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Module 3.9: What is a Logarithm?

The logarithm is an excellent mathematical tool that has several distinct uses. First, some
measurements, like the Richter scale for earthquakes or decibels for music, are fundamentally
logarithmic. Second, plotting on logarithmic scales can reveal exponential relationships
like those you learned about in connection with inflation, compound interest, depreciation,
radiation, and population growth. Third, logarithms are the basis of slide-rules and tables of
logarithms, which were useful methods of calculation before the invention of the hand-held
calculator—but the reason we like logarithms in this text is because they allow us to solve
equations of the form

( some number ) = ( another number )x

This will prove vital in topics that you are already familiar with, such as compound interest,
radiation, depreciation, population growth, and so on.

If f(x) is a function such that
f(xy) = f(x) + f(y)

then we say that f(x) is a logarithm.
There are three logarithms in common use: the binary logarithm, the common loga-

rithm, and the natural logarithm. For simplicity, we will study the common logarithm here.

# 3-9-1

Using the logarithm button on your calculator, find the logarithms of the following values:

• What is log 100? [Answer: 2.]

• What is log 1000? [Answer: 3.]

• What is log 10, 000? [Answer: 4.]

• What is log 100, 000? [Answer: 5.]

# 3-9-2

Using your calculator, find the following:

• What is 100.301029995? [Answer: 2.]

• What is log 2? [Answer: 0.301029995.]

• What is 100.477121254? [Answer: 3.]

• What is log 3? [Answer: 0.477121254.]
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A Pause for Reflection. . .
Describe in your own words the pattern you’ve discovered in the previous two boxes. Con-
centrate, and make sure you understand it. If you do, then you will become very skilled in
the use of the common logarithm.

Mathematics has many maneuvers that can be considered move & counter-move. For ex-
ample, addition and subtraction are opposites, squaring and square-rooting are opposites,
multiplying and dividing are opposites, and we are now exploring that exponentiating is the
opposite of the logarithm. This can be summarized by the following list, an expansion of
what was found on Page 28 and Page 349. We will expand it for the last time on Page 523.
This important topic is called “the theory of inverse functions.”

• If 4x = 64 and you want to “undo” the “times 4,” you do 64/4 to learn x = 16.

• If x/2 = 64 and you want to “undo” the “divide by 2,” you do 64⇥ 2 to learn x = 128.

• If x+ 13 = 64 and you want to “undo” the “plus 13,” you do 64� 13 to learn x = 51.

• If x� 12 = 64 and you want to “undo” the “minus 12,” you do 64 + 12 to learn x = 76.

• If x2 = 64 and you want to “undo” the “square,” you do
p
64 to learn x = 8.

• If x3 = 64 and you want to “undo” the “cube,” you do 3
p
64 to learn x = 4.

• If x6 = 64 and you want to “undo” the “sixth power,” you do 6
p
64 to learn x = 2.

To which we now add:

• If 10x = 64 and you want to “undo” the “ten to the,” you do log 64 to learn x = 1.80617 · · · .

• If log x = 64 and you want to “undo” the “logarithm,” you do 10

64
to learn

x = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000.

Which can be explained alternatively:

• If 10x = 100 and you want to “undo” the “ten to the,” you do log 100 to learn x = 2.

• If log x = 3 and you want to “undo” the “logarithm,” you do 103 to learn x = 1000.

# 3-9-3

Try finding the common logarithm of the following numbers on your calculator. Do not
write the answer in scientific notation, but rather, in regular notation.

• What is log(3.14159⇥ 100)? [Answer: 0.49714 · · · .]

• What is log(6.65702⇥ 109)? [Answer: 9.82327 · · · .]

• What is log(7.188173236⇥ 109)? [Answer: 9.85661 · · · .]

• What is log(5.9620⇥ 104)? [Answer: 4.77539 · · · .]

• What is log(6.02⇥ 1023)? [Answer: 23.7795 · · · .]
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A Pause for Reflection. . .
In each case in the previous box, I want you to look at the exponent in scientific notation,
and the number that you find to the left of the decimal point in the logarithm. Do you see
a pattern? What is the relationship?

As you can see from the previous chessboard box, there is a pattern. If x is some number
in scientific notation, with the exponent on the ten being y, then log x will have y to the
left of the decimal point.

This is a great way to check your work. One could write

log(j.unk ⇥ 10x) = x.crud

but that isn’t very mathematical. In any case, notice the positions of x on the left, and the
x on the right.

Still, when you see a common logarithm, you always know at least the exponent of
the number in scientific notation that it represents. It works the other way too. If you
have a number in scientific notation, and you take the common logarithm, you know what
to expect to the left of the decimal point. If you are alert, this will help prevent many
accidental errors. This number, which is simultaneously the exponent in scientific notation,
and the left-of-the-decimal value of the logarithm, is called the mantissa.

So what about numbers less than one?

# 3-9-4

Try finding the common logarithm of the following numbers on your calculator. Do not
write the answer in scientific notation, but rather, in regular notation.

• What is log 2.5⇥ 10�1? [Answer: �0.602059 · · · .]

• What is log 4⇥ 10�2? [Answer: �1.39794 · · · .]

• What is log 5⇥ 10�3? [Answer: �2.30102 · · · .]

• What is log 9.10938⇥ 10�31? [Answer: �30.0405 · · · .]

A Pause for Reflection. . .
Again, I want you to look at the exponent in scientific notation, and the number that you
find to the left of the decimal point in the logarithm. How has the relationship changed?

COPYRIGHT NOTICE: This is a work in-progress by Prof. Gregory V. Bard, which is intended to be eventually released under the Creative

Commons License (specifically agreement # 3 “attribution and non-commercial.”) Until such time as the document is completed, however, the

author reserves all rights, to ensure that imperfect copies are not widely circulated.



Module 3.9 Page 507 of 1392.

The laws of logarithms, like the laws of exponents, are numbered di↵erently in essentially
every text book. I number them as follows. First, the major laws:

1. For any positive real numbers a and c: log ac = log a+ log c.

2. For any real numbers a and c, with a > 0: log ac = c log a.

3. For any positive real numbers a and c: log a
c = log a� log c.

4. For the common logarithm, and any real a: log(10a) = a.

Note: For a logarithm that is not base 10 but is base b, then # 4 becomes logb b
a = a.

5. For the common logarithm, and any positive real a: 10log a = a.

Note: For a logarithm that is not base 10 but is base b, then # 5 becomes blogb

a = a.

Second, the minor laws:

1. log 1 = 0

2. For any positive real number a: log(1/a) = � log a

3. For any positive real number a, and positive integer n: log( n

p
a) = log a

n

4. If log(junk) = log(stu↵) then (junk) = (stu↵).

It would be really awesome if you knew all of those laws perfectly. However, it is really only the major laws that actually
appear to come up in solving problems, especially within this textbook. Even then, only the common-logarithm cases
of the fourth and fifth are frequently used. The b 6= 10 situations are rather rare.

# 3-9-5

Now, let’s test these laws, to make sure we have them right! We will learn, over the course
of this module and the next, that logarithms are extremely sensitive to rounding error.
Therefore, for this box and the next few, we will use 9 digits instead of 6 digits.

• What is log 2? [Answer: 0.301029995 · · · .]

• What is log 3? [Answer: 0.477121254 · · · .]

• What is log 6? [Answer: 0.778151250 · · · .]

Note: 0.301029995 · · · + 0.477121254 · · · = 0.778151249 · · · , o↵ only by one part per
billion. Thus we’ve shown log 2 + log 3 = log(2⇥ 3) = log 6.

# 3-9-6

• What is log 12? [Answer: 1.07918124 · · · .]

• What is log 4? [Answer: 0.602059991 · · · .]

• You found log 3 in the previous box, what was it? [Answer: 0.477121254 · · · .]

Note: 1.07918124 · · ·� 0.602059991 · · · = 0.477121249 · · · , again, only o↵ by one part in
a billion. Thus we’ve shown log 12� log 4 = log(12/4) = log 3.
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# 3-9-7

• What is log 9? [Answer: log 9 = 0.954242509 · · · .]

• You found log 3 in the previous box, what was it? [Answer: 0.477121254 · · · .]

Note: 2 log 3 = 2 ⇥ 0.477121254 · · · = 0.954242508 · · · , again, only o↵ by one part in a
billion. Thus we’ve shown 2 log 3 = log 32 = log 9.

# 3-9-8

Okay, we’ve verified the first three major laws now. The first minor law is easy to verify,
because you can ask your calculator if log 1 = 0 if you like. Meanwhile, consider:

• First, we start with 64. What is log 64? [Answer: log 64 = 1.80617997.]

• Because
p
64 = 8, we anticipate log 8 = (1/2) log 64. Is it true?

[Answer: log 8 = 0.903089986 · · · , and (1/2) log 64 = 0.903089986 · · · , so yes.]

• Because 3
p
64 = 4, we anticipate log 4 = (1/3) log 64. We found log 4 above. Is our

anticipation true? [Answer: (1/3) log 64 = 0.602059991 · · · , exact to the digits shown.]

• Lastly, because 6
p
64 = 2, we anticipate log 2 = (1/6) log 64. Is this true? [Answer:

(1/6) log 64 = 0.301029995 · · · , and log 2 = 0.301029995 · · · , exact to the digits shown.]

• Just for completeness, we could ask what log(1/2) is, and compare it to log 2.
[Answer: log(1/2) = �0.301029995 · · · , exactly the negative of log 2, as anticipated.]

# 3-9-9

The next step is to tear apart some expressions with a logarithm. Suppose we have, in a long
computation log [(1 + x)(2 + y)] = 8. Suppose we know, from earlier in the computation,
that y = 3, and we plug that in to get log(1 + x)(5) = 8. We will proceed as follows.

log [(1 + x)(5)] = 8

log(1 + x) + log 5 = 8

log(1 + x) = 8� log 5

log(1 + x) = 8� 0.698970004 · · ·
log(1 + x) = 7.30102999 · · ·

1 + x = 107.30102999···

1 + x = 20, 000, 000

x = 19, 999, 999
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The last example was a bit complicated, so let’s check our work.

log [(1 + x)(5)] = log [(1 + 19, 999, 999)(5)]

= log [(20, 000, 000)(5)]

= log 100, 000, 000

= 8 Hooray!

Remember the move-countermove strategies? The previous box worked because

10log x = x

and other problems (such as the first checkerboard on Page 504) are solvable because

log 10x = x

As you can see, these are the fourth and fifth major laws of logarithms.

# 3-9-10

Suppose we have 5 log x+25

100

= 1, and we want to find x.

5 log
x+ 25

100
= 1

log
x+ 25

100
= 1/5 = 0.2

x+ 25

100
= 100.2

x+ 25

100
= 1.58489 · · ·

x+ 25 = 158.489 · · ·
x = 158.489 · · ·� 25 = 133.489 · · ·

# 3-9-11

How about these equations? Can you solve them for x?

• 5 + 3(log x2) = 11 [Answer: x = 10.]

• (log x2) + (log x3) = 2.38560627 · · · [Answer: x = 3.]
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# 3-9-12

Now, let’s solve these equations for x.

• log x+3

10

= 2 [Answer: 997.]

• log(xy2) = 3 when y = 5 [Answer: x = 40.]

# 3-9-13

These equations will be fun to solve!

• 2

3

� log(2x+ 1) = 5

3

[Answer: x = �9

20

= �0.45.]

• 4 log(5x+ 678) = 12 [Answer: x = 322

5

= 64.4.]

There is a common point of confusion that traps many students. Sometimes students will
try to do something with logarithms resembling the distributive law. Just to be clear. . .

Wrong!! log(a+ c) = (log a) + (log c)  Wrong!
Wrong!! log(a� c) = (log a)� (log c)  Wrong!

. . . because instead it is actually the case that . . .

Correct!! log(ac) = (log a) + (log c)  Correct!
Correct!! log(a/c) = (log a)� (log c)  Correct!

Accordingly, if you were to attempt either or both of these forbidden steps in any sort
of homework or quiz, to say nothing of an examination, the entire problem would probably
be ruined beyond repair.

In my years of teaching, I have seen many students fall victim to this trap! Remember,
we do not “distribute” the logarithm. Instead we carefully apply proven laws of logarithms,
which we have already studied, one step at a time.

# 3-9-14

Here are some formulae from our work with finance, and now we shall explore if it is possible
to use logarithms to convert the formulas to a new form.

• Since we know A = P (1 + rt), for simple interest, what is logA? Well, logA =
logP + log(1+ rt), using the first major law. There is no law of logarithms that deals
with the logarithm of a sum (see the above box), and so we cannot break up that last
logarithm any further.

• Since we know A = P (1 + i)n, what is logA? Well, logA = logP + log(1 + i)n,
using the first major law. Then, we can apply the second major law to get logA =
logP + n log(1 + i). This is as far as we can go.
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# 3-9-15

At first glance, the previous box looks disappointing. We were able to crack open the
simple interest and compound interest formulas partially, but it did not seem to serve a
useful purpose. However, imagine that in a compound interest problem, you wanted to
know what n, would turn a given P into a given A.
Then you could take our last line and simplify to

logA� logP = n log(1 + i)

or equivalently
logA� logP

log(1 + i)
= n

or if you prefer
log(A/P )

log(1 + i)
= n

# 3-9-16

This problem might be extremely challenging, but using the methods of the previous box,
can you show that

A = P
⇣

1 +
r

m

⌘mt

can be made to become

t =
logA/P

m log(1 + r/m)

by giving a series of valid mathematical steps that leads from one to the other? [Answer
given at the end of the module.]

This one is very hard, so please don’t feel bad if you cannot get it to work without
peeking at the answers.

# 3-9-17

Suppose there is a tax-free municipal-bond fund that is giving a 5% rate of return (let
us assume it compounds annually). Jimmy has $ 20,000 as a graduation gift from his
grandparents, and he wants to save it for the down payment on a house. He thinks he needs
$ 50,000 for that. How long is it going to take him?

We start with A = P (1 + i)n. Recall, i = r/m and we have m = 1 and so r = 0.05 = i.
Then A = 50, 000 and P = 20, 000. Also, because m = 1 then n = mt = t. Thus we have

A = P (1 + i)n

50, 000 = 20, 000(1 + 0.05)n

50, 000

20, 000
= (1.05)n

2.5 = (1.05)n

log 2.5 = log(1.05)n

log 2.5 = n log(1.05)

log 2.5

log 1.05
= n

0.397940 · · ·
0.0211892 · · · = n

18.7802 · · · = n

and so we learn that Jimmy will need almost 19 years to reach that amount. It sounds like
Jimmy should either seek a more aggressive investment or contribute some cash of his own.
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Let’s check our work from the previous box. What would happen if someone were to invest
$ 20,000 for 18.7802 years at 5% compounded annually? We would have

A = P (1 + i)n = (20, 000)(1 + 0.05)18.7802 = (20, 000)(2.49999 · · · ) = 49, 999.9 · · ·

which is extremely close. If we had used nine digits instead of six, it would be exact.

I neglected to say what municipal-bond funds are, and why they are tax free, at least in the
USA.

Towns, cities, and counties will o↵er municipal bonds to fund large projects, like state-
highways, bridges, and airports. Since those items cost many millions of dollars to build,
it isn’t a small purchase and there would be no way to “scrape together” the cash from
ordinary city and county budgets.

On the other hand, since city and county budgets are often not very large, a high
interest rate might be di�cult for the city or county to pay. Therefore, the interest rates on
municipal bonds tend to be rather low. This is a problem, because citizens might not find
bonds with a low rate of interest to be very attractive investments, as compared to perhaps
corporate bonds of large and famous “blue chip” companies.

The federal government, of course, wants citizens to buy these municipal bonds. Without
the municipal bond system, the federal government would have to build those bridges and
airports itself!

With that in mind, in order to make the municipal bonds more attractive, the federal
government wisely decided to waive its right to collect income taxes on the interest that the
bonds pay. Since the interest rates on municipal bonds are low, the federal government is
giving up only a microscopic amount (compared to income taxes in general), yet it keeps
the system alive, which is very convenient.

A municipal-bond fund is merely a mutual fund that buys and sells tax-free municipal
bonds. Their dividends are (almost always) tax-free, as a result.

# 3-9-18

The stock market has historically returned a rate of roughly 9%. (We’ll get more precise
about that in later chapters.) Referring back to the previous example, if Jimmy used some
stocks rather than a tax-free investment fund, and had earned 9% compounded annually,
then how long would it take for him to have the $ 50,000 before taxes?
[Answer: 10.6325 · · · years.]
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# 3-9-19

Consider that Bob has $ 5000 and wants to know how long it will take to become $ 6000,
if invested at 6% compounded monthly. Of course, if r = 0.06 and we work monthly, then
i = 0.06/12 = 0.005. Then we have

A = P (1 + i)n

6000 = 5000(1 + 0.005)n

6000

5000
= 1.005n

1.2 = 1.005n

log 1.2 = log 1.005n

log 1.2 = n log 1.005
log 1.2

log 1.005
= n

0.0791812 · · ·
0.00216606 · · · = n

36.5553 · · · = n

As you can see, it will require 36.5553 months, (which really means 37 months), for the
$ 5000 to turn into $ 6000.

Once more, let’s check our work from the previous example. What would happen if someone
were to invest $ 20,000 for 36.5553 months at 6% compounded monthly? We would have

A = P (1 + i)n = (5, 000)(1 + 0.005)36.5553 = (5, 000)(1.199999 · · · ) = 5, 999.99 · · ·

which is excellent.

Whenever you are presented with a compound interest problem, and are asked to find how
long it will take (or how many compounding periods are required) to reach some financial
goal, you have two choices.

You can either use the shortcut formula,

log(A/P )

log(1 + i)
= n

or you can solve the problem in the manner of the previous box. Personally, I think that
memorizing formulas is unwise, so I recommend you try to follow the pattern of the previous
two examples.

# 3-9-20

Alice has $ 1000 and she wants to know how long it will take to become $ 1500. The
investment she is considering will yield 7% compounded monthly.

• How many months are required? [Answer: 69.7108· · · months.]

• What is that in years, as a decimal? [Answer: 5.80923· · · years.]

• How many years and months? [Answer: 5 years and 9.71 months.]

COPYRIGHT NOTICE: This is a work in-progress by Prof. Gregory V. Bard, which is intended to be eventually released under the Creative

Commons License (specifically agreement # 3 “attribution and non-commercial.”) Until such time as the document is completed, however, the

author reserves all rights, to ensure that imperfect copies are not widely circulated.



Module 3.9 Page 514 of 1392.

# 3-9-21

Continuing with the previous box. . .

• If the yield became 7.25%, then how many months would be required?
[Answer: 67.3139· · · months, or 5 years and 7.31 months.]

• If the yield became 7.75%, then how many months would be required?
[Answer: 62.9842· · · months, or 5 years and 2.98 months.]

# 3-9-22

Suppose that I lose my job and cannot make payments on my credit card, where perhaps I
have a $ 5,000 balance. The rate will then switch to a 29.95% interest rate in that case. It
is compounded monthly. How much time will it take for that debt to balloon to $ 20,000?
[Answer: 56.2346 compounding periods, which is 4 years and 8.23 months.]

# 3-9-23

• Repeat the above problem for $ 25,000.
[Answer: 65.2864 · · · months or 5 years 5.28 months.]

• Repeat the above problem for $ 30,000.
[Answer: 72.6822 · · · months or 6 years and 0.68 months.]

# 3-9-24

Continuing with the previous two boxes, suppose instead that the rate were 24.95%, but
everything else is the same—I start with a principal of $ 5000.

• How long would it take for my debt to reach $ 20,000?
[Answer: 67.3662 · · · months which means 5 years and 7.36 months.]

• How long would it take for my debt to reach $ 25,000?
[Answer: 78.2097 · · · months which means 6 years and 6.20 months.]

• How long would it take for my debt to reach $ 30,000?
[Answer: 87.0696 · · · months which means 7 years and 3.06 months.]

Let’s summarize the answers to the last few checkerboards.

29.95% interest 24.95% interest
$ 5000 growing to $ 20,000: 4 years and 8.23 months 5 years and 7.36 months.
$ 5000 growing to $ 25,000: 5 years and 5.28 months 6 years and 6.20 months.
$ 5000 growing to $ 30,000: 6 years and 0.68 months 7 years and 3.06 months.

Is it not shocking how rapidly debts can spiral out of control?
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You might think that the above rates are harsh, and you’d be right, they are harsh—but
they are also typical. When you have a credit card, if you go into default , which means
violating the terms and conditions of the credit card’s contract, then an extremely high rate
will kick in. This is because the credit card company believes that you are slowly sliding
into bankruptcy, and they would like to get the maximum quantity of money out of you as
rapidly as possible. This is why it is absolutely vital that you never go into default.

Often missing two payments or sometimes even one payment for a credit card is su�cient
for a bank to declare you in default. Then your interest rate would skyrocket.

I hope that you never have long-term credit card debt, but if you do, it is a good idea
to keep two or three minimum payment’s worth in your savings account, to ensure that if
you suddenly lose your job, that you do not default on your obligations.

When we are in high school, we often have to memorize lists like “Alexander Graham Bell
invented the telephone” and “Thomas Edison invented the light bulb” or “Sir Thomas
Crapper popularized the flushing toilet.” Not only are such memorizations intellectually
sterile, they are highly misleading. Each of those inventions is known to have been a
collaboration. Like them, logarithms were a collaborative work as well.

The two people who contributed the most, in the case of the logarithm, are Henry Briggs
and John Napier.

When doing the research for these boxes, I was shocked to learn that the natural log-
arithm, which is based on the special number e, and which we will study on Page 520,
came first. The common logarithm came second. Moreover, the concept of the logarithm
predated and inspired the idea of non-integer exponents. Yet, today, because we learn
in school about exponents several years before we learn about logarithms, many people
including myself assume that exponents came first, and logarithms came later.

We’ll discuss Henry Briggs now, and John Napier on Page 534.
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Henry Briggs (1561–1630) was an English mathematician, and is best known for publishing
tables of common logarithms and popularizing their use. In fact, he wrote two books
on this topic: Logarithmorum Chilias Prima, first published in 1617, and later Arithmetica
Logarithmetica, first published in 1624. However, he did not invent the logarithm, but rather
John Napier did. A very practical man, Briggs not only saw the utility of logarithms, but
also published Tables for the Improvement of Navigation, in 1610.

Briggs was born in Yorkshire, and it is known that he came from a rather poor family.
He studied at St. John’s College of Cambridge University starting in 1577. Furthermore, he
took the Bachelor of Arts degree in 1581 and Master of the Arts in 1585. Like most scholars
of his era, he was active in theology as well as mathematics, being a noted Presbyterian and
Puritan. It is said that “From the flow of rivers in Virginia and in the Hudson Bay area, he
also deduced the existence of the mid-continental range of mountains” which would not be
located until more than a century and a half later.

Briggs served as Professor of Geometry in Gresham College of Cambridge University,
and finally as Savillian Professor of Geometry in Merton College of Oxford University until
his death. That last Oxford posting has also been filled by Edmond Halley, (the discoverer of
Halley’s comet’s orbit), and Baden Powell, the father of Robert Baden-Powell who founded
the Boy Scout Movement.

You can read more about Henry Briggs at
http://www.thocp.net/biographies/briggs_henry.html

Logarithms are extremely sensitive to rounding error. Let’s explore that. Suppose a calcu-
lation is being performed by Alice, Bob, and Charlie, and we arrive at log a = 5.92185 · · · .
All three students are happy to be near the end of a problem, and they know they have one
step left. The 10x button on their calculator will undo the common logarithm. Alice will be
diligent and enter all six given digits into the calculator—but on the other hand, Bob and
Charlie will be lazy. Bob will enter 5.92 and Charlie will enter 5.93. Let’s see what they get

• Alice gets 105.92185 = 835, 314. · · · .

• Bob gets 105.92 = 831, 763. · · · .

• Charlie gets 105.93 = 851, 138. · · · .

Is it not shocking that there is a huge di↵erence in the answers, given only a slight rounding
on the part of the students? (I find the di↵erence between Bob and Charlie particularly
shocking.) As you can see, logarithms, like interest rates (see Page 281) are very sensitive
numbers. That’s why, at times, I’ve used 9 digits of accuracy.

# 3-9-25

Find the relative errors for Bob and Charlie in the previous box, assuming Alice is cor-
rect. [Answer: Bob has error of -0.43% and Charlie has error of +1.89%, pretty abysmal
considering that the data given was to six decimal places.]
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We’re now going to explore how scientists use logarithms to explore forms of physical laws
that are more convenient for repeated calculations. This brief foray might be too di�cult
for some readers, and not all instructors will include it.

Newton’s Law of Gravitation states that the force of gravity between a planet and the sun
is

F =
GMsMp

r2

where G = 6.67428 ⇥ 10�11 is the gravitational constant, and Ms is the mass of the sun
(approximately 1.98844 ⇥ 1030 kg), while Mp is the mass of the planet (e.g. for earth,
approximately 5.97220 ⇥ 1024 kg). Finally, r is the distance, from the center of the sun to
the center of the planet. For planet-sized objects, you can just think of this as the distance
between them (e.g. from the earth to the sun the distance is typically on the order of
1.49598⇥ 1011 m).

# 3-9-26

Using Newton’s Law of Gravity from the previous box, and using 9 digits of accuracy:
First, can you write a series of valid steps to transform the formula

F =
GMsMp

r2

into the formula
logF = (logG) + (logMs) + (logMp)� 2(log r)

and second, show for the specific case of the earth and the sun

logF = 44.8990512 · · ·� 2(log r)

[Answer given at the end of the module.]
Note: This sort of short cut formula can come up when computing orbits numerically,

in that you need a quick and easy formula to give you the force on the object for any given
r at any given moment.

We have learned the following skills in this module:

• What logarithms are.

• The five major and four minor laws of logarithms.

• How to use logarithms to solve simple equations involving exponents.

• How to use scientific notation to estimate the common logarithm.

• How to manipulate general exponential formulas using logarithms.

• How to find n in a compound interest problem.

• As well as the vocabulary terms: “go into default,” logarithm, and mantissa.
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What follows is the answer to an earlier chessboard box, that was found on Page 511:

A = P (1 + r/m)mt

A/P = (1 + r/m)mt

log(A/P ) = log(1 + r/m)mt

log(A/P ) = mt log(1 + r/m)

log(A/P )

m log(1 + r/m)
= t

What follows is the answer to an earlier chessboard box, that was found on Page 517:

F =
GMsMp

r2

logF = log
GMsMp

r2

logF = log (GMsMp)� log
�

r2
�

logF = (logG) + (logMs) + (logMp)� log
�

r2
�

logF = (logG) + (logMs) + (logMp)� 2(log r)

For the particular case of the earth and the sun, we plug in Ms = 1.98844 ⇥ 1030 as
well as Mp = 5.97220⇥ 1024 and G = 6.67428⇥ 10�11 to get

logF = (logG) + (logMs) + (logMp)� 2(log r)

logF = (log 6.67428⇥ 10�11) + (log 1.98844⇥ 1030) + (log 5.97220⇥ 1024)� 2(log r)

logF = (�10.1756137 · · · ) + (30.2985124 · · · ) + (24.7761343 · · · )� 2(log r)

logF = (44.8990330 · · · )� 2 log r

Coming Soon!
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