Module 14.1

Rational Exponents And Radicals

How can you use rational exponents and radicals to solve real-world problems?
P. 637

What is an Exponent?

The exponent of a number is how many times to use that number in a multiplication. It is written as a small number to the right and above the base number. It's also called a "power" or an "index".

To avoid confusion, use parentheses () in cases like this:

With ()$:$	$(\mathbf{- 2})^{\mathbf{2}}=(-2) \times(-2)=\mathbf{4}$
Without ()$:$	$\mathbf{- 2}^{\mathbf{2}}=-\left(2^{2}\right)=-(2 \times 2)=\mathbf{- 4}$

With ():	$(\mathbf{a b})^{\mathbf{2}}=\mathbf{a b} \times \mathbf{a b}$
Without ():	$\mathbf{a b}^{\mathbf{2}}=\mathbf{a} \times(\mathrm{b})^{2}=\mathbf{a} \times \mathbf{b} \times \mathbf{b}$

1) The Zero Exponent Rule

Any number (excluding 0) to the 0 power is always equal to 1 .
Examples:

- $6^{0}=1$
- $147^{\circ}=1$
- $55^{\circ}=1$

But: 0^{0} is undefined.

2) The One Exponent Rule

Any number to the $1^{\text {st }}$ power is always equal to that number.
Examples:

- $x^{1}=x$
- $7^{1}=7$
- $53^{1}=53$
- $0^{1}=0$

3) The Negative Exponent Rule

Any number raised to a negative power is equal to
1 divided by the number raised to a positive power.
Example:

$$
4^{-2}=\frac{1}{4^{2}}=\frac{1}{16} \quad c^{-6}=\frac{1}{c^{6}}
$$

$$
\begin{aligned}
& \text { And the reverse is also true. } \frac{1}{y^{-8}}=y^{8} \\
& \left(\frac{\mathbf{2}^{2}}{3^{-2}}=2^{2} \times 3^{2}=4 \times 9=\mathbf{3 6}\right. \\
& \left(\frac{2^{-3}}{5^{-4}}\right)=\frac{5^{4}}{2^{3}} \sqrt{ }
\end{aligned}
$$

4) The Zero-To-Exponent Rule

 0 to any power is 0 . Examples:- $0^{1}=0$
- $0^{7}=0$

But: As we said, 0^{0} is undefined.

Let's Practice:

$$
5^{-2}
$$

$$
y^{-4}=
$$

$$
3 x^{-4}=
$$

$$
\left(\frac{3}{4}\right)^{-1}
$$

$$
2^{-5}=
$$

$$
(3 x)^{-4}=
$$

$$
(-3)^{-3}
$$

$$
\frac{1}{m^{-2}}=
$$

$$
\frac{1}{x^{6}}=
$$

5) The Product Of Powers Rule

When a number to a power is multiplied by the same number to a power, add the powers. Example:

$$
\begin{gathered}
2^{2} \cdot 2^{3}=(2 \cdot 2)(2 \cdot 2 \cdot 2)=2^{5}=2^{2+3} \\
\text { so: } 3^{2}+3^{3}=9+27=36, \operatorname{not} 3^{5}(243)
\end{gathered}
$$

Let's Practice:

$$
\begin{aligned}
& 6^{4} \cdot 6^{2} \\
& x^{3} x^{4} \\
& d^{-2}\left(d^{2}\right)
\end{aligned}
$$

Group Similar Components

Simplify: $3 a^{5} b^{7} \times-7 a^{2} b^{4}$

$$
\begin{aligned}
& =3 \times \mathbf{a}^{5} \times \mathbf{b}^{7} \times-7 \times \mathbf{a}^{2} \times \mathbf{b}^{4} \\
& =\underbrace{3 \times-7} \times \underbrace{\mathbf{a}^{5} \times \mathbf{a}^{2}} \times \underbrace{\mathbf{b}^{7} \times \mathbf{b}^{4}} \\
& =-21 \times \mathbf{a}^{5+2} \times \mathbf{b}^{7+4} \\
& =-21 \mathbf{a}^{7} \mathbf{b}^{11}
\end{aligned}
$$

$2 y^{-1} \cdot 3 x y \quad 2 x^{3} y^{4} \cdot 4 x^{-1} y^{2} \cdot 4 x^{-2} \quad-3 x^{4} y^{3} z^{2} \cdot-2 x^{3} y^{4}$
$4 u^{2} \cdot 2 u^{-1} v^{-3}$

$$
-3 x^{4} y^{3} z^{2} \cdot-2 x^{3} y^{4}
$$

$$
3 a^{-2} b^{3} \cdot a^{4} b^{2} \cdot 2 a b^{-2}
$$

$$
-3 h^{3} j^{2} k^{2} \cdot-2 h^{0} j^{2} k^{2}
$$

Simplify: $-2 d^{4} k^{4} x-d k$

$$
=-2 \times \mathbf{d}^{4} \times \mathbf{k}^{4} \times-1 \times \mathbf{d}^{1} \times \mathbf{k}^{1}
$$

$$
\begin{aligned}
& =\underbrace{-2 \times-1} \times \underbrace{\mathbf{d}^{4} \times \mathbf{d}^{1}} \times \underbrace{\mathbf{k}^{4} \times \mathbf{k}^{1}} \\
& =2 \times \mathbf{d}^{4+1} \times \mathbf{k}^{4+1}
\end{aligned}
$$

$$
=2 d^{5} k^{5}
$$

6) The Power Of A Power Rule

When a number to a power is raised to another power, multiply the powers. Example:
$\left(2^{3}\right)^{2}=(2 \cdot 2 \cdot 2)^{2}=(2 \cdot 2 \cdot 2)(2 \cdot 2 \cdot 2)=2^{6}$

Let's Practice:

$\left(w^{4}\right)^{2}$

$$
\left(x^{3}\right)^{4}
$$

$$
\begin{aligned}
& \left(j^{4}\right)^{-3} \\
& d^{-2}\left(d^{2}\right)^{-2} \\
& m^{5}\left(g^{-3}\right)^{2} m^{-5} g^{7}
\end{aligned}
$$

7) The Quotient Of Powers Rule

When a number to a power is divided by the same number to a power, subtract the two powers.
Example:

$$
\begin{aligned}
\frac{2^{3}}{2^{2}} & =\frac{2 \cdot 2 \cdot 2}{2 \cdot 2}=2 \\
& =2^{3-2}=2^{1}=2
\end{aligned}
$$

Let's Practice:

1. $\frac{b^{7}}{b^{15}}$
2. $\frac{w^{7}}{w^{5}}$
3. $\frac{a^{3}}{a^{8}}$
4. $\frac{b^{2}}{t^{6}}$

8) The Power Of A Product Rule

When two numbers are multiplied and raised to a power, it's equal to both numbers individually raised to that power and multiplied together. Example:

$$
(2 \cdot 3)^{2}=(2 \cdot 3)(2 \cdot 3)=(2 \cdot 2)(3 \cdot 3)=2^{2} \cdot 3^{2}
$$

$(6 y)^{2}$

$$
(-2 y)^{4} \quad x^{4} \cdot\left(2 x^{2} y^{-2}\right)^{-2}
$$

$\left(7 x^{3}\right)^{2}$
$\left(2 x^{2} y^{2} \cdot 2 y x^{-2}\right)^{3}$

More Practice:

1) $\left(2 x^{4} y^{2}\right)^{3} \cdot\left(2 y^{3}\right)^{3}$
2) $h k \cdot\left(h^{4} j^{2} k^{2}\right)^{3}$
3) $\left(5 x^{2}\right)^{2}$
4) $\left(2 a^{3}\right)^{0} \cdot 2 a b^{2}$
5) $m^{3} \cdot\left(2 m^{3}\right)^{0}$
6) $\left(3 w k^{3}\right)^{3}$
7) $\left(2 y^{4}\right)^{2} \cdot\left(x^{4} y^{4}\right)^{3}$
8) $\left(3 v^{3}\right)^{3} \cdot 2 v$
9) $(-2 y)^{4}$
10) $u^{2} \cdot\left(2 u^{4} v^{4}\right)^{3}$
11) $3 a \cdot(3 a)^{2}$
12) $\left(6 x^{4}\right)^{2}$
13) $u v \cdot(u v)^{3}$
14) $\left(3 k^{3}\right)^{3} \cdot k$
15) $\left(\mathrm{n}^{5}\right)^{2}\left(4 \mathrm{mn}^{-2}\right)^{3}$
16) $\left(5 x^{2}\right)^{2}$

9) The Power Of A Quotient Rule

When two numbers are divided and raised to a power, it's equal to both numbers individually raised to that power and divided.
Example:

$$
\left(\frac{2}{3}\right)^{2}=\frac{2}{3} \cdot \frac{2}{3}=\frac{2 \cdot 2}{3 \cdot 3}=\frac{2^{2}}{3^{2}}
$$

Let's Practice:

Apply It To Everything In The Parenthesis

1. $\left(\frac{4}{7}\right)^{3}$
2. $\left(\frac{3}{4}\right)^{-2}$
3. $\left(\frac{2}{11}\right)^{2}$

Let's Practice More - Simplify These:

1) $\frac{\left(3 y^{7}\right)^{3}}{9 y^{9}}$
2) $\frac{\left(2 b^{-3}\right)^{-2}}{2 b^{4}}$

$$
\frac{2 y^{-2} \cdot 4 x}{x^{-2} y^{4}}
$$

3) $\frac{\left(2 x^{2} y^{7}\right)^{3}}{x^{8} y^{9}}$
4) $\frac{\left(a^{4} b^{-3}\right)^{-2}}{a^{-3} b^{4}}$
5) $\frac{\left(3 x^{-2} y^{7} z^{2}\right)^{-1}}{x^{8} y^{2} z}$
6) $\frac{\left(m^{2} n^{4}\right)^{2}}{\left(m^{4} n^{-2}\right)^{-1}}$

$$
\text { 7) } \frac{2\left(3 a^{4} b^{-2} c^{-2}\right)^{-2}}{3 a^{2} b^{2} c^{2}}
$$

$$
\begin{gathered}
a^{-4} b^{3} \cdot 3 a^{2} b^{2} \cdot b^{4} \\
\frac{x^{3}}{3 x^{4} y^{-1} \cdot 4 x y^{-4}}
\end{gathered}
$$

8) $-\frac{\left(6 x^{-5} y^{3} z^{-1}\right)^{2}}{\left(3 x^{4} y^{-2}\right)^{2}}$

We use the word "Radical" to refer to any expression within the radical symbol.
If the root doesn't appear, it's assumed to be 2, and it becomes a "square root", that is, the $2^{\text {nd }}$ root.
$\sqrt{x}=\sqrt[2]{x}$

Here are a few square roots:
$\sqrt{4}=2 \quad \sqrt{100}=10 \quad \sqrt[3]{8}=2 \quad \sqrt[3]{1}=1 \quad \sqrt[3]{-64}=-4$

Simplify these:
$\sqrt[3]{8}$
$\sqrt[4]{16}$

$$
\begin{aligned}
& \sqrt[3]{x^{3}}=x \\
& \sqrt[4]{x^{4}}=x
\end{aligned}
$$

Here's The Product Property of Radicals:
Here's an example: $\quad \sqrt{6}=\sqrt{2 \times 3}=\sqrt{2} \times \sqrt{3}$
Knowing this, here's how you can simplify a squared radical:

1) Inspect the radicand for a square factor: $4,9,16,25$, and so on.
2) Split the radicand into 2 parts.
3) Remove (the root of) the squared factor. For example:

- Simplify $\sqrt{75}$
- Simplify $\sqrt{72}$

$$
\begin{aligned}
& \sqrt{75}=\sqrt{3 \times 25}=5 \sqrt{3} \\
& \sqrt{72}=\sqrt{2 \times 36}=6 \sqrt{2}
\end{aligned}
$$

$\sqrt{x y}=\sqrt{x} \cdot \sqrt{y}$

Product Property of Radicals

$$
\begin{aligned}
& \sqrt{8} \cdot \sqrt{2}=\sqrt{16} \\
& \sqrt[2]{16} \cdot \sqrt[2]{4}=\sqrt[2]{64} \\
& \sqrt[3]{9} \sqrt[3]{3}=\sqrt[3]{27} \\
& \sqrt[4]{27} \sqrt[4]{3}=\sqrt[4]{81}
\end{aligned}
$$

Quotient Property of Radicals

$$
\begin{aligned}
& \sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}} \\
& \sqrt[3]{\frac{27}{8}}=\frac{\sqrt[3]{27}}{\sqrt[3]{8}} \\
& \sqrt[4]{\frac{256}{16}}=\frac{\sqrt[4]{256}}{\sqrt[4]{16}}
\end{aligned}
$$

Let's Practice: Simplify These...

$\sqrt{225}$

$\sqrt{300}$

$\sqrt{120}$
$\begin{array}{llllll}\sqrt{20} & \sqrt{36} & \sqrt{32} & \sqrt{45} & \sqrt{60} & \sqrt{64}\end{array}$

Here's The Quotient Property of Radicals: $\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}$
Here's an example: $\sqrt{\frac{15}{16}}=\frac{\sqrt{15}}{\sqrt{16}}=\frac{\sqrt{15}}{4}$
Simplify: $\sqrt{\frac{1}{49}} \quad \sqrt{\frac{4}{9}}$

Here's how you can simplify a cubed radical:

1) Inspect the radicand for a cubed factor: $8,27,64,125$, and so on.
2) Split the radicand into 2 parts.
3) Remove (the root of) the cubed factor. For example:

$$
\begin{aligned}
& \sqrt[3]{54}=\sqrt[3]{27 \cdot 2}=\sqrt[3]{27} \sqrt[3]{2}=3 \sqrt[3]{2} \\
& \sqrt[3]{48}=\sqrt[3]{6 \times 8}=\sqrt[3]{6} \sqrt[3]{8}=2 \sqrt[3]{6}
\end{aligned}
$$

Simplify: $\sqrt[3]{135} \quad \sqrt[3]{375}$

What if the exponent is a fraction? It's called a Fractional Exponent.

$$
\begin{aligned}
& x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m} \\
& \frac{m}{n}=\frac{\text { Power }}{\text { Root }} \\
& \text { Raise it to the m-th power, } \\
& \text { then take the } n \text {-th root } \\
& \text { Take the n-th root, } \\
& \text { then raise it to the m-th power } \\
& \text { Usually easier } \\
& 4^{\frac{1}{3}}=\sqrt[2]{4^{3}}=(\sqrt[2]{4})^{3}
\end{aligned}
$$

$$
\begin{aligned}
& x^{\frac{m}{n}}=\sqrt[n]{x^{m}} \\
& =(\sqrt[n]{x})^{m} \\
& \frac{m}{n}=\frac{\text { Power }}{\text { Root }} \\
& \text { Raise it to the m-th power, } \\
& \text { then take the } \mathrm{n} \text {-th root } \\
& \text { Take the n-th root, } \\
& 27^{\frac{1}{4}}= \\
& =(\sqrt[3]{27})^{4} \\
& =\sqrt[3]{531,441}=(3)^{4} \\
& =81=81
\end{aligned}
$$

Which way is easier?

$$
\begin{aligned}
& 5^{\frac{2}{3}}=\sqrt{\sqrt{m}}=(\sqrt{m}) \\
& =\sqrt[5]{7^{2}}=(\sqrt{1}) \\
& 4^{\frac{3}{4}}=\sqrt{\sqrt{m}}=(\sqrt{m}) \\
& =\sqrt{\sqrt{m}}=(\sqrt[6]{32})^{3} \\
& g^{\frac{h}{b}=\sqrt{\cdots}}=(\sqrt{\text { min }}) \\
& =\sqrt{\cdots}=(\sqrt[t]{p})^{r}
\end{aligned}
$$

Write each expression in radical form.
$m^{\frac{3}{5}}$
$(7 x)^{\frac{3}{2}}$
$(10 r)^{-\frac{3}{4}}$
$(5 n)^{\frac{4}{3}}$
$12 a^{\frac{2}{3}}$
$27^{2 / 3}$
$(6 x)^{-\frac{3}{2}}$
$(2 k)^{\frac{5}{2}}$
$6 x^{\frac{5}{2}}$
$64 a^{\frac{4}{5}}$

Find the root and simplify the expression.
$64^{\frac{1}{3}}$
$27^{\frac{2}{3}}$
$81^{\frac{1}{4}}+9^{\frac{1}{2}}$
$8^{\frac{1}{3}}$
$16^{\frac{1}{2}}+27^{\frac{1}{3}}$
$4^{\frac{5}{2}}-4^{\frac{3}{2}}$
$8^{\frac{2}{3}}+8^{-\frac{2}{3}}$
$\frac{25^{\frac{1}{2}}}{27^{\frac{1}{3}}}$
$16^{\frac{1}{4}}$
$100^{-\frac{3}{2}}$

Rewrite in exponential form. Simplify if possible.

1. $\sqrt[5]{x^{2}}$
2. $\sqrt[6]{x^{3}}$

$$
(\sqrt[3]{5 m})^{4}
$$

3. $\sqrt[5]{32 x^{3}}$

$$
\frac{1}{(\sqrt[3]{x})^{4}}
$$

4. $\sqrt[3]{27 d^{5}}$
$\frac{1}{(\sqrt{6 x})^{3}}$
$\frac{1}{(\sqrt[4]{n})^{7}}$
\sqrt{v}
$\sqrt{5 a}$
5. $\sqrt[4]{256 a^{8}}$
$\sqrt[6]{10 k}$
You must be able to convert between exponential and radical forms.

Applications

Biology The approximate number of Calories, C, that
an animal needs each day is given by $C=72 m^{\frac{3}{4}}$, where m is the animal's mass in kilograms. Find the number of Calories that a 16 kilogram dog needs each day.

Biology Biologists use a formula to estimate the mass of a mammal's brain. For a mammal with a mass of m grams, the approximate mass B of the brain, also in grams, is given by $B=\frac{1}{8} m^{\frac{2}{3}}$. Find the approximate mass of the brain of a mouse that has a mass of 64 grams.

Rocket Science Escape velocity is a measure of how fast an object must be moving to escape the gravitational pull of a planet or moon with no further thrust. The escape velocity for the moon is given approximately by the equation $V=5600 \cdot\left(\frac{d}{1000}\right)^{-\frac{1}{2}}$, where v is the escape velocity in miles per hour and d is the distance from the center of the moon (in miles). If a lunar lander thrusts upwards until it reaches a distance of 16,000 miles from the center of the moon, about how fast must it be going to escape the moon's gravity?

Geometry The volume of a cube is related to the area of a face by the formula $V=A^{\frac{3}{2}}$.
What is the volume of a cube whose face has an area of $100 \mathrm{~cm}^{2}$?

SIMCLIFYING RADICALS

$$
\begin{aligned}
& \sqrt{160}=\sqrt{16} \cdot \sqrt{10}=4 \cdot \sqrt{10} \text { or } 4 \sqrt{10} \\
& \sqrt{72}=\sqrt{36} \cdot \sqrt{2}=6 \cdot \sqrt{2}=6 \sqrt{2} \\
& \sqrt{4 x^{2}}=\sqrt{4} \cdot \sqrt{x^{2}}=2 \cdot x=2 x \\
& \sqrt[3]{8 x^{3}}=\sqrt[3]{8} \cdot \sqrt[3]{x^{3}}=2 \cdot x=2 x \\
& \sqrt[5]{32 x^{3}}=\sqrt[5]{32} \cdot \sqrt[5]{x^{3}}=2 \sqrt[5]{x^{3}} \\
& \sqrt[4]{256 a^{3}}=\sqrt[4]{256} \sqrt[4]{a^{3}}=4 \sqrt[4]{a^{3}}
\end{aligned}
$$

Putting it all together - Simplifying Radicals with Numbers \& Variables

$$
\left(x^{2} y\right)^{2} \sqrt[4]{y^{4}} \quad\left(8 x^{9}\right)^{\frac{2}{3}}
$$

$$
\left(b^{3} \cdot c^{5}\right)^{\frac{1}{5}}=
$$

$\left(64 x^{12}\right)^{\frac{1}{6}}$

$$
\frac{\sqrt{8 x}}{\sqrt[3]{16 x}}
$$

$$
\left(a^{\frac{3}{4}} \cdot y^{\frac{1}{2}}\right)^{\frac{2}{3}}=
$$

$$
\sqrt[3]{\left(8 x^{3}\right)^{2}}
$$

$$
b^{\frac{1}{3}} \cdot b^{\frac{3}{4}}=
$$

$-4 \sqrt{6 p^{2}} \cdot \sqrt{6 p^{2}} \quad \sqrt{6 n^{2}} \cdot-3 \sqrt{2 n^{3}}$

$$
-3 \sqrt{3 p} \cdot-5 \sqrt[3]{3 p^{2}} \quad \sqrt[3]{4 x^{4}} \cdot \sqrt{4 x^{4}}
$$

Simplify the expression, $\left(\left(p^{-2}+\frac{1}{p}\right)^{1}\right)^{p}$, when $p=\frac{3}{4^{4}}$, in both radical and rational exponents forms.

Radical form:

Rational exponent form:

3. Write an equivalent expression in rational exponent form:

$$
\sqrt[8]{5^{6}}
$$

$$
\sqrt[3]{8}\left(\sqrt{8^{2}+8^{2}}\right)
$$

4. Determine the value of n such that $\sqrt[4]{64^{\frac{1}{3}}}=64^{\frac{1}{n}}$
5. Determine whether each expression is eauivalent to $x^{\frac{7}{4}}$.

Expression	Yes	No
$\sqrt[3]{x^{4}}$	0	0
$\sqrt[5]{x^{7}}$	\bigcirc	\bigcirc
$(\sqrt[4]{x})^{7}$	\bigcirc	\bigcirc
$\sqrt{\frac{2}{44}}$	\bigcirc	\bigcirc
$\sqrt[5]{x^{5}} \cdot \sqrt{x^{2}}$	\bigcirc	\bigcirc
$\sqrt[5]{x^{4}} \cdot \sqrt[2]{x^{4}}$	\bigcirc	\bigcirc
$\frac{(\sqrt[4]{x})}{(\sqrt{x})^{0}}$	0	0

$$
\begin{aligned}
\sqrt{n^{6}}=\sqrt[2]{\left(n^{3}\right)^{2}} & =n^{3} \\
\sqrt{n^{7}} & =\sqrt{n^{6} n}
\end{aligned}=n^{3} \sqrt{n} .
$$

(A) Define rational and irrational numbers.

A rational number is any number that can be written as the ratio of two numbers, $\frac{a}{b}$, where a and b are integers and $b \neq 0$. An irrational number is a real number that is not rational.

Examples of a Rational Number:
0

18	Integers
1.625	Decimals that end
$3 / 4$	Fractions

Examples of an Irrational Number:
π
$\sqrt{2}, \sqrt{5}$
Never ending decimals
1.2658945625692....

Will it be Rational or Irrational?

Sums:

Rational + Rational $=$	Rational	$3+2$
Rational + Irrational $=$	Irrational	$3+\pi$

Usually Irrational
Exception: $\pi+(-\pi)$

Products:
Rational \times Rational $=$
Rational
3×2
Rational x Irrational = Irrational
$3 \times \sqrt{3}$
Irrational x Irrational $=\quad$ Usually Irrational Exception: $\sqrt{3} \times \sqrt{3}$

P. 658

Determine whether each of the following is rational or irrational. Select the correct answer for each lettered part.
a. The product of $\sqrt{2}$ and $\sqrt{50}$
\bigcirc Rational
\bigcirc Irrational
b. The product of $\sqrt{2}$ and $\sqrt{25}$RationalIrrational
c. $C=2 \pi r$ evaluated for $r=\pi^{-1}$
\bigcirc RationalIrrational
d. $C=2 \pi r$ evaluated for $r=1$
e. $A=2 \pi r^{2}$ evaluated for $r=\pi^{\frac{1}{2}}$
f. The product of $\sqrt{\frac{2}{\pi}}$ and $\sqrt{50 \pi}$RationalIrrationalRational

Irrational

RationalIrrational
g. The product of $\sqrt{2}$ and $\sqrt{\frac{9}{2}}$Rational \bigcirc
Irrational

Rational or Irrational?

1. Is the sum of $3 \sqrt{2}$ and $4 \sqrt{2}$ rational or irrational?
2. Is the sum of 4.2 and $\sqrt{2}$ rational or irrational?
3. Determine if the product of $3 \sqrt{2}$ and $8 \sqrt{18}$ is rational or irrational.
