

CompTIA IT Fundamentals+ (Exam FC0-U61)

Module 3 / Unit 1 / System Components

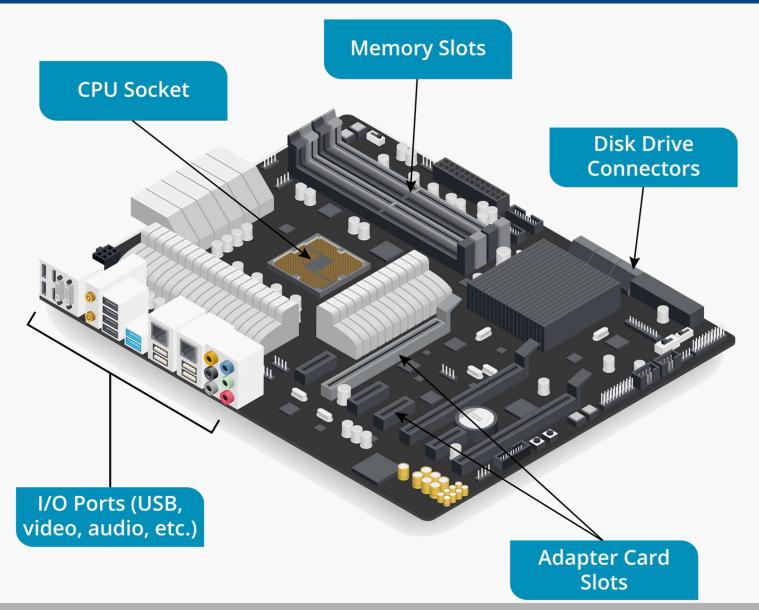
Objectives

- Explain the way in which system components determine performance and how to specify an appropriate computer system
- Describe the types and functions of motherboards, processors, memory, and the expansion bus
- Explain the importance of a cooling system and the components used
- Identify the role of PC firmware and access the firmware setup program

Selecting a Computer

- Key components for performance
- Central Processing Unit
- Memory (System RAM)
- Fixed disk
 - Hard Disk Drive (HDD)
 - Solid State Drive (SSD)
- Graphics Processing Unit (GPU)

What type of component provides persistent storage?


Network Interface

- Wired network
 - Ethernet port (RJ-45)
 - Network Interface Card (NIC)
- Wireless network
 - Wi-Fi radio networking
 - Wireless access points

Motherboard Components

What computer component is most restrictive in terms of determining upgrade potential for a desktop computer?

True or false? A plug-in card is always required to support PC sound.

Processors

- Microprocessor/integrated circuit
- Central Processing Unit (CPU) is main processor in computer
- Intel versus AMD

Intel and AMD CPU Brands

- Core
- Pentium
- Celeron
- Atom
- Xeon

- Legacy—Athlon, Phenom,
 Sempron, Turion, AMD
 FX, Opteron
- Zen microarchitecture
- Ryzen/Threadripper and Ryzen Mobile
- Epyc

ARM CPUs

- ARM (Advanced RISC Machine) microarchitecture
 - Widely used on smartphones and tablets
 - ARM don't make CPUs but license the designs
 - Apple A, Samsung Exynos, nVIDIA Tegra
- RISC stands for Reduced Instruction Set Computing
- RISC microarchitectures use simple instructions processed very quickly
- Complex (CISC) microarchitectures use more powerful instructions but process each one more slowly
- Intel's microarchitecture is CISC with RISC enhancements (micro-ops)

Features of Processors

- Control unit/pipeline
- Execution units
- Registers

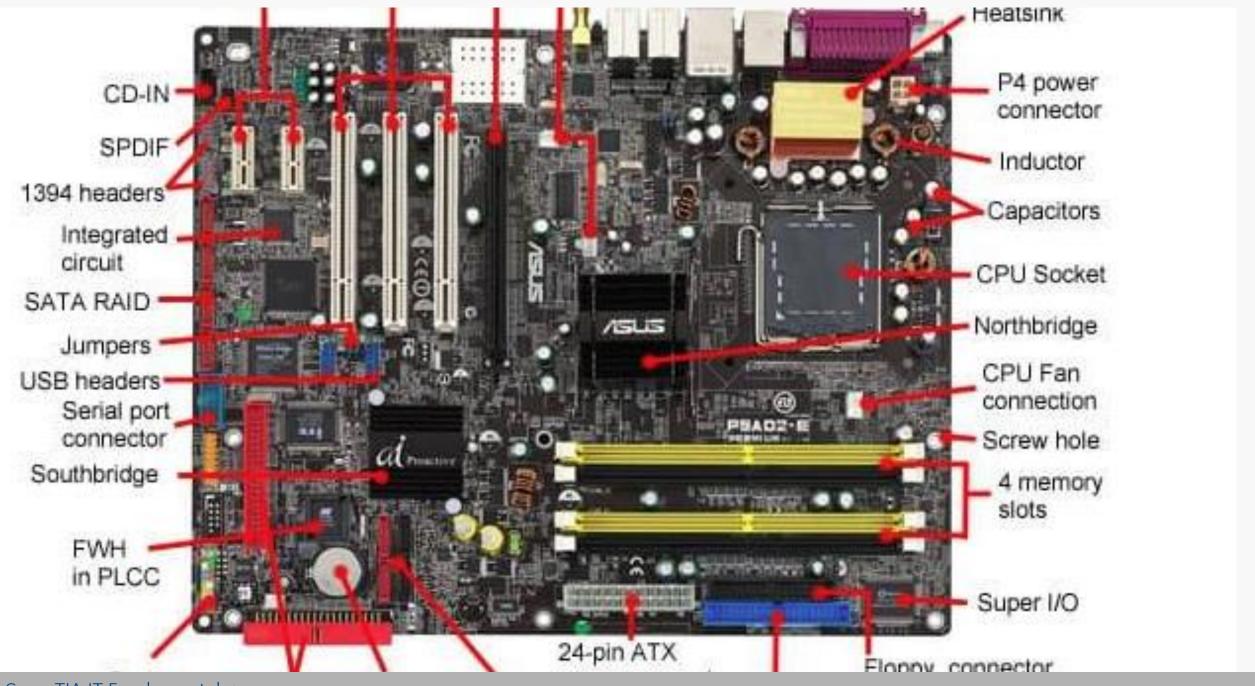
Instruction Set (32-versus 64-bit)

• x86 instruction set

- What is the main advantage of using a CPU in 64-bit mode?
- x86 instruction set started in 1978 with 16-bit CPUs
 First 32-bit CPU with x86-32/IA-32 released in 1985
- x86-64/x64 developed by AMD in 2003 (Intel refer to it as EM64T)
- 32-bit versus 64-bit CPU
 - 32-bit CPU can address up to 4 GB memory
 - 64-bit CPU can address up to 16 Exabytes (currently CPUs use a 48-bit address space (256 Terabytes)
 - 64-bit CPUs can run 32-bit operating systems and software
 - o 32-bit CPUs CANNOT run 64-bit operating systems or software
- Most PC/laptop CPU models are now 64-bit

Clock Speed and Bus Speed

- Clock speed differentiates CPU models (premium models run faster)
- Front Side Bus between CPU and system memory is another important performance factor

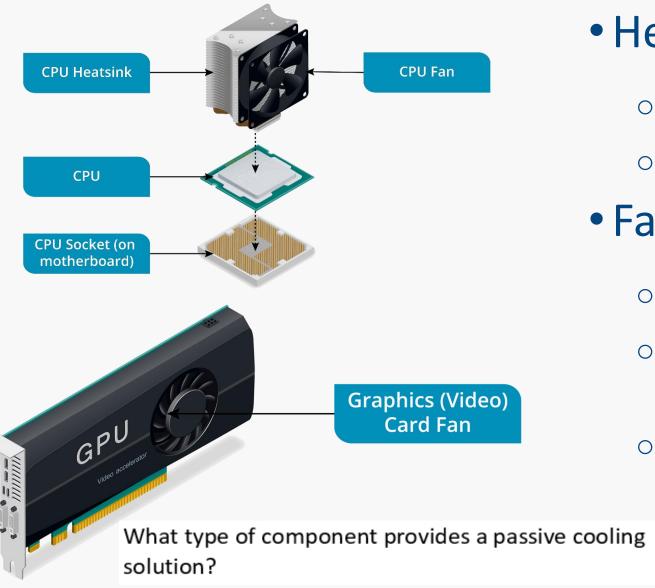

What is a typical speed for a modern CPU to run at?

Multiprocessing and Dual-core

- Symmetric Multiprocessing (SMP)
 - Providing multiple CPU sockets on the motherboard
 - Usually a feature of server systems
- Chip Level Multiprocessing (CMP)
 - Each CPU contains multiple "cores"
 - Each core works as a (more-or-less) independent CPU
 - 2-core, 4-core, and 8-core models available

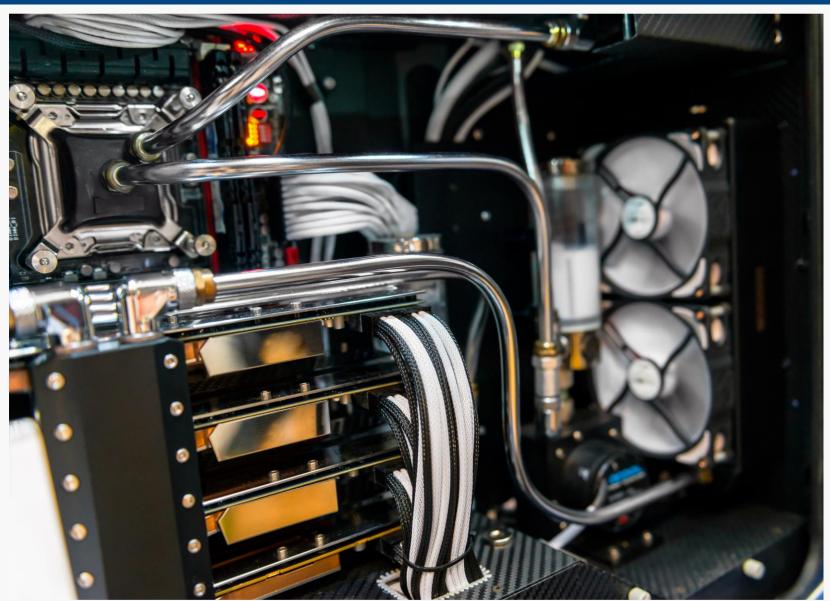
System and Expansion Bus Technologies

- Motherboard is a printed circuit board with buses connecting processors
 - o Data
 - Address
 - Timing
 - Power
- System bus (Front Side Bus) between CPU and system memory
- Expansion bus (Input/Output Bus) between CPU and other processors



Expansion Bus Types

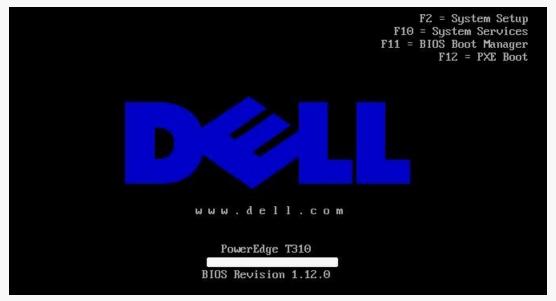
Bus	Bandwidth	Notes
PCI (32-bit)	133 MBps	Very old but still used on some desktops for compatibility; bandwidth is shared between all devices attached to the bus.
AGP	2133 MBps	Used for old graphics adapters only.
PCI Express (PCIe) 1.0	· •	Can use x1, x2, x8, or x16 lanes depending on the size of the slot; uses point-to-point links so each device gets the full bandwidth of the number of lanes it supports.
PCIe x16	4 GBps	Graphics adapters typically use x16 lanes.
PCIe 2.0	500 MBps per lane	Version 2 doubles the bandwidth per lane.
PCIe 2.0 x16	8 GBps	
PCIe 3.0	1 GBps per lane	Version 3 doubles the bandwidth per lane again.

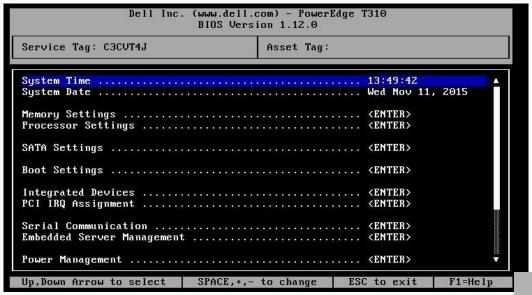

You want to
purchase a computer
with a fast graphics
interface. What type
of expansion slot
should you look for?

System Cooling

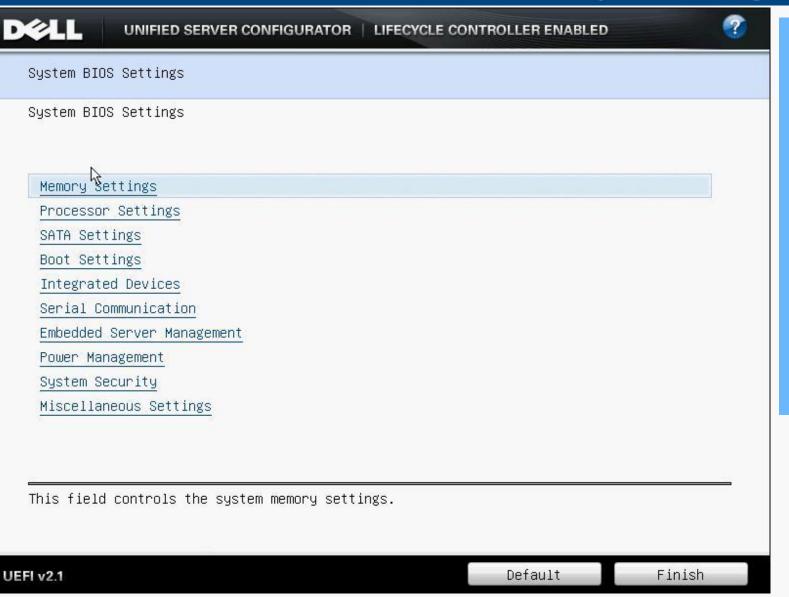
- Heatsinks and thermal paste
 - Passive cooling
 - Transfer heat by convection
- Fans
 - Active cooling (powered)
 - Dissipate warm air from component
 - Case fans draw cool air through front vents and expel warm air through back

Liquid-based Cooling Systems




BIOS and UEFI System Firmware

- Bootstrapping (booting)
 - CPU starts and initializes other components
 - Occurs before operating system loads
 - Controlled by PC firmware
- BIOS (Basic Input/Output System)
- UEFI (Unified Extensible Firmware Interface)


System Firmware Setup Program

- Press a key during boot sequence—look at screen or refer to documentation
- Navigate using keyboard and ESC

UEFI Setup Programs

Both UEFI and BIOS are lowlevel software that starts when you boot your PC before booting your operating system, but UEFI is a more modern solution, supporting larger hard drives, faster boot times, more security features, and conveniently—graphics and mouse cursors.

20

CMOS Setup Utility - Copyright (C) 1984-1999 Award Software

- Standard CMOS Features
- ► Advanced BIOS Features
- ▶ Advanced Chipset Features
- ➤ Integrated Peripherials
- ▶ Power Management Setup
- ► PnP/PCI Configurations
- ► PC Health Status

▶ Frequency/Voltage Control

Load Fail-Safe Defaults

Load Optimized Defaults

Set Supervisor Password

Set User Password

Save & Exit Setup

Exit Without Saving

Esc : Quit

F10 : Save & Exit Setup

↑ ↓ → ← : Select Item

Time, Date, Hard Disk Type...

Review

- Explain the way in which system components determine performance and how to specify an appropriate computer system
- Describe the types and functions of motherboards, processors, memory, and the expansion bus
- Explain the importance of a cooling system and the components used
- Identify the role of PC firmware and access the firmware setup program

22