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MODULE 1 
Mechanical Measurements 

 
 
1. Introduction to Mechanical Measurements 

 

 

Figure 1 Why make measurements? 

 

We recognize three reasons for making measurements as indicated in 

Figure 1.  From the point of view of the course measurements for commerce is 

outside its scope. 

 

Engineers design physical systems in the form of machines to serve 

some specified functions.  The behavior of the parts of the machine during the 

operation of the machine needs to be examined or analyzed or designed such 

that it functions reliably.  Such an activity needs data regarding the machine parts 

in terms of material properties.  These are obtained by performing measurements 

in the laboratory. 
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The scientific method consists in the study of nature to understand the 

way it works.  Science proposes hypotheses or theories based on observations 

and need to be validated with carefully performed experiments that use many 

measurements.  When once a theory has been established it may be used to make 

predictions which may themselves be confirmed by further experiments. 

 
Measurement categories 

1. Primary quantity 

2. Derived quantity 

3. Intrusive – Probe method 

4. Non-intrusive 

Measurement categories are described in some detail now. 

1.  Primary quantity: 

It is possible that a single quantity that is directly measurable is of 

interest.  An example is the measurement of the diameter of a cylindrical 

specimen.  It is directly measured using an instrument such as vernier calipers.  

We shall refer to such a quantity as a primary quantity. 

 

2.  Derived quantity: 

There are occasions when a quantity of interest is not directly 

measurable by a single measurement process.  The quantity of interest needs to 

be estimated by using an appropriate relation involving several measured 

primary quantities.  The measured quantity is thus a derived quantity.  An 

example of a derived quantity is the determination of acceleration due to gravity 

(g) by finding the period (T) of a simple pendulum of length (L).  T and L are the 

measured primary quantities while g is the derived quantity. 
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3.  Probe or intrusive method: 

Most of the time, the measurement of a physical quantity uses a probe 

that is placed inside the system.  Since a probe invariably affects the measured 

quantity the measurement process is referred to as an intrusive type of 

measurement. 

 

4.  Non-intrusive method: 

When the measurement process does not involve insertion of a probe into 

the system the method is referred to as being non-intrusive.  Methods that use 

some naturally occurring process like radiation emitted by a body is used to 

measure a desired quantity relating to the system the method may be considered 

as non-intrusive.  The measurement process may be assumed to be non-

intrusive when the probe has negligibly small interaction with the system.  A 

typical example for such a process is the use of laser Doppler velocimeter (LDV) 

to measure the velocity of a flowing fluid. 

 

General measurement scheme: 

 

Figure 2 Schematic of a general measurement system 
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Figure 2 shows the schematic of a general measurement scheme.  Not all 

the elements shown in the Figure may be present in a particular case.  The 

measurement process requires invariably a detector that responds to the 

measured quantity by producing a measurable change in some property of the 

detector.  The change in the property of the detector is converted to a 

measurable output that may be either mechanical movement of a pointer over a 

scale or an electrical output that may be measured using an appropriate 

electrical circuit.  This action of converting the measured quantity to a different 

form of output is done by a transducer.  The output may be manipulated by a 

signal conditioner before it is recorded or stored in a computer.  If the 

measurement process is part of a control application the computer can use a 

controller to control the measured quantity.  The relationship that exists between 

the measured quantity and the output of the transducer may be obtained by 

calibration or by comparison with a reference value.  The measurement 

system requires external power for its operation. 

 

Some issues: 

1. Errors – Systematic or Random 

2. Repeatability 

3. Calibration and Standards 

4. Linearity or Linearization 

 

Any measurement, however carefully it is conducted, is subject to 

measurement errors.  These errors make it difficult to ascertain the true value of 

the measured quantity.  The nature of the error may be ascertained by repeating 

the measurement a number of times and looking at the spread of the values.  If 

the spread in the data is small the measurement is repeatable and may be 
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termed as being good.  If we compare the measured quantity obtained by the use 

of any instrument and compare it with that obtained by a standardized 

instrument the two may show different performance as far as the repeatability 

is concerned.  If we add or subtract a certain correction to make the two 

instruments give data with similar spread the correction is said to constitute a 

systematic error.  The spread of each of the instruments will constitute random 

error. 

The process of ascertaining the systematic error is calibration.  The 

response of a detector to the variation in the in the measured quantity may be 

linear or non-linear.  In the past the tendency was to look for a linear response 

as the desired response.  Even when the response of the detector was non-linear 

the practice was to make the response linear by some manipulation.  With the 

advent of automatic recording of data using computers this practice is not 

necessary since software can take care of this aspect. 
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Sub Module 1.2 
 
2. Errors in measurements 

 

Errors accompany any measurement, however well it is conducted.  The 

error may be inherent in the measurement process or it may be induced due to 

variations in the way the experiment is conducted.  The errors may be classified 

as: 

 

1. Systematic errors (Bias): 

Systematic errors due to faulty or improperly calibrated instruments.  

These may be reduced or eliminated by careful choice and calibration of 

instruments.  Sometimes bias may be linked to a specific cause and estimated by 

analysis.  In such a case a correction may be applied to eliminate or reduce bias. 

Bias is an indication of the accuracy of the measurement.  Smaller the bias more 

accurate the data 

 

2. Random errors: 

Random errors are due to non-specific causes like natural disturbances 

that may occur during the measurement process.  These cannot be eliminated. 

The magnitude of the spread in the data due to the presence of random errors is 

a measure of the precision of the data.  Smaller the random error more precise is 

the data. Random errors are statistical in nature.  These may be characterized by 

statistical analysis. 
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We shall explain these through the familiar example shown in Figure 3.  

Three different individuals with different skill levels are allowed to complete a 

round of target practice.  The outcome of the event is shown in the figure. 

 

 

 

Figure 3 Precision and accuracy explained through a familiar example 

 

It is evident that the target at the left belongs to a highly skilled shooter.  

This is characterized by all the shots in the inner most circle.  The result indicates 

good accuracy as well as good precision.  A measurement made well must be 

like this case!  The individual in the middle is precise but not accurate.  Maybe it 

is due to a faulty bore of the gun.  The individual at the right is an unskilled 

person who is behind on both counts.  Most beginners will fall into this category.  

The analogy is quite realistic since most students performing a measurement in 

the laboratory may be put into one of the three categories.  A good 

experimentalist has to work hard to excel in it! 
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Another example: 

 

 

 

Figure 4 Example showing the presence of systematic and random errors 

in data. 

 

The results shown in Figure 4 compare the response of a particular 

thermocouple (that measures temperature) and a standard thermocouple.  The 

measurements are reported between room temperature (close to 20°C and 

500°C.  That there is a systematic variation between the two is clear from the 

figure that shows the trend of the measured temperatures indicated by the 

particular thermocouple.  The systematic error appears to vary with the 
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temperature.  The data points indicated by the full symbols appear also to hug 

the trend line.  However the data points do not lie on it.  This is due to random 

errors that are always present in any measurement.  Actually the standard 

thermocouple would also have the random errors that are not indicated in the 

figure.  We have deliberately shown only the trend line for the standard 

thermocouple.   

 

Sub Module 1.3 
 

3.  Statistical analysis of experimental data 
 
 
Statistical analysis and best estimate from replicate data: 
 
 

 Let a certain quantity X be measured repeatedly to get 

                                 iX , i=1,n                                                            (1) 

 Because of random errors these are all different. 

 How do we find the best estimate Xb for the true value of X?  

 It is reasonable to assume that the best value be such that the 

measurements are as precise as they can be! 

 In other words, the experimenter is confident that he has conducted the 

measurements with the best care and he is like the skilled shooter in the 

target practice example presented earlier! 

 Thus, we minimize the variance with respect to the best estimate Xb of X. 

 Thus we minimize: 

             [ ]
n

2
i b

i 1
S X X

=
= −∑          (2) 
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 This requires that: 

  

[ ]
b

n

i
i 1

S
X

X

n
=

∂
−

∂

=

∑

∑

n

i b
i=1

b

 2 X  X  (-1) =0

or X

        (3) 

 

 The best estimate is thus nothing but the mean of all the individual 

measurements! 

 

Error distribution: 

When a quantity is measured repeatedly it is expected that it will be 

distributed around the best value according to some distribution.  Many times 

the random errors may be distributed as a normal distribution.  If µ and σ are 

the mean and the standard deviation, then, the probability density is given by 

−⎡ ⎤− ⎢ ⎥⎣ ⎦=

21 x μ
2 σ1f(x) e

σ 2π
   (4) 

The probability that the error around the mean is (x-µ) is the area under 

the probability density function between (x-µ)+dx and (x-µ) represented by the 

product of the probability density and dx.  The probability that the error is 

anywhere between -∞ and x is thus given by the following integral: 

−⎡ ⎤− ⎢ ⎥⎣ ⎦=
−∞
∫

1 v μx
22 σ1F(x) e dv

σ 2π
  (5) 

This is referred to as the cumulative probability.  It is noted that if x→∞ 

the integral tends to 1.  Thus the probability that the error is of all possible 

magnitudes (between -∞ and +∞) is unity!  The integral is symmetrical with 
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respect to x=µ as may be easily verified.  The above integral is in fact the error 

integral that is a tabulated function.  A plot of f(x) and F(x) is given in Figure 5. 

 

 

Figure 5 Normal distribution and its integral 

 

Many times we are interested in finding out the chances of error lying between 

two values in the form ±pσ.  This is referred to as the “confidence interval” and 

the corresponding cumulative probability specifies the chances of the error 

occurring within the confidence interval.  Table 1 gives the confidence intervals 

that are useful in practice: 
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Table 1 

Confidence intervals according to normal distribution 

 

Cumulative 
Probability 0 0.95 0.99 0.999 

Interval p 0 +1.96 +2.58 +3.29 

 

The table indicates that error of magnitude greater than ±3.29σ is very unlikely to 

occur.  In most applications we specify +1.96σ as the error bounds based on 

95% confidence. 
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Example 1 

 

 Resistance of a certain resistor is measured repeatedly to obtain the 

following data. 

No. 1 2 3 4 5 6 7 8 9 

R, kΩ 1.22 1.23 1.26 1.21 1.22 1.22 1.22 1.24 1.19 

 

 What is the best estimate for the resistance?  What is the error with 95% 

confidence? 

 Best estimate is the mean of the data. 

1.22 4 1.23 1.26 1.21 1.24 1.19R
9

    = 1.223  1.22 k

× + + + + +
=

≈ Ω
 

 Standard deviation of the error σ: 

9 2

1
-4

-4

1Variance  = Ri -R
9

                  =3.33 10
Hence :

  = 3.33 10
    = 0.183 0.02 k

⎡ ⎤⎣ ⎦

×

σ ×
≈ Ω

∑

 

 

 Error with 95% confidence : 

 

95% Error  = 1.96  = 1.96 0.0183
                     = 0.036  0.04 k

σ ×

≈ Ω
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Thickness of a metal sheet (in mm) is measured repeatedly to obtain the 

following replicate data.  What is the best estimate for the sheet thickness?  What 

is the variance of the distribution of errors with respect to the best value?  Specify 

an error estimate to the mean value based on 99% confidence. 

 

Experiment No. 1 2 3 4 5 6 

t, mm 0.202 0.198 0.197 0.215 0.199 0.194 

Experiment No. 7 8 9 10 11 12 

t, mm 0.204 0.198 0.194 0.195 0.201 0.202 

 

 The best estimate for the metal sheet thickness is the mean of the 12 

measured values.  This is given by 

12

i
1

b

0.202 0.198 0.197 0.215 0.199 0.194 0.204
t

0.198 0.194 0.195 0.201 0.202
t t  = 0.2 mm

12 12

+ + + + + +⎡ ⎤
⎢ ⎥+ + + + +⎣ ⎦= = =

∑

 

 The variance with respect to the mean or the best value is given by (on 

substituting t  for bt ) as 

 

12 122
i i

2 21 1
b

2 2 2 2 2 2 2

2 2 2 2 2

-5 2

t t t
 = t

12 12
0.202 0.198 0.197 0.215 0.199 0.194 0.204

0.198 0.194 0.195 0.201 0.202
0.2 mm 

12
= 3.04 10 mm

−⎡ ⎤⎣ ⎦
σ = −

⎡ ⎤+ + + + + +
⎢ ⎥
⎢ ⎥+ + + + +⎣ ⎦= −

×

∑ ∑

 

 The corresponding standard deviation is given by 

 

5
b 3.04 10  =0.0055  0.006 mm−σ = × ≈  
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 The corresponding error estimate based on 99% confidence is 

 

bError = 2.58  = 2.58 0.0055  0.014 mm± σ ± × ≈ ±  

Principle of Least Squares 

Earlier we have dealt with the method of obtaining the best estimate from 

replicate data based on minimization of variance.  No mathematical proof was 

given as a basis for this.  We shall now look at the above afresh, in the light of 

the error distribution that has been presented above. 

 

Consider a set of replicate data xi.  Let the best estimate for the measured 

quantity be xb.  The probability for a certain value xi within the interval 

i i ix , x dx+ to occur in the measured data is given by the relation 

               
( )2b i

2
x x

2
i i

1p(x )  e dx
2

−
−

σ=
σ π

                                             (6) 

The probability that the particular values of measured data are obtained in 

replicate measurements must be given by the compound probability given by 

( )

( )

( )

( )22 n
b ib i

22 i 1

x xx xn n
22

i in n
i 1 i 1

1 1p = e dx e dx
2 2

=

−− −−
σσ

= =

∑
=

σ π σ π
∏ ∏          (7) 

The reason the set of data was obtained as replicate data is that it was the 

most probable!  Since the intervals idx  are arbitrary, the above will have to be 

maximized by the proper choice of bx  and σ such that the exponential factor is a 

maximum.  Thus we have to choose bx  and σ such that 

  
( )2n

b i
2

i 1

x x
2

n
1p '  e =

−
−

σ
∑

=
σ

     (8) 
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has the largest possible value.  As usual we set the derivatives 
b

p ' p ' 0
x
∂ ∂

= =
∂ ∂σ

 to 

get the values of the two parameters xb and σ.  We have: 

( )

( )

2n
i b

2
i 1

x x
n

2
i bn 2

b i 1
This part should go to zero

p ' 1 e 2 x x ( 1) 0
x 2

=

−

σ
+

=

∑∂
= − − − =

∂ σ
∑    (9) 

Or 

     ( )
n n

i b b i
i 1 i n

x x  =0 or x x x
= =

− = =∑ ∑                (10) 

It is clear thus that the best value is nothing but the mean of the values!  We also 

have: 

( )
( )2n

i b
2

i=1

x -x
n

2 2
i bn+1 n+3

i 0

This part should go to Zero

p ' n 1 = - x x  e 0σ

=

∑⎡ ⎤∂
+ − =⎢ ⎥∂σ σ σ⎢ ⎥⎣ ⎦

∑    (11) 

Or 

    
( )

n
2

i b
2 i 1

x x
 =

n
=

−
σ

∑
              (12) 

This last expression indicates that the parameter σ2 is nothing but the 

variance of the data with respect to the mean!  Thus the best values of the 

measured quantity and its spread is based on the minimization of the squares of 

errors with respect to the mean.  This embodies what is referred to as the 

“Principle of Least Squares”. 
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Propagation of errors: 

Replicate data collected by measuring a single quantity enables us to 

calculate the best value and characterize the spread by the variance with respect 

to the best value using the principle of least squares.  Now we look at the case of 

a derived quantity that is estimated from the measurement of several primary 

quantities.  The question that needs to be answered is the following: 

“A derived quantity Q is estimated using a formula that involves the 

primary quantities. 1 2 na ,a ,.....a   Each one of these is available in terms of the 

respective best values 1 2 na , a ,.....a and the respective variances 1 2 n, ....σ σ σ .  What 

is the best estimate for Q and what is the corresponding variance Qσ Qσ ?” 

We have, by definition 

 1 2 nQ =Q(a ,a ,.......a )       (13) 

It is obvious that the best value of Q should correspond to that obtained by using 

the best values for the a’s.  Thus, the best estimate for Q given by Q  as 

 1 2 nQ =Q(a ,a ,.......a )       (14) 

Again, by definition, we should have: 

 

  ( )
N 22

Q i
i 1

1 = Q Q
N =

σ −∑          (15) 

The subscript i indicates the experiment number and the ith estimate of Q is given 

by 

  ( )i 1i 2i niQ Q a ,a ,....a=        (16) 

If we assume that the spread in values are small compared to the mean or the 

best values (this is what one would expect from a well conducted experiment), 

the difference between the ith estimate and the best value may be written using a 

Taylor expansion around the best value as 
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2N

2
Q 1i 2i ni

1 2 2i 2

1 Q Q Qa a ...... a
N a a a=

⎛ ⎞∂ ∂ ∂
σ = ∆ + ∆ + + ∆⎜ ⎟∂ ∂ ∂⎝ ⎠

∑    (17) 

where the partial derivatives are all evaluated at the best values for the a’s.  If the 

a’s are all independent of one another then the errors in these are unrelated to 

one another and hence the cross terms. 
N

mi ki
i 1

a a 0 for m k
=
∆ ∆ = ≠∑  Thus equation 

(17) may be rewritten as 

 
2 2 2N

2
Q 1i 2i ni

1 2 ni 1

1 Q Q Qa a ....... a
N a a a=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥σ = ∆ + ∆ + + ∆⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (18) 

Noting that ( )
2N

2
ji j

i 1
a  =N

=
∆ σ∑ we may recast the above equation in the form 

  
2 2 2

2 2 2 2
Q 1 2 n

1 2 n

Q Q Q =  + +.......+
a a a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
σ σ σ σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (19) 

Equation (19) is the error propagation formula.  It may also be recast in the form 

2 2 2
2 2 2

Q 1 2 n
1 2 n

Q Q Q =  + +.......+
a a a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
σ σ σ σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

     (20) 
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Example 3 
 

The volume of a sphere is estimated by measuring its diameter by vernier 

calipers.  In a certain case the diameter has been measured as D = 0.0502 ± 

0.00005 m.  Determine the volume and specify a suitable uncertainty for the 

same. 

Nominal volume of sphere:  

3 3
5 3D 0.0502V  =3.14159 6.624 10 m

6 6
−= π × = ×  

 The error in the measured diameter is specified as: 

D 0.00005m∆ = ±  

 The influence coefficient is defined as  

2 2
-3 2

D
V D 0.0502I  =  = 3.14159  =3.958 10  m
D 2 2
∂

= π × ×
∂

 

 Using the error propagation formula, we have 

-3 7 3
DV=I D=3.958 10 0.00005 1.979 10  m−∆ ∆ × × = ×  

 Thus  

5 7 3V 6.624 10 1.979 10  m− −= × ± ×  
Alternate solution to the problem 

 By logarithmic differentiation we have  

dV dD =3
V D  

 This may be recast as 

-5 -5 3D 0.00005V 3V  = 3 6.624 10  = 0.0198 10 m
D 0.0502
∆

∆ = ± ± × × × ± ×  

This is the same as the result obtained earlier. 
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Example 4 
 
 

Two resistances R1 and R2 are given as 1000 ± 25 � and 500 ± 10 �.  

Determine the equivalent resistance when these two are connected in a) series 

and b) parallel.  Also determine the uncertainties in these two cases. 

 Given Data: 

1 1 2 2R 1000, 25;R 500 10 All Values are in = σ = = σ = → Ω  

      Case a) Resistances connected in series: 

 

 Equivalent resistance is  

s 1 2R  =R R  = 1000+500=1500+ Ω  

 Influence coefficients are: 

s s
1 2

1 2

R RI  1 ; I  1
R R
∂ ∂

= = = =
∂ ∂  

 Hence the uncertainty in the equivalent resistance is 

( ) ( ) ( ) ( )2 2 2 2
s 1 1 2 2 = I I  = 25 10 26.93 σ ± σ + σ ± + = ± Ω  

Case b) Resistances connected in parallel: 

 Equivalent resistance is given by 

( )

1 2
p

1 2

1 2
p

1 2

R R 1000 500R   = 333.3 
R R 1000 500

R R               R
R R

×
= = Ω

+ +

=
+
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 Influence coefficients are: 

( ) ( )

( ) ( )

p 2 1 2
1 2

1 1 2 1 2

p 1 1 2
1 2 2

2 1 2 1 2

R R R R 500 1000 500I  =  =  = 0.111
R R R 1500 1500R R
R R R R 1000 1000 500I  =  =  = 0.444
R R R 1500 1500R R

∂ ×
− =

∂ + +

∂ ×
− =

∂ + +
 

 

 Hence the uncertainty in the equivalent resistance is 

( ) ( ) ( ) ( )2 2 2 2
s 1 1 2 2 = I I  = 0.111 25 0.444 10  = 5.24 σ ± σ + σ ± × + × ± Ω  

Thus the equivalent resistance is 1500 ± 26.9 � in the series arrangement 

and 333.6 ± 5.24 � in the parallel arrangement. 
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Error estimation – some results without proof 

Standard deviation of the means 

The problem occurs as indicated below: 

• Replicate data is collected with n measurements in a set 

• Several such sets of data are collected 

• Each one of them has a mean and a variance (precision) 

• What is the mean and standard deviation of the means of all sets? 

 

Population mean 

Let N be the total number of data in the entire population. Mean of all the 

sets m will be nothing but the population mean (i.e. the mean of all the 

collected data taken as a whole). 

 

Population variance 

Let the population variance be 

( )
N

2
i

2 i 1
x m

 =
N

=
−

σ
∑

      (21) 

Variance of the means 

Let the variance of the means be 2
mσ .  Then we can show that: 

 

( )
( )

2 2
m

N n
n N 1

−
σ = σ

−
      (22) 

If n<<N the above relation will be approximated as 
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( )
( )
( )
( )

2 2
m

2
2

N n
n N 1

1-n/N
      =

n 1-1/N n

−
σ = σ

−

σ
σ ≈

    (23) 

Estimate of variance 

• Sample and its variance 

– How is it related to the population variance? 

• Let the sample variance from its own mean ms be se2. 

• Then we can show that: 

( )
( )

2 2 2
e

N n 1 =  1
n N 1 n

− ⎛ ⎞σ σ ≈ σ −⎜ ⎟− ⎝ ⎠
     (24) 

Error estimator 

The last expression may be written down in the more explicit form: 

( )

( )

n 2
i s

2 1
e

x -m
 =

n-1
σ

∑
       (25) 

 

Physical interpretation 

Equation (25) may be interpreted using physical arguments.  Since the 

mean (the best value) is obtained by one use of all the available data, the 

degrees of freedom available (units of information available) is one less than 

before.  Hence the error estimator uses the factor (n-1) rather than n in the 

denominator! 
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Example 5 
(Example 1 revisited) 

 
 Resistance of a certain resistor is measured repeatedly to obtain the 

following data. 

# 1 2 3 4 5 6 7 8 9 

R, k� 1.22 1.231.261.211.221.221.221.241.19 

 

 What is the best estimate for the resistance?  What is the error with 95% 

confidence? 

 Best estimate is the mean of the data. 

 

1.22 4 1.23 1.26 1.21 1.24 1.19R =
9

    =1.223 1.22 k

× + + + + +

≈ Ω
 

 

 Standard deviation of the error se: 

 

9
2 -4
e i

1

1 = R R  = 3.75 10
8

⎡ ⎤σ − ×⎣ ⎦∑  

  Hence 

2 -4
e  = 3.75 10  = 0.019 0.02kσ × ≈ Ω  

 

 Error with 95% confiden 
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        Heat flux 

 
1.  Measurement of heat flux 
 
Heat flux is defined as the amount of heat transferred per unit area per unit time 

from or to a surface.  In a basic sense it is a derived quantity since it involves, in 

principle, two quantities viz. the amount of heat transfer per unit time and the 

area from/to which this heat transfer takes place.  In practice, the heat flux is 

measured by the change in temperature brought about by its effect on a sensor 

of known area.  The incident heat flux may set up either a steady state 

temperature field or a transient temperature field within the sensor.  The 

temperature field set up may either be perpendicular to the direction of heat flux 

or parallel to the direction of heat flux.  We study the various types of heat flux 

gages in what follows. 

 

2. Foil type heat flux gage: 

 
The foil type heat flux gage (also known as the Gardon gage after its 

inventor) consists of a thin circular foil of constantan stretched tightly over a 

cooled copper annulus as shown in Figure 1.  One surface of the foil is exposed 

to the heat flux that is to be measured while the other surface may be taken as 

insulated.  A copper wire is attached at the geometric center of the foil as 

indicated in the figure.  A second copper wire is attached to the cooled copper 

annulus.  The constantan foil forms two junctions with copper, the first one at its 

center and the second one at its periphery.  Under steady state, the 

thermoelectric voltage across the two copper leads is a direct measure of the 

temperature difference set up between the center and the periphery of the 
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constantan disk.  The temperature difference is obtained by performing the 

following analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Schematic of a foil type heat flux gage 
 
Heat balance for an annular element of the foil shown in Figure 2 is made as 

follows: 

Heat gained by the foil element is ( )( )rdr2q π  

Net heat conducted in to the foil element ( ) dr
dr
dTr

dr
dk2 ⎟

⎠
⎞

⎜
⎝
⎛δπ  

Sum of these should be zero.  We cancel the common factor dr2π  to get 

                        0r
k
q

dr
dTr

dr
d

=
δ

+⎟
⎠
⎞

⎜
⎝
⎛                                                          (1) 

The boundary conditions are 

             RratTT;0ratfiniteisT R ===       (2) 

Integrate equation 1 once with respect to r to get A
2
r

k
q

dr
dTr

2

=
δ

+ , where A is a 

constant of integration.  This may be rearranged to get
r
Ar

k2
q

dr
dT

=
δ

+ .  Integrate 

Volt meter 

Constantan foil 

Copper annulus 
(cooled) 

q

Foil thickness: δ, Foil radius: R, 
Thermal conductivity of foil material: k, 
Heat flux: q  
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this once more with respect to r to get ( ) BrlnA
k4

qrT
2

+=
δ

+  where B is a second 

constant of integration.  The constant A has to be chosen equal to zero in order 

that the solution does not diverge at. 0r = .  The constant B is obtained from the 

boundary condition at r = R as
δ

+=
k4

qRTB
2

R .  With this the solution for the 

temperature is obtained as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure2 Energy balance over a foil element in the form of an annular ring 

 

  ( )22
R rR

k4
qTT −
δ

+=                  (3) 

It may be noted that the constant B is nothing but the temperature at the center 

of the constantan disk.  In view of this, equation 3 may be recast as 

  ( ) ( ) TKTTK
k4/R

TT
q R02

R0 ∆=−=
δ

−
=                 (4) 

dr 

q 

r 
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In the above 0T  is the temperature at the center of the disk and the coefficient K 

is the gage constant given by Km/W
R
k4K 2

2

δ
= .  The temperature difference 

between the center of the disk and the periphery is the output that appears as a 

proportional voltage V∆  across the terminals of the differential thermocouple.  

There is thus a linear relationship between the heat flux and the output of the 

heat flux gage. 

 

Example 1 

 

A typical gage may be constructed using a mm6  diameter foil of m50µ  

thickness.  The thermal conductivity of the foil material is typically Cm/W20k °= .  

Copper Constantan thermocouple pair gives an output of about C/V40 °µ .  The 

given data corresponds to. 

Cm/W20k,m003.0mm3R,m1050m50 6 °===×=µ=δ −   

The gage constant then works out to Cm/W4.444
003.0

105204K 2
2

5

°=
×××

=
−

.  This 

may be rewritten in terms of the thermocouple output 

as Vm/W1.11
40

44.444K 2µ== . 
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  Figure 3 Proportions of foil gage 

Figure 3 gives a plot that is useful in finding the R, � combinations that will have 

a given sensitivity.  The sensitivity (1/K) is specified in units of 
⎟
⎠
⎞

⎜
⎝
⎛

2cm
W

mV  with both 

R and � being in mm. 

 

Transient Analysis of the Foil Gage: 

Under steady state we have seen that the temperature distribution in the 

foil is given by a quadratic variation with respect to r. 

In fact we have: 

   ( )22
R rR

k4
qTT −
δ

=−      (5) 

With       
δ

=−
k4

qRTT
2

R0       (6) 
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From these, by division we have 

   ( )
( ) .

R
r1

TTo
TT 2

R

R

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

−
−      (7) 

In the steady sate the energy stored in the foil is given by 

[ ][ ]RTT
R

0
rdr2ρCE p −∫ πδ=  

Using equation (5) this is recast as 

   [ ]     
R

0
dr

2

R
r-1rRToT δC2E p ∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−πρ=     (8) 

.
4

2R
4

2R
2

2RR

0
dr

2

R
r-1rBut =⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛  

   [ ] [ ]RToT 2δRC 
2

RToT 2δRC2
E p

p
−ρ=

−ρ
=∴    (9) 

Consider now the unsteady state heat transfer in the foil. The input heat flux is 

partially stored in the foil and partially removed by the coolant at the foil 

periphery. The stored energy is the change in E with respect to time given by the 

above expression. 

Thus, ( )
dt

TTd
RδρC

dt
dE Ro2

p
−

π=  the heat loss at r = R, is in fact given by the 

instantaneous conductive heat transfer at the periphery, 

( )( )

( ) ( )RToT4k
2R

RToT
4k2R

q2RRkδ2.2R
4kδ
q

Rrdr
dTRkδ2

−δπ=
−

δπ=

π=π−−=
=

π−

 

Thus we have 

( ) ( ) 0.q2RRToTδk4
dt

RToTd
.2RδρCp =π−−π+

−
π  

Or 



 Mechanical Measurements   Prof. S.P.Venkatesan 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of  Technology Madras  

     

( ) ( )
pp

These  two  terms  det er min e
first   order   system  behaviour

d T T 4k T T 2qo R o R 0 2dt ρC fρC R

− −
+ − =    (10) 

The time constant is identified as 

     
4α
R

4k
.RρC 22

p ==τ      (11)  

Where α is the thermal diffusivity of the foil material. 

 

Figure 4 shows the relationship (11) between the foil radius and the first 

order time constant of the sensor in graphical form.  This figure may be used in 

tandem with Figure 3 for determining the proportions and the time constant for 

the chosen dimensions of the gage.  Figure 5 shows the actual view of a 

commercially available heat flux gage which has arrangement for cooling of the 

cylinder by water.  The figure also gives the typical ranges of gage available and 

their characteristics, the sensitivity and time constant.  The illustration has been 

taken from the manufacturer’s web site indicated therein. 
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  Figure 4 Time constant for a foil type heat flux gage 

 

                      Figure 5 Commercial foil type heat flux gag 
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Thin film sensors: 

 

 

 

 

 

 

 

 

 

 

Figure 6 Schematic of a thin film heat flux sensor 

 

The operation of a thin film heat flux sensor, shown schematically in 

Figure 6, is very simple.  A thin barrier of known thermal conductivity is attached 

to a surface that is receiving the heat flux to be measured.  The barrier imposes a 

thermal resistance parallel to the direction of the heat flux and the heat 

conduction in the barrier is one-dimensional.  The temperature difference across 

the barrier is measured using a thermopile arrangement wherein several hot and 

cold junctions are connected in opposition.  The output is proportional to the heat 

flux.  Example 2 below brings out the typical characteristics of such a heat flux 

gage. 

 

 

 

 

 

Differential temperature measured using 
40 junctions (thin foil thermocouple)  
Maximum temperature is limited to 200Cْ 
for this material. 

Bonded on to the 
surface over which 

heat flux is incident.

∆T 

Thermal barrier  
of known k: 
Thickness = 0.25 mm,  
k = 0.2 W/m °ْC 
Kapton® (polyimide) 

q 



 Mechanical Measurements   Prof. S.P.Venkatesan 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of  Technology Madras  

Example 2 

The geometrical description of a thin film heat flux sensor is given in 

Figure 5.  The thermal conductivity of the barrier material is also given therein.  

Output of the gage is known to be V = 0.1 V (100 mV) at the maximum rated heat 

flux.  Determine the maximum rated heat flux from this data. 

Since there are 40 junctions, the total output corresponds to 0.1 / 40 = 

0.0025 V per junction. Assuming that 40 µV corresponds to 1°C this translates to 

a temperature difference of  

C5.62
1040

0025.0T 6 °=
×

=∆
−

 

Using known k and δ values we then have  

( )( )
( ) 223 m

W50000
m
W

100.25
62.50.2

δ
∆Tkq =

×
== −  

Typically the solar heat flux is 1000 W / m2. The above heat flux is some 50 times 

larger! 

Cooled thin wafer heat flux gage: 

 

 

 

 

 

 

 

 

 

 

Figure 7 Thin wafer type cooled heat flux gage 

~ 3 mm φ 

Cooled surface 

Base material 

Very high heat flux 
(Up to 5000 W / cm2) 
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All thin wafers 
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The operational principle of the thin wafer type cooled heat flux gage is the 

same as the thin film gage above.  Temperature drop across the constantan 

wafer is measured by the differential thermocouple arrangement shown in Figure 

7.  There are two T type junctions formed by the constantan wafer sandwiched 

between the two copper wafers 

 

Axial conduction guarded probe: 

This probe (see Figure 8) is based on conduction through the probe in a 

direction parallel to the heat flux that is being measured.  The gage consists of a 

cylinder of known thermal conductivity with an annular guard.  The guard 

consists of outer annular cylinder made of the same material as that of the gage.  

It is exposed to the same heat flux and cooled at the back by the same coolant 

that is also used to cool the probe itself.  Since the outer annulus experiences 

roughly the same axial temperature gradient as the probe, one dimensional 

conduction is achieved in the probe.  The temperatures are measured by two 

embedded thermocouples as indicated in the figure.  Fourier law is used to 

derive the heat flux from the measured temperature difference, the distance 

between the thermocouples and the known thermal conductivity of the probe 

material. 

 

 

 

 

 

 

 

 



 Mechanical Measurements   Prof. S.P.Venkatesan 

 

 

 

 

 

 

 

 

 

 

 Indian Institute of  Technology Madras  

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Axial conduction guarded heat flux probe 

Example 3 

Consider an axial conductivity guarded heat flux probe made of an alloy 

material of thermal conductivity equal to 45 W/m°C.  The two thermocouples are 

placed 1 cm apart.  The incident heat flux is known to be 105 W/m2.  The probe 

has a diameter of 25 mm.  Determine the indicated temperature difference ∆T 

and the heat Q that needs to be removed from the back surface of the probe. 

49.1W
4

0.025100000 qA  Q  removed be Heat to

C2.22
45

0.01100000∆T

)lawFourierby(
s
∆Tk

m
W100000q

2

2

=×π×===

°=
×

=∴

==

 

This amount of heat is removable by an air stream. 

 

 

 

Guard 

Thermocouple 
leads 

Coolant 
out 

Coolant 
in 

s 

q 
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Slug type sensor:  

Schematic of a slug type heat flux sensor is shown in Figure 9.  A mass M 

of a material of specific heat c is embedded in the substrate as shown.  Frontal 

area A of the slug is exposed to the heat flux to be measured while all the other 

surfaces of the slug are thermally insulated as indicated.  When the incident flux 

is absorbed at the surface of the slug, it heats the slug, and uniformly so if it is 

made of a material of high thermal conductivity. 

 

Figure 9 Slug type heat flux sensor 

 

In the ideal case with no heat loss the equation for the temperature of the slug is 

given by 

  qA
dr
dTMc =      (12) 

On integration this will yield the slug temperature as a linear function of time 

given by 

  t
Mc
qATT 0 +=     (13) 

Area=A 

M, c 

q 

Slug 

Substrate 
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Obviously we have to allow the process of heating to terminate by stopping the 

exposure of the slug to the incident heat flux when the slug temperature reaches 

its maximum allowable temperature. 

 

Response of a slug type sensor with a small heat loss: 

Consider now the case when there is a small heat leak from the slug 

sensor.  Let the loss be proportional to the temperature excess of the slug with 

respect to the casing or the substrate.  The loss coefficient is given as KL W/°C.  

Equation (12) will now be replaced by  

   ( )cL TTK-qA
dr
dTMc −=     (14) 

Let θ=− cTT and =∈
Mc
K L .  With these equation (14) will be recast as 

   θ∈−=−
θ

Mc
qA

dt
d      (15) 

Since KL is expected to be small, the parameter ∈ is small.  The solution may be 

sought by expanding it in the form ......θ  θθ (2)(1) +∈+= .  Substituting this in 

equation (15) we have 

  [ ]......θ  θ.....
dt
dθ

Mc
qA

dt
dθ (2)2(1)

(2)(1)

+∈+∈−=+∈+−   (16) 

Collecting terms of same order, the above is replaced by 

    
Mc
qA

dt
dθ (1)

=      (17a) 

    (1)
(2)

θ 
Mc
qA

dt
dθ

−=     (17b) 

These equations are solved to get 

   
Mc
qAtθ(1) = ; 

2
(2)

2Mc
qAtθ −=     (17c) 
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Thus the response of the slug follows the relation 

  ⎥
⎦

⎤
⎢
⎣

⎡
=∈−≈ ....

2
t.

Mc
K-t 

Mc
qA.t 

2Mc
qA

Mc
qAtθ

2
L2    (18) 

Thus a slight amount of nonlinearity is seen in the solution. 

 

Example 4 

A slug type of sensor is made of a copper slug of 3 mm thickness.  The 

specification is that the temperature of the slug should not increase by more than 

40°C. 

a) What is the time for which the slug can be exposed to an incident heat flux of 

10000 W/m2 and there is negligible heat loss from the slug? 

b) What is the time for which the slug can be exposed to an incident heat flux of 

10000 W/m2 and there is small heat loss from the slug specified by a loss 

coefficient of 50 W/°C? 

 Note:  We make all calculations based on unit area of slug exposed to the 

incident heat flux. Properties of Copper are taken from hand book 

Density ρ = 8890 kg / m3, specific heat C = 398 J/kg Cْ 

The maximum temperature rise during operation is ∆Tmax = 40°C 

 

a) If there is negligible heat loss the temperature increases linearly and 

the    

     maximum exposure time is given by equation (13). 

s  42.46
10000

403988890103t
3

max =
××××

=
−
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b) When the heat loss is taken into account, what happens is worked out 

below.We have, from the given data 

0.00047
3981038890

50
Mc
K

3
L =

×××
=

−
 

and 0.942
3981038890

10000
ρδc
q

Mc
qA

3 =
×××

== − .  With these, we get, using 

equation xx ⎥
⎦

⎤
⎢
⎣

⎡
−≈

2
t0.00047t0.942θ

2

.  

With C40∆Tmax = we have [ ]maxmaxmax  t0.0002351 t0.942∆T −=  

or [ ]max

max
max 0.000235t10.942

∆Tt
−

= .  This gives the maximum exposure time 

approximately as [ ] 47.2s
42.460.00023510.942

40tmax =
×−

≈  

 


