
CUDA C vs. Thrust vs. CUDA Libraries

Lecture 2.1 - Introduction to CUDA C

Accelerated Computing

GPU Teaching Kit

2

Objective
– To learn the main venues and developer resources

for GPU computing
– Where CUDA C fits in the big picture

3

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

4

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications

5

GPU Accelerated Libraries

Linear Algebra
FFT, BLAS,
SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA
cuFFT,
cuBLAS,
cuSPARSE

NVIDIA
Math
Lib

NVIDIA
cuRAND

NVIDIA
NPP

NVIDIA
Video

Encode

GPU AI –
Board
Games

GPU AI –
Path
Finding

6

Vector Addition in Thrust

thrust::device_vector<float> deviceInput1(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1, hostInput1 + inputLength,
deviceInput1.begin());

thrust::copy(hostInput2, hostInput2 + inputLength,
deviceInput2.begin());

thrust::transform(deviceInput1.begin(), deviceInput1.end(),
deviceInput2.begin(), deviceOutput.begin(),
thrust::plus<float>());

7

Compiler Directives: Easy, Portable
Acceleration

Ease of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions

8

OpenACC

– Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

9

Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

Verbose: The programmer often needs to express more details

10

GPU Programming Languages

CUDA FortranFortran

CUDA CC

CUDA C++C++

PyCUDA, Copperhead, NumbaPython

Alea.cuBaseF#

MATLAB, Mathematica, LabVIEWNumerical analytics

11

CUDA - C

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

Memory Allocation and Data Movement API Functions

Lecture 2.2 - Introduction to CUDA C

Accelerated Computing

GPU Teaching Kit

2

Objective
– To learn the basic API functions in CUDA host code

– Device Memory Allocation
– Host-Device Data Transfer

4

Vector Addition – Traditional C Code
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int i;
for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];

}

int main()
{

// Memory allocation for h_A, h_B, and h_C
// I/O to read h_A and h_B, N elements
…
vecAdd(h_A, h_B, h_C, N);

}

4

5

CPU

Host Memory

GPU

Device Memory

Part 1

Part 3

Heterogeneous Computing vecAdd CUDA Host Code

#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int size = n* sizeof(float);
float *d_A, *d_B, *d_C;
// Part 1
// Allocate device memory for A, B, and C
// copy A and B to device memory

// Part 2
// Kernel launch code – the device performs the actual vector addition

// Part 3
// copy C from the device memory
// Free device vectors

}

5

Part 2

6

Partial Overview of CUDA Memories
– Device code can:

– R/W per-thread registers
– R/W all-shared global

memory

– Host code can
– Transfer data to/from per

grid global memory

6

We will cover more memory types and more
sophisticated memory models later.

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

7

CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device

global memory
– Two parameters

– Address of a pointer to the
allocated object

– Size of allocated object in terms
of bytes

– cudaFree()
– Frees object from device global

memory
– One parameter

– Pointer to freed object

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

8

Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer
– Requires four parameters

– Pointer to destination
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Transfer to device is asynchronous

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

9

Vector Addition Host Code
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int size = n * sizeof(float); float *d_A, *d_B, *d_C;

cudaMalloc((void **) &d_A, size);
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_B, size);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_C, size);

// Kernel invocation code – to be shown later

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

9

10

In Practice, Check for API Errors in Host Code
cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {
printf(“%s in %s at line %d\n”, cudaGetErrorString(err), __FILE__,
__LINE__);
exit(EXIT_FAILURE);

}

10

Accelerated Computing

GPU Teaching Kit

Threads and Kernel Functions

Lecture 2.3 – Introduction to CUDA C

GPU Teaching Kit

2

Objective
– To learn about CUDA threads, the main mechanism for exploiting of

data parallelism
– Hierarchical thread organization
– Launching parallel execution
– Thread index to data index mapping

2

3

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

4

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code
– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

5

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler

6

A program at the ISA level
– A program is a set of instructions stored in memory that can be read,

interpreted, and executed by the hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or
registers.

6

7

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or
“abstracted”
Von-Neumann Processor

8

Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads

– All threads in a grid run the same kernel code (Single Program Multiple Data)

– Each thread has indexes that it uses to compute memory addresses and make
control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

9

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and

barrier synchronization
– Threads in different blocks do not interact

9

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

10

blockIdx and threadIdx

• Each thread uses indices to decide what data to work
on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
–

10

device

Grid Block (0,
0)

Block (1,
1)

Block (1,
0)

Block (0,
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Introduction to the CUDA Toolkit

Lecture 2.4 – Introduction to CUDA C

Accelerated Computing

GPU Teaching Kit

2

Objective
– To become familiar with some valuable tools and resources from the

CUDA Toolkit
– Compiler flags
– Debuggers
– Profilers

3

GPU Programming Languages

CUDA FortranFortran

CUDA CC

CUDA C++C++

PyCUDA, Copperhead, Numba, NumbaProPython

Alea.cuBaseF#

MATLAB, Mathematica, LabVIEWNumerical analytics

4

CUDA - C

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

5

NVCC Compiler
– NVIDIA provides a CUDA-C compiler

– nvcc
– NVCC compiles device code then forwards code on to the host

compiler (e.g. g++)
– Can be used to compile & link host only applications

6

Example 1: Hello World
int main() {

printf("Hello World!\n");
return 0;

}

Instructions:
1. Build and run the hello world code
2. Modify Makefile to use nvcc

instead of g++
3. Rebuild and run

7

CUDA Example 1: Hello World
__global__ void mykernel(void) {

}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

Instructions:
1. Add kernel and kernel launch to

main.cu
2. Try to build

8

CUDA Example 1: Build Considerations
– Build failed

– Nvcc only parses .cu files for CUDA
– Fixes:

– Rename main.cc to main.cu
OR
– nvcc –x cu

– Treat all input files as .cu files

Instructions:
1. Rename main.cc to main.cu
2. Rebuild and Run

9

Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

– mykernel(does nothing, somewhat anticlimactic!)

Output:

$ nvcc main.cu
$./a.out
Hello World!

10

Developer Tools - Debuggers

NSIGHT CUDA-GDB CUDA MEMCHECK

3rd Party

NVIDIA Provided

https://developer.nvidia.com/debugging-solutions

11

Compiler Flags
– Remember there are two compilers being used

– NVCC: Device code
– Host Compiler: C/C++ code

– NVCC supports some host compiler flags
– If flag is unsupported, use –Xcompiler to forward to host

– e.g. –Xcompiler –fopenmp
– Debugging Flags

– -g: Include host debugging symbols
– -G: Include device debugging symbols
– -lineinfo: Include line information with symbols

12

CUDA-MEMCHECK
– Memory debugging tool

– No recompilation necessary
%> cuda-memcheck ./exe

– Can detect the following errors
– Memory leaks
– Memory errors (OOB, misaligned access, illegal instruction, etc)
– Race conditions
– Illegal Barriers
– Uninitialized Memory

– For line numbers use the following compiler flags:
– -Xcompiler -rdynamic -lineinfo

http://docs.nvidia.com/cuda/cuda-memcheck

13

Example 2: CUDA-MEMCHECK

http://docs.nvidia.com/cuda/cuda-memcheck

Instructions:
1. Build & Run Example 2

Output should be the numbers 0-9
Do you get the correct results?

2. Run with cuda-memcheck
%> cuda-memcheck ./a.out

3. Add nvcc flags “–Xcompiler –
rdynamic –lineinfo”

4. Rebuild & Run with cuda-memcheck
5. Fix the illegal write

14

CUDA-GDB
– cuda-gdb is an extension of GDB

– Provides seamless debugging of CUDA and CPU code
– Works on Linux and Macintosh

– For a Windows debugger use NSIGHT Visual Studio Edition

http://docs.nvidia.com/cuda/cuda-gdb

15

Example 3: cuda-gdb

http://docs.nvidia.com/cuda/cuda-gdb

Instructions:
1. Run exercise 3 in cuda-gdb

%> cuda-gdb --args ./a.out
2. Run a few cuda-gdb commands:

(cuda-gdb) b main //set break point at main
(cuda-gdb) r //run application
(cuda-gdb) l //print line context
(cuda-gdb) b foo //break at kernel foo
(cuda-gdb) c //continue
(cuda-gdb) cuda thread //print current thread
(cuda-gdb) cuda thread 10 //switch to thread 10
(cuda-gdb) cuda block //print current block
(cuda-gdb) cuda block 1 //switch to block 1
(cuda-gdb) d //delete all break points
(cuda-gdb) set cuda memcheck on //turn on cuda memcheck
(cuda-gdb) r //run from the beginning

3. Fix Bug

16

Developer Tools - Profilers

NSIGHT NVVP NVPROF

3rd Party

NVIDIA Provided

https://developer.nvidia.com/performance-analysis-tools

VampirTraceTAU

17

NVPROF
Command Line Profiler
– Compute time in each kernel
– Compute memory transfer time
– Collect metrics and events
– Support complex process hierarchy's
– Collect profiles for NVIDIA Visual Profiler
– No need to recompile

18

Example 4: nvprof

Instructions:
1. Collect profile information for the matrix add

example
%> nvprof ./a.out

2. How much faster is add_v2 than add_v1?
3. View available metrics

%> nvprof --query-metrics
4. View global load/store efficiency

%> nvprof --metrics
gld_efficiency,gst_efficiency ./a.out

5. Store a timeline to load in NVVP
%> nvprof –o profile.timeline ./a.out

6. Store analysis metrics to load in NVVP
%> nvprof –o profile.metrics --analysis-metrics
./a.out

19

NVIDIA’s Visual Profiler (NVVP)

Timeline

Guided
System Analysis

20

Example 4: NVVP

Instructions:
1. Import nvprof profile into NVVP

Launch nvvp
Click File/ Import/ Nvprof/ Next/ Single
process/ Next / Browse

Select profile.timeline
Add Metrics to timeline

Click on 2nd Browse
Select profile.metrics

Click Finish
2. Explore Timeline

Control + mouse drag in timeline to zoom in
Control + mouse drag in measure bar (on top)
to measure time

21

Example 4: NVVP

Note:
If kernel order is non-deterministic you can only load the timeline or the metrics

but not both.
If you load just metrics the timeline looks odd but metrics are correct.

Instructions:
1. Click on a kernel
2. On Analysis tab click on the unguided analysis

2. Click Analyze All
Explore metrics and properties
What differences do you see between the two
kernels?

22

Instructions:
1. Click File / New Session / Browse

Select Example 4/a.out
Click Next / Finish

2. Click on a kernel
Select Unguided Analysis
Click Analyze All

Example 4: NVVP
Let’s now generate the same data within NVVP

23

NVTX
– Our current tools only profile API calls on the host

– What if we want to understand better what the host is doing?
– The NVTX library allows us to annotate profiles with ranges

– Add: #include <nvToolsExt.h>
– Link with: -lnvToolsExt

– Mark the start of a range
– nvtxRangePushA(“description”);

– Mark the end of a range
– nvtxRangePop();

– Ranges are allowed to overlap

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

24

NVTX Profile

25

NSIGHT
– CUDA enabled Integrated Development Environment

– Source code editor: syntax highlighting, code refactoring, etc
– Build Manger
– Visual Debugger
– Visual Profiler

– Linux/Macintosh
– Editor = Eclipse
– Debugger = cuda-gdb with a visual wrapper
– Profiler = NVVP

– Windows
– Integrates directly into Visual Studio
– Profiler is NSIGHT VSE

26

Example 4: NSIGHT
Let’s import an existing Makefile project into NSIGHT

Instructions:
1. Run nsight

Select default workspace
2. Click File / New / Makefile Project With

Existing CodeTest
3. Enter Project Name and select the Example15

directory
4. Click Finish
5. Right Click On Project / Properties / Run

Settings / New / C++ Application
6. Browse for Example 4/a.out
7. In Project Explorer double click on main.cu and

explore source
8. Click on the build icon
9. Click on the run icon
10.Click on the profile icon

27

Profiler Summary
– Many profile tools are available
– NVIDIA Provided

– NVPROF: Command Line
– NVVP: Visual profiler
– NSIGHT: IDE (Visual Studio and Eclipse)

– 3rd Party
– TAU
– VAMPIR

28

Optimization

Assess

Parallelize

Optimize

Deploy

29

Assess

– Profile the code, find the hotspot(s)
– Focus your attention where it will give the most benefit

HOTSPOTS

30

Parallelize

Applications

Libraries
Programming

Languages
Compiler
Directives

31

Optimize

Timeline

Guided
System Analysis

32

Bottleneck Analysis

– Don’t assume an optimization was wrong
– Verify if it was wrong with the profiler

129 GB/s 84 GB/s

33

Performance Analysis

84 GB/s 137 GB/s

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 2.1 - Introduction to CUDA C
	Objective
	3 Ways to Accelerate Applications
	Libraries: Easy, High-Quality Acceleration
	GPU Accelerated Libraries
	Vector Addition in Thrust
	Compiler Directives: Easy, Portable Acceleration
	OpenACC
	Programming Languages: Most Performance and Flexible Acceleration
	GPU Programming Languages�
	CUDA - C
	Slide Number 12
	Lecture-2-2-cuda-data-allocation-API.pdf
	Lecture 2.2 - Introduction to CUDA C
	Objective
	Data Parallelism - Vector Addition Example
	Vector Addition – Traditional C Code
	Heterogeneous Computing vecAdd CUDA Host Code
	Partial Overview of CUDA Memories
	CUDA Device Memory Management API functions
	Host-Device Data Transfer API functions
	Vector Addition Host Code
	In Practice, Check for API Errors in Host Code
	Slide Number 11

	Lecture-2-3-cuda-parallelism-threads.pdf
	Lecture 2.3 – Introduction to CUDA C
	Objective
	Data Parallelism - Vector Addition Example
	CUDA Execution Model
	From Natural Language to Electrons
	A program at the ISA level
	A Thread as a Von-Neumann Processor
	Arrays of Parallel Threads
	Thread Blocks: Scalable Cooperation
	blockIdx and threadIdx
	Slide Number 11

	Lecture-2-4-cuda-toolkit.pdf
	Lecture 2.4 – Introduction to CUDA C
	Objective
	GPU Programming Languages�
	CUDA - C
	NVCC Compiler
	Example 1: Hello World
	CUDA Example 1: Hello World
	CUDA Example 1: Build Considerations
	Hello World! with Device Code
	Developer Tools - Debuggers
	Compiler Flags
	CUDA-MEMCHECK
	Example 2: CUDA-MEMCHECK
	CUDA-GDB
	Example 3: cuda-gdb
	Developer Tools - Profilers
	NVPROF
	Example 4: nvprof
	NVIDIA’s Visual Profiler (NVVP)
	Example 4: NVVP
	Example 4: NVVP
	Example 4: NVVP
	NVTX
	NVTX Profile
	NSIGHT
	Example 4: NSIGHT
	Profiler Summary
	Optimization
	Assess
	Parallelize
	Optimize
	Bottleneck Analysis
	Performance Analysis
	Slide Number 34

