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Lower bound for search

The fastest implementations of the dictionary ADT require Θ(log n) time
to search a dictionary containing n items. Is this the best possible?

Theorem: In the comparison model (on the keys),
Ω(log n) comparisons are required to search a size-n dictionary.

Proof: Similar to lower bound for sorting.

Any algorithm defines a binary decision tree with
comparisons at the nodes and actions at the leaves.

There are at least n + 1 different actions (return an item, or “not found”).

So there are Ω(n) leaves, and therefore the height is Ω(log n).
�
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Direct Addressing

Requirement: For a given M ∈ N,
every key k is an integer with 0 ≤ k < M.

Data structure : An array of values A with size M

search(k) : Check whether A[k] is empty

insert(k , v) : A[k]← v

delete(k) : A[k]← empty

Each operation is Θ(1).
Total storage is Θ(M).

What sorting algorithm does this remind you of? Counting Sort
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Hashing

Direct addressing isn’t possible if keys are not integers.
And the storage is very wasteful if n� M.

Say keys come from some universe U.
Use a hash function h : U → {0, 1, . . . ,M − 1}.
Generally, h is not injective, so many keys can map to the same integer.

Hash table Dictionary: Array T of size M (the hash table).
An item with key k is stored in T [h(k)].
search, insert, and delete should all cost O(1).

Challenges:

Choosing a good hash function

Dealing with collisions (when h(k1) = h(k2))
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Choosing a good hash function

Uniform Hashing Assumption: Each hash function value is equally likely.

Proving is usually impossible, as it requires knowledge of
the input distribution and the hash function distribution.

We can get good performance by following a few rules.

A good hash function should:

be very efficient to compute

be unrelated to any possible patterns in the data

depend on all parts of the key
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Basic hash functions

If all keys are integers (or can be mapped to integers),
the following two approaches tend to work well:

Division method: h(k) = k mod M.
We should choose M to be a prime not close to a power of 2.

Multiplication method: h(k) = bM(kA− bkAc)c,
for some constant floating-point number A with 0 < A < 1.

Knuth suggests A = ϕ =

√
5− 1

2
≈ 0.618.
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Collision Resolution

Even the best hash function may have collisions:
when we want to insert (k , v) into the table,
but T [h(k)] is already occupied.

Two basic strategies:

Allow multiple items at each table location (buckets)

Allow each item to go into multiple locations (open addressing)

We will examine the average cost of search, insert, delete,
in terms of n, M, and/or the load factor α = n/M.

We probably want to rebuild the whole hash table and change
the value of M when the load factor gets too large or too small.
This is called rehashing , and should cost roughly Θ(M + n).
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Chaining

Each table entry is a bucket containing 0 or more KVPs.
This could be implemented by any dictionary (even another hash table!).

The simplest approach is to use an unsorted linked list in each bucket.
This is called collision resolution by chaining .

search(k): Look for key k in the list at T [h(k)].

insert(k , v): Add (k , v) to the front of the list at T [h(k)].

delete(k): Perform a search, then delete from the linked list.
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Chaining example

M = 11, h(k) = k mod 11

insert()

h

0

451

132

3

924

495

6

77

8

9

4310
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Chaining example

M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

451

132

3

924

495

6

77

8

9

4310
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Chaining example

M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Chaining example

M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

451

132

3

924

495

6

77

418

9

4310
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Chaining example

M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

451

462 13

3

924

495

6

77

418

9

4310
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Chaining example

M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

451

462 13

3

924

165 49

6

77

418

9

4310
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Chaining example

M = 11, h(k) = k mod 11

insert(79)

h(79) = 2

0

451

792 46 13

3

924

165 49

6

77

418

9

4310
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Complexity of chaining

Recall the load balance α = n/M.

Assuming uniform hashing, average bucket size is exactly α.

Analysis of operations:

search Θ(1 + α) average-case, Θ(n) worst-case

insert O(1) worst-case, since we always insert in front.

delete Same cost as search: Θ(1 + α) average, Θ(n) worst-case

If we maintain M ∈ Θ(n), then average costs are all O(1).
This is typically accomplished by rehashing whenever n < c1M or n > c2M,
for some constants c1, c2 with 0 < c1 < c2.
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Open addressing

Main idea: Each hash table entry holds only one item,
but any key k can go in multiple locations.

search and insert follow a probe sequence of possible locations for key k :
〈h(k , 0), h(k, 1), h(k , 2), . . .〉.

delete becomes problematic; we must distinguish between
empty and deleted locations.

Simplest idea: linear probing
h(k , i) = (h(k) + i) mod M, for some hash function h.
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Linear probing example

M = 11, h(k) = k mod 11

()

h

0

451

132

3

924

495

6

77

8

9

4310
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Linear probing example

M = 11, h(k) = k mod 11

insert(41)

h(41, 0) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11

insert(84)

h(84, 0) = 7

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11

insert(84)

h(84, 1) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Linear probing example

M = 11, h(k) = k mod 11

insert(84)

h(84, 2) = 9

0

451

132

3

924

495

6

77

418

849

4310
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Linear probing example

M = 11, h(k) = k mod 11

insert(20)

h(20, 2) = 0

200

451

132

3

924

495

6

77

418

849

4310

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 5 Winter 2010 12 / 27



Linear probing example

M = 11, h(k) = k mod 11

delete(43)

h(43, 0) = 10

200

451

132

3

924

495

6

77

418

849

deleted10
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Linear probing example

M = 11, h(k) = k mod 11

search(63)

h(63, 6) = 3

200

451

132

3

924

495

6

77

418

849

deleted10
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Double Hashing

Say we have two hash functions h1, h2 that are independent.

So, under uniform hashing, we assume the probability that a key k
has h1(k) = a and h2(k) = b, for any particular a and b, is

1

M2
.

For double hashing , define h(k , i) = h1(k) + i · h2(k) mod M.

search, insert, delete work just like for linear probing,
but with this different probe sequence.
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Cuckoo hashing

This is a relatively new idea from Pagh and Rodler in 2001.

Again, we use two independent hash functions h1, h2.
The idea is to always insert a new item into h1(k).
This might “kick out” another item, which we then attempt to re-insert
into its alternate position.

Insertion might not be possible if there is a loop.
In this case, we have to rehash with a larger M.

The big advantage is that an element with key k
can only be in T [h1(k)] or T [h2(k)].

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 5 Winter 2010 14 / 27



Cuckoo hashing insertion

cuckoo-insert(T,x)
T : hash table, x : new item to insert
1. y ← x , i ← h1(x .key)
2. do at most n times:
3. swap(y ,T [i ])
4. if y is “empty” then return “success”
5. if i = h1(y .key) then i ← h2(y .key)
6. else i ← h1(y .key)
7. return “failure”

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 5 Winter 2010 15 / 27



Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

()

y .key =
i =

h1(y .key) =
h2(y .key) =

440

1

2

3

264

5

6

7

8

929

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(51)

y .key = 51
i = 7

h1(y .key) = 7
h2(y .key) = 5

440

1

2

3

264

5

6

7

8

929

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(51)

y .key =
i =

h1(y .key) =
h2(y .key) =

440

1

2

3

264

5

6

517

8

929

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(95)

y .key = 95
i = 7

h1(y .key) = 7
h2(y .key) = 7

440

1

2

3

264

5

6

517

8

929

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(95)

y .key = 51
i = 5

h1(y .key) = 7
h2(y .key) = 5

440

1

2

3

264

5

6

957

8

929

10

51
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(95)

y .key =
i =

h1(y .key) =
h2(y .key) =

440

1

2

3

264

515

6

957

8

929

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(97)

y .key = 97
i = 9

h1(y .key) = 9
h2(y .key) = 10

440

1

2

3

264

515

6

957

8

929

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(97)

y .key = 92
i = 4

h1(y .key) = 4
h2(y .key) = 9

440

1

2

3

264

515

6

957

8

979

10

92
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(97)

y .key = 26
i = 0

h1(y .key) = 4
h2(y .key) = 0

440

1

2

3

924

515

6

957

8

979

10

26
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(97)

y .key = 44
i = 2

h1(y .key) = 0
h2(y .key) = 2

260

1

2

3

924

515

6

957

8

979

10

44
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

insert(97)

y .key =
i =

h1(y .key) =
h2(y .key) =

260

1

442

3

924

515

6

957

8

979

10
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Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = b11(ϕk − bϕkc)c

search(26)

y .key =
i =

h1(26) = 4
h2(26) = 0

260

1

442

3

924

515

6

957

8

979

10
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Complexity of open addressing strategies

We won’t do the analysis, but just state the costs.

For any open addressing scheme, we must have α < 1 (why?).
Cuckoo hashing requires α < 1/2.

The following gives the big-Theta cost of each operation for each strategy:

search insert delete

Linear Probing
1

(1− α)2

1

(1− α)2

1

1− α

Double Hashing
1

1− α
1

1− α
1

α
log

(
1

1− α

)

Cuckoo Hashing 1
α

(1− 2α)2
1
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Hashing in External Memory

If we have a very large dictionary that must be stored externally,
how can we hash and minimize page faults?

Most hash strategies covered have scattered data access patterns.

Linear Probing: All hash table accesses will usually be in the same page.
But α must be kept small to avoid “clustering”,
so there is a lot of wasted space.
Also, there is a need for frequent rehashing of the entire table.
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Extendible Hashing

Say external memory is stored in blocks (or “pages”) of size S .
The goal: Use very few blocks, access only 1 page per operation.

Basic idea: Similar to a B-tree with height 1 and max size S at the leaves

The directory (similar to root node) is stored in internal memory .
Contains a hashtable of size 2d , where d is called the order .

Each directory entry points to a block (similar to leaves)
stored in external memory .
Each block contains at most S items, sorted by hash value.

Parameters: an integer L > 0 and a hash function
h : U →

{
0, 1, 2, . . . , 2L − 1

}
(thought of as binary sequences of length L.)
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Extendible Hashing Directory

Properties of the directory:

Directory has order d ≤ L,

Directory contains a hashtable with indices 0, 1, . . . , 2d − 1.

To look up a key k in the directory, use the high-order d bits of h(k),
that is ⌊

h(k)

2L−d

⌋
.

Each directory entry points to a single block.
(Many entries can point to the same block.)
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Extendible Hashing Blocks

Properties of a block B:

B has a local depth kB ≤ d and size nB ≤ S .

B stores nB KVPs, sorted by the hash values of the keys.

Hash values in B agree on the high-order kB bits.
Call this the block index iB , where 0 ≤ iB < 2kB .

Every key key in B satisfies

iB · 2L−kB ≤ h(key) < (iB + 1) · 2L−kB .

Exactly 2d−kB directory entries point to block B.
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Searching in extendible hashing

Searching is done in the directory, then in a block:

Given a key k , compute h(k).

Lookup a block B in the directory with index
first d bits of h(k):

⌊
h(k)/2L−d

⌋
.

Perform a binary search in B for all items with hash value h(k).

Cost:

CPU time: Θ(log S)

Page faults: 1 (directory resides in internal memory)
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Insertion in Extendible Hashing

insert(k , v) is done as follows:

Search for h(k) to find the proper block B for insertion

If the B has space (nB < S), then put (k, v) there.

ElseIf the block is full and k < d , perform a block split:
I Split B into B0 and B1.
I Separate items according to the (kB + 1)-th bit:

if h(k) mod 2L−kB < 2L−kB−1, then k goes in B0, else k goes in B1.
I Set local depth in B0 and B1 to kB + 1
I Update references in the directory

ElseIf the block is full and k = d , perform a directory grow :
I Double the size of the directory (d ← d + 1)
I Update references appropriately.
I Then split block B (which is now possible).
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Extendible hashing conclusion

delete(k) is performed in a reverse manner to insert:

Search for block B and remove k from it

If nB is too small, then we perform a block merge

If every block B has local depth kB ≤ d − 1, perform a
directory shrink

Cost of insert and delete:

CPU time: Θ(S) without a directory grow/shrink (which rarely happen)
Directory grow/shrink costs Θ(2d).

Page faults: 1 or 2, depending on whether there is a block split/merge.
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Summary of extendible hashing

Directory is much smaller than total number of stored keys and
should fit in main memory.

Only 1 or 2 external blocks are accessed by any operation.

To make more space, we only add a block.
Rarely do we have to change the size of the directory.
Never do we have to move all items in the dictionary
(in constrast to normal hashing).

Space usage is not too inefficient: can be shown that
under uniform hashing, each block is expected to be 69% full.

Main disadvantage:

extra CPU cost of O(log S) or O(S)
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Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

O(log n) worst-case operation cost

Does not require any assumptions, special functions,
or known properties of input distribution

No wasted space

Never need to rebuild the entire structure

Advantages of Hash Tables

O(1) cost, but only on average

Flexible load factor parameters

Cuckoo hashing achieves O(1) worst-case for search & delete

External memory:
Both approaches can be adopted to minimize page faults.
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Multi-dimensional Data

What if the keys are multi-dimensional, such as strings?

Say U = {0, 1, . . . , s − 1}d , length-d strings from size-s alphabet

Standard approach is to flatten to integers using a function f : U → N.
We combine this with a standard hash function
h : N→ {0, 1, 2, . . . ,M − 1}.

With h(f (k)) as the hash values, we then use any standard hash table.

Note: computing each h(f (k)) takes Ω(d) time.
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