864). Genetic algorithms re-
ceive high recognition in combinatorial and multi-objective
optimizations, as they handle discrete, non-differentiable, and
non-convex optimization problems fairly efficiently. Here,
we implement the standard GA routine (Holland, 1992), see
Algorithm 1, consisting of the following steps: (i) First, we
generate a random population of npop individuals (connectiv-
ity matrices) that evolve through ngen generations. (ii) Fitness
of individuals, inversely proportional to the complementary
strain energy, result from a parallel solution to (11). Next,
(iii) tournament selection is performed, controlled by prob-
ability pt and the number of competitors nt. Both the (iv)
cross-over and (v) mutation operators are applied, governed
by the probabilities pc and pm, and following the standard
implementations. Finally, we also enforce population diver-
sity, so that duplicate individuals get substituted by random
ones, and elitism applies. Specific numerical values of these
parameters appear in Appendix B.

4 Examples

The proposed modular-topology optimization approach was
implemented in MATLAB, with the source codes available at
(Tyburec et al., 2020), and applied to three illustrative two-
dimensional problems. In Section 4.1, we consider a hinge-
supported beam subjected to a single load case without stress

4 4
8

3

10

Fig. 5: Dimensions, discretization into modules, boundary
conditions, and ground structure of the coarsely discretized
beam.

constraints. In this setting, we first adopt coarse discretiza-
tion, as this allows us to obtain a globally optimal design
through brute-force enumeration. Subsequently, we assume
a finer discretization and discuss the results. Section 4.2 in-
vestigates an L-shaped domain with two load cases and stress
constraints. The third problem in Section 4.3 aims at design-
ing modules and assemblies that are reusable for both of the
former cases.

All computations were performed on a Linux work-
station with two Intel R© Xeon R© E5-2630 processors. The
second-order cone programs for topology optimization of
trusses were solved using the state-of-the-art MOSEK opti-
mizer (MOSEK ApS, 2019), interfaced with MATLAB via
the YALMIP toolbox (Löfberg, 2004).

4.1 Hinge-supported beam

4.1.1 Coarse discretization

As the first illustration, we investigate a simply-supported
beam of dimensions 8×3, see Fig. 5. Under coarse discretiza-
tion, the beam splits up into 24 unit-size square modules that
follow the corner Wang tiling formalism, recall Fig. 1. We
assume the module ground structures shown in Fig. 3b, with
Young’s modulus E of each bar equal to 1. The beam is sup-
ported with two hinges at the very bottom-left and bottom-
right corners, and loaded with an external force of magnitude
10 at the mid-span of the top edge.

Bounds on the global optimum Structural modularity comes
at a price of higher complementary strain energy when com-
pared to the non-modular design (Huang and Xie, 2008).
Because all the modules share identical module ground struc-
tures, performing topology optimization without modularity
constraints, recall Eq. (2), provides the lower-bound energy
c = 61.9 with the design shown in Fig. 6a. Analogously,
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Fig. 6: (a) Lower-bound non-modular, and (b) worst-case de-
signs of the evaluated coarsely discretized beam with comple-
mentary strain energies c = 61.9 and c = 191.2, respectively.

the upper-bound complementary strain energy arises in the
topology optimization of the design domain assembled from
a single module type, indicated by the connectivity matrix
C containing all-zeros or all-ones. In this setting, topology
optimization results in the optimal design depicted in Fig. 6b,
with c = 191.2. Therefore, the strain energy of the optimal
modular design must lie in the interval c∗ ∈ [61.9,191.2].

Complete enumeration Thanks to coarse discretization, the
globally optimal connectivity matrix C∗ and the correspond-
ing complementary strain energy c∗ can be determined using
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Fig. 7: Globally optimal design for the (a) coarsely dis-
cretized beam of c∗ = 62.7, and (b) the corresponding tileset.
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Fig. 8: Distribution of optimal complementary strain energies
c of all enumerated combinations (in blue), and 50 indepen-
dent runs of the bilevel optimization (in red). While c and c∗

denote the complementary strain energies of the worst and
best modular designs, c is the complementary strain energy
of the non-modular one.

the complete enumeration, which allows us to assess the
performance of the bilevel optimization rigorously. Notice
that even the coarse discretization permits 236 possible con-
nectivity matrices, preventing a complete enumeration in
a reasonable time. To reduce the complexity, we have en-
forced symmetry of the connectivity matrix C with respect
to the vertical axis of the beam, consequently reducing the
number of combinations to 220 feasible assemblies. Because
all modules comprise identical module ground structures, the
number of combinations is further decreased by noticing that
the vertex types lack any physical meaning. This makes the
problem invariant against the coloring of Wang tiles corners,
i.e., wg(C) = wg(C), where the connectivity matrix C fol-
lows from C by inverting 0 to 1 and vice versa. Subsequently,
we need to enumerate 219 distinct combinations instead of
the original 236.

Evaluations of the optimization problem (11) for all the
combinations took 9.5 core hours. During the enumeration,
a globally optimal design of the complementary strain energy
c∗ = 62.7 was obtained, see Fig. 7a, yielding a 1.3% increase
of the objective function compared to the lower-bound design.
The module set of the globally optimal design, shown in Fig.
7b, contains 13 modules that contribute to the load transfer,
allowing for potential elimination of three empty modules
from the set. Overall, the enumerated combinations generate
a nearly Gaussian distribution with a mean value of 107.7
and a standard deviation of 14.6, see Fig. 8.

Bilevel optimization using GA The bilevel optimization sol-
ver was launched 50 times, each time with a random popu-
lation of 16 individuals, evaluating the statistical properties
of the bilevel optimization approach. The distribution of the
complementary strain energy of the best individual within
the population is shown in Fig. 9.
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Fig. 9: Convergence of complementary strain energies c of the best individuals with 50 independent runs of the genetic
algorithm; c∗ denotes the complementary strain energies for the best modular design and c stands for the complementary
strain energy of the non-modular one.

The initial random populations yielded topologies with
a mean energy of 107.4, approximately matching the mean
value 107.7 of the nearly Gaussian distribution of the com-
plete enumeration. Throughout the prescribed 40 generations
of the genetic algorithm, the complementary strain energy
decreased to the final mean value of the best individual, 67.4,
being on average 8.9% higher than the lower-bound solution
and 7.5% higher than the global optimum. Through bilevel
optimization, a second-best design, with strain energy 64.6,
was obtained. All the achieved objectives are within the low-
est 0.2% of all combinations, recall Fig. 8.

4.1.2 Fine discretization

Let us now consider a beam with the same dimensions and
with identical boundary conditions as in the previous subsec-
tion, recall Fig. 5, but with a refined discretization with 96
modules, each with side lengths of 0.5. To preserve compara-
bility with the previous case, the connectivity matrix again
satisfies symmetry along the midspan of the beam. Conse-
quently, fine discretization permits 262 distinct combinations
of assemblies.

This huge number of combinations, pronounced further
with an increased number of degrees of freedom, makes it
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Fig. 11: Convergence of complementary strain energies c of the best individuals with 50 independent runs of the genetic
algorithm for the finely discretized beam; c stands for the complementary strain energy of the optimal non-modular design.

impossible to perform the complete enumeration as in the
previous case, leaving us without the knowledge of a guar-
anteed global optimum. However, similarly to the previous
example, we can obtain the bounds on the optimum: c = 61.1
and c = 228.7, implying that c∗ ∈ [61.1;228.7].

Compared to the coarse problem, fine discretization pro-
duces a richer ground structure, which allows the algorithm to
reach a decreased lower-bound complementary strain energy.
Conversely, the upper-bound energy noticeably increases
because a larger ratio of material volume V appears to be
placed inefficiently. Similar consequences of modularity also
emerged in (Alexandersen and Lazarov, 2015; Huang and
Xie, 2008).

Convergence of the bilevel optimization algorithm, inde-
pendently launched 50 times, is shown in Fig. 11. The initial
random populations of 29 individuals determined designs
of the mean objective value 156.5—a significant increase
(45.3%) compared to coarse discretization. Throughout 70
generations, bilevel optimization converged to mean objec-
tive value of 82.1, being 34.4% more-compliant than the
lower-bound design. The best design achieved, with c = 71.6,
is shown in Fig. 10, which amounts to a 17.0% increase over
the lower-bound complementary strain energy c.

4.2 L-shaped beam with stress constraints and multiple load
cases

As the second illustrative problem, we assume an L-shaped
design domain as shown in Fig. 12. For this domain, two

1
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1.
5

1.
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3

Fig. 12: Dimensions, discretization into modules, boundary
conditions, and ground structure of the L-shaped domain.
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Fig. 13: Convergence of complementary strain energies c of the best individuals with 50 independent runs of the genetic
algorithm for an L-shaped beam; c stands for the complementary strain energy of the optimal non-modular design.

equally-weighted load cases, indicated by the two arrows in
Fig. 12, apply. Furthermore, we limit the structural volume
by V = 100, set the Young modulus to E = 1, and fix the
maximum value of stress to σUB = −σLB = 20. Although
the maximum (absolute value of) stress equals to 4.6 in the
lower-bound non-modular setting, which makes the stress
constraint inactive, these constraints become active for some
modular designs. For example, the worst-case modular de-
sign would yield a maximum stress of 39.4 without stress
constraints. When imposed, the worst-case modular com-
plementary strain energy approaches c = 1837.9. Because
c = 552.3 arises from the lower-bound non-modular design,
the optimum lies in c∗ ∈ [552.3,1837.9].

After launching the bilevel optimization approach, the
first generation of random individuals yielded a mean en-
ergy of 1468.4, a value not too distant from the worst case.
Through 106 generations of 42 individuals, the population
evolved to set the mean energy of the best individuals at
891.0, including a best design of 803.1 (45.4% higher than
c), and the worst design had a complementary strain energy
of 1045.0. See Fig. 13 for the statistics of the best individuals
within 50 independent random runs of the algorithm.

While the best design, Fig. 14, clearly aligns structural
stiffness with the principal stress direction of the first load
case (e.g., modules 10, 11, 14, 16), the interior of the module
types 1, 4, and 13 serves mainly as a structural stabilization
against the second load case.

4.3 Module reusability in simply-supported and L-shaped
beams

The final example concerns the concurrent design of the
finely discretized beam from Section 4.1.2 with the L-shaped
domain from Section 4.2. In this case, the modules become
reusable among these two domains, which is a key benefit
of modularity. Additionally, we introduce three minor devi-
ations from the settings of the original problems: the stress
constraints of the L-shaped domain also apply to the hinge-
supported beam; the hinge supported beam does not enforce
symmetric colorings; and instead of independent volume con-
straints, we constrain the overall volume by V = 200. All
these changes are justified by practical considerations: stress
constraints should apply over the same material, symmetric
coloring of the simply-supported beam may become ineffi-
cient as the L-shaped domain lacks the symmetry, and (one
of the) volume constraints may become inactive. For these
reasons, the designs in this section are not directly compara-
ble with the previous ones. However, the original constraints
can still be imposed, with few adjustments in the code.

In the modular-topology optimization framework, we
obtained the lower-bound complementary strain energy of
c = 490.5 and a worst-case design with c = 2056.8, implying
that c∗ ∈ [490.5,2056.8]. In 50 independent runs of the al-
gorithm, the originally random population of 57 individuals
evolved in 140 generations from an initial mean complemen-
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Fig. 14: Best design of the (a) evaluated L-shaped beam with
c = 803.1 as obtained via bilevel optimization, and (b) the
corresponding tile set.

tary strain energy of 1695.1 to the best individual having the
complementary strain energy of 924.5, see Fig. 16. The best
design acquired, Fig. 15, exhibited a strain energy of 829.6,
which is 69% worse than the lower-bound design. Modules
in the design of Fig. 15b are clearly distinguished by their
major effective stiffness directions: the vertical direction of
module 1; the almost horizontal direction of modules 11 and

16; and the rest inclined (2, 3, 5, 6, 7, 9, 10, 12, 15), or stiff
in three (8, 14) or all directions (4, 13).

5 Conclusions

In this paper, we introduced a novel bilevel modular-topology
optimization approach, facilitating simultaneous optimiza-
tion of the topologies of 16 independent truss modules to-
gether with their optimal placement within their respective
structural macro-scale domains. This method adopts the con-
cept of corner Wang tiles as a suitable formalism for de-
scribing non-periodic assemblies of structural modules to
maintain edge compatibility: a new class of compatible and
reconfigurable (micro-)structures.

Lower-level optimization constitutes the truss topology
least-compliant design problem, extended to structural mod-
ularity, stress constraints, multiple load cases, and modules
reusability. We formulate this optimization problem as a con-
vex second-order cone program (SOCP), efficiently solvable
to global optimality by employing modern mathematical
programming solvers. In addition, modularity enables us to
aggregate the constraints and variables of the original non-
modular problem, resulting in the optimal modular designs
being found faster compared to their non-modular counter-
parts. Since the compliances of modular designs are bounded
by the periodic-unit-cell (PUC) design from above and by
the non-modular design from below, any (and even random)
assembly plan balances the solution efficiency of PUC with
the design performance of the non-modular design. The final
optimized design quality thus strongly depends upon the sup-
plied assembly plan. To mitigate and take advantage of this
dependence, we have developed a bilevel modular-topology
optimization framework, using meta-heuristics (namely, a ge-
netic algorithm) to search for an optimal assembly plan.

After implementing this approach in MATLAB, we assess
its performance using three sample problems. For the first,
we consider a hinge-supported beam. For the case illustrat-
ing coarse discretization and symmetric module interfaces,

(a) (b)

Fig. 15: (a) Best reusable designs of the two domains with c = 829.6 as obtained via bilevel optimization, and (b) the
corresponding tile set.
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Fig. 16: Convergence of complementary strain energies c of the best individuals with 50 independent runs of the genetic
algorithm; c stands for the complementary strain energy of the optimal non-modular design.

we compute the globally optimal design using brute-force
enumeration. It turns out that the optimal modular design al-
most achieves the quality of a non-modular one. The bilevel
optimization approach converges to solutions near the opti-
mum, and is, therefore, suitable for finding an approximate
solution to the optimization problem in much shorter times
compared to the enumeration. When a finer discretization
for the hinge-supported beam is adopted, the quality of the
optimized modular design decreases compared to coarse dis-
cretization. This issue seems to be a common drawback of
modularity, as reported earlier by Huang and Xie (2008). For
the second and third problems, which include an L-shape
design domain, we demonstrated how stress constraints, mul-
tiple load cases, and module reusability can be imposed while
maintaining convexity (and thus solution efficiency) for the
inner optimization problem. For both of these sample prob-
lems, the optimized designs outperform the optimal PUC
designs considerably, and exhibit structural efficiency and
material distribution nearly equivalent to the non-modular
designs.

In the future, several important extensions need to be
considered to build upon these pilot results. First, upper-
level optimization could be replaced by a heuristic procedure
based on free-material optimization (Zowe et al., 1997) or
by machine learning. Machine learning may also allow for
us to design the topology of individual modules (Gu et al.,
2018). Second, since the chosen Wang tileset plays a crucial

role, different tilesets may yield different optimal designs.
Adaptive choice of a set cardinality and distribution of color
codes within set is worth investigating. Similarly, the module
ground structure as well as the shape of the modules influence
the final design; for instance, in the first example of the hinge-
supported beam, the best modular design always tends to be
the two-bar truss when a correct aspect ratio of the modules
and a suitable module ground structure is used.

The proposed strategy readily extends to three dimen-
sions using Wang cubes in 3D (Čulı́k, 1996), so that opti-
mized module sets could be applied in the modular design of
3D-printed LEGO R©-like products (Schumacher et al., 2015)
or combinatorial aperiodic metamaterials (Coulais et al.,
2016) with complex shapes (Antolin et al., 2019). Moreover,
the inner SOCP formulation also allows for other convex
extensions, e.g., the fundamental free-vibrations eigenfre-
quency lower-bound constraint (Ohsaki et al., 1999; Tyburec
et al., 2019) and bounds on peak power (Heidari et al., 2009).
An extension to modular buckling mechanisms (Oliveri and
Overvelde, 2020) is another challenge. Last, adopting con-
tinuum topology optimization might also provide invaluable
insights and broaden the potential of the proposed approach.

Acknowledgements We thank Michal Kočvara for valuable sugges-
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A Complementary strain energy conic constraints for
modular designs

Although the original elastic design formulation (1) lacks convexity,
it allows for reformulation into a convex conic optimization problem.
Here, we consider dual complementary-strain-energy reformulation (2)
that can exploit modularity by aggregation of constraints and design
variables. This section of the appendix derives this aggregation and
explains the basic mechanical reasoning behind the reformulation.

Let us assume a minimization of the structural complementary
strain energy function, Eq. (2a), defined to be the sum of the upper
bounds for the complementary strain energies wi of individual bars
i ∈ {1 .. nb}, i.e.,

wi ≥
1
2
`i

Ei

s2
i

ai
, (14)

where `i, Ei, and ai are the length, Young modulus, and the cross-section
area of the i-th element, respectively. The axial force in this element
is denoted by si. Notice that since we minimize the sum of the upper
bounds wi (2a), they attain the value of the complementary strain energy
at the optimum, which is in turn equal to the compliance in (1).

Instead of minimizing the sum of complementary strain energies
of individual bars we can, however, minimize the sum of aggregated
complementary strain energies

wg, j = [G:, j(C)]Tw≥ 1
2ag, j

[G:, j(C)]T
(
`�E� s◦2

)
, (15)

where wg, j is the upper bound for the sum of complementary strain
energies of the bars that share the cross-section area ag, j , and �, � with
◦ are the Hadamard “element-wise” division, multiplication, and power.
This step effectively eliminates summands in the objective function and
aggregates constraints as well as design variables.

Because (15) is not defined for ag, j = 0, we perform a multiplication
by the non-negative 4ag, j to obtain

4wg, jag, j ≥ [G:, j(C)]T
(
[2`�E]◦

1
2 � s

)◦2
. (16)

Eq. (16) now allows for zero cross-section areas as is required by topol-
ogy optimization. However, in this case, the corresponding internal
forces vanish and wg, j is arbitrary. Notice that wg, j may even attain ar-
bitrarily low negative values, making the complementary strain energy
functional non-physical and the objective function (2a) unbounded.

Because the aggregated constraints share the same cross-section,
adding w2

g, j−2wg, jag, j +a2
g, j to both sides of the inequality provides

us with the sum-of-squares inequality

(
wg, j +ag, j

)2 ≥
(
wg, j−ag, j

)2
+[G:, j(C)]T

(
[2`�E]◦

1
2 � s

)◦2
, (17)

which is equivalent to

w+
g, j +a+g, j ≥

∥∥∥∥∥

(
w+

g, j−a+g, j
G:, j(C)� [2`�E]◦

1
2 � s

)∥∥∥∥∥
2

, (18a)

−w−g, j−a−g, j ≥
∥∥∥∥∥

(
w−g, j−a−g, j

G:, j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2

, (18b)

with

ag, j = a+g, j−a−g, j, (19a)

wg, j = w+
g, j−w−g, j, (19b)

a+g, j ≥ 0,a−g, j ≥ 0,w+
g, j ≥ 0,w−g, j ≥ 0. (19c)

Clearly, (18b) is redundant, as both the ag, j and wg, j must be non-
negative, i.e., w−g, j = a−g, j = 0. Moreover, if ag ≥ 0 is enforced explicitly,
which is our case—recall Eq. (2e)—the non-physical situation of the
negative complementary strain energy is automatically eliminated be-
cause the Euclidean norm is non-negative by definition. Consequently,
we end up with the conic constraint

wg, j +ag, j ≥
∥∥∥∥∥

(
wg, j−ag, j

G:, j(C)� [2`�E]◦
1
2 � s

)∥∥∥∥∥
2

, (20)

which is convex and equivalent to (15) for all positive cross sections. For
zero cross sections, complementary strain energy is implicitly enforced
to be non-negative, and actually zero, since wg, j is to be minimized.

B Binary genetic algorithm

In the considered bilevel optimization problem, we use the following
parameters for the genetic algorithm: The population consists of npop
individuals, heuristically set to

npop =
⌊

3.6
√
|C|+0.5

⌋
, (21)

where b•c denotes rounding of • towards the nearest integer less than
or equal to •.

The individuals evolve through ngen generations, where

ngen = 5
⌊
0.49npop +0.5

⌋
. (22)

Further, the selection of parents giving birth to offspring follows from
tournament selection. The size of tournament nt equals

nt =

⌊
4
3

√
|C|+0.5

⌋
, (23)

and the individuals participating in the tournament are chosen randomly.
Sorted accordingly to their fitness values, the probability pi of the i-th
individual to win the tournament equals

pi = pt · (0.7)i, (24)

where pt = 0.3.
For combinations of individuals, we used uniform cross-over with

a probability of pc = 0.94 and a combination of the parents genes based
on their fitness, or keeping the better parent otherwise.

The mutation operator applies for each gene with a probability of

pm =
1
|C| , (25)

reversing the binary value of the affected genes. Additionally, the genetic
algorithm was set to guarantee population diversity, i.e., substituted
duplicate individuals with random ones and to keep the best individual
through elitism.
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Source codes for preprint Modular-topology optimization with Wang
tilings: an application to truss structures, 2020. doi: 10.5281/zen-
odo.3750751.
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