Module 7: Introduction to Queueing Theory
(Notation, Single Queues, Little's Result)

(Slides based on Daniel A. Reed, ECE/CS 441 Notes, Fall 1995, used with permission)
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Outline of Section on Queueing Theory

1. Notation
2. Little’s Result
3. Single Queues

4. Solutions for networks of queues - Product Form Results (on blackboard, not
slides)

5. Mean value analysis (if time permits)
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Queueing Theory Notation

* Queuing characteristics
— Arrival process
— Service time distribution
— Number of servers
— System capacity
— Population size
— Service discipline
* Each of these is described mathematically
— Descriptions determine tractability of (efficient) analytic solution
— Only a small set of possibilities are solvable using standard queueing theory
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Arrival Processes

4

— Random variables T, = ¢, - ¢, | are inter-arrival times

« Suppose jobs arrive at times ¢, , ¢, , ...

— There are many possible assumptions for the distribution of the 7,

— Typical assumptions for the 7;:
* Independent
 Identically distributed
— Many other possible assumptions:
* Bulk arrivals
« Balking
» Correlated arrivals
 For Poisson arrival, the inter-arrival times are:
— IID (independent and identically distributed)
— exponentially distributed (i.e., CDF F(x) =1 - e ¥/4)

(Other common arrival time distributions include

— Erlang, Hyper-exponential, Deterministic, General (with a specified mean and

variance)
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Other Queue Features

« Service time
— Interval spent actually receiving service (exclusive of waiting time)
— As with arrival processes, there are many possible assumptions
— Most common assumptions are
» IID random variables
» exponential service time distribution
* Number of servers
— Servers may or may not be identical
— Service discipline determines allocation of customers to servers
* System capacity
— Maximum number of customers in the system (including those in service)
— May be finite or infinite
« Population size
— Total number of potential customers
— May be finite or infinite
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Other Queue Features (Continued)

* Service discipline

— The order waiting customers are serviced

— Many possibilities, including

First-come-first-serve (FCFS), the most common
Last-come-first-serve (LCFS)

Last-come-first-serve preempt resume (LCFS-PR)

Round robin (RR) with finite quantum size

Processor sharing (PS) --- RR with infinitesimal quantum size
Infinite server (IS)

— Almost anything might be used, depending on the the total state of the queue

— As expected, service discipline affects the nature of the stochastic process
that represents the behavior of the queueing system
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Queueing Discipline Specification

*  Queueing discipline is typically specified using Kendall’s notation (A4/S/m/B/K/SD), where
— Letters correspond to six queue attributes
* A: interarrival time distribution
« §: service time distribution
* m: number of servers
* B: number of buffers (system capacity)
* K: population size
* SD: service discipline
* Interarrival and service time specifiers
— M exponential
— E, Erlang with parameter £
— H_hyperexponential with parameter k
— D deterministic
— G general (any distribution, mean and variance used in the solution)
*  Bulk arrivals or service are denoted by a superscript
— MW denotes exponential arrivals with group size x
— x 1s generally a random variable with separately specified distribution
*  Omitted specifiers assume certain defaults
— infinite buffer capacity
— infinite population size
— FCFS service discipline
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Example Queueing Discipline Specifications

M/D/5/40/200/FCFS

— Exponentially distributed interarrival times

— Deterministic service times

— Five servers

— Forty buffers (35 for waiting)

— Total population of 200 customers

— First-come-first-serve service discipline
MIM/1

— Exponentially distributed interarrival times

— Exponentially distributed service times

— One server

— Infinite number of buffers

— Infinite population size

— First-come-first-serve service discipline
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An Introductory Example

* Given these descriptions, what are examples of their application?
» Consider a typical bank
— Stellers
— Customers form a single line and are serviced FCFS
— Excluding a run on the bank, the waiting room is effectively infinite
— For a large bank, the population is effectively infinite
— Bulk arrivals are possible if friends arrive together for service
«  What about service time and inter-arrival time distributions?
— We can go measure them with a watch at the bank
— Or, we can make mathematically simplifying assumptions
— Latter is most common and exponential distribution is typical
* Combining these facts and assumptions
— M/M/1 queue
— As we shall see, the mean queue length (including one in service) for an M/M/1 queue is

A

— Where p—A
e Ais the mean inter-arrival time
e U is the mean service time
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Notation and Basic “Facts”

» Standard variable names
— 7T is job interarrival time
— A = 1/E[t] mean job arrival rate
— s 1s service time per customer (job)
— m 1s number of servers
— W= 1/E[s] 1s mean service rate per server
— n=n,+ ngis number of jobs in the system
— n,1s number of jobs waiting to receive service
— n, 1s number of jobs in service
— risresponse time (service time plus queueing delay)
— wis waiting time (queueing delay only)
« System must be “stable” to have an interesting steady state solution
— Number of jobs in the system is finite
— Requires the relation A < mp hold unless
* the population is finite (queue length 1s bounded)
« the buffer capacity is finite (arrivals are lost when queue is full)
* (in these cases, system is always stable)
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Notation and Basic “Facts”

* Number of jobs in the system
— n=n,+ ng (jobs are either waiting or in service)

- E[n]=E[n ]+ E[n] (OI’ﬁZﬁq-l-l/_ls)
— and, if the service rates are independent of queue length

« Cov(n,ny) =0
* Var|n]=Var[n,]+ Var|n]
* Number and time
— r=w + s (response time is the sum of queueing delay and service)

— but, , w, and s are random variables,so7¥ =w+ s
— and, if the service rates are independent of queue length

e Cov(w,s)=0
e Var|r] = Var[w] + Var|s]
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Little's Law

« Very important result -- Part of the queueing folk literature for the past century
* Formal proof due to J. D. C. Little (1961)
« Relates mean queue length to arrival rate and mean response time
« Mathematically (in seady state),
n=Ar

« Applies to any “black box” queue under the following assumptions

— System 1s work conserving

— Number of jobs entering is same as number leaving (system is stable)
« Also applies to any transient interval, without requirement that system be stable.

« Note that these are very general conditions, and can apply for any system
(“black box’’) in which customers leave and enter subject to the above
constraints.

e An intuitive proof...
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Little's Law (Continued)

« Sketch of proof (of steady-state case):
— During a long interval, arrivals = departures (else no stability)

— Area under the curve is total job time units (jobs x time)
arrival

— Mean queue length n is average curve height (area/time) rate
—  Mean time in system 7 is area/arrivals _
— Mean arrival rate is arrivals/time

« A very general result: Avg number in system Avg time in system

— No assumptions about arrival or service processes
— Holds for any queueing discipline (simply charge the area differently)

W h
]

Time in System
L ke
T

Number

5 9 14 18 24 28 35 38

Time 1 2 3 4
Job Number
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Analysis of Single Queues

* Plan:
— Start with one of the simplest queues, an M/M/1
— Model as a “birth-death” process
— Generalize result to other types of queues

>\ )\ 1 )\2 >\j-2 )\j~l )\ >\J+1
ofijolio olBolRo
M, i, M, M i, M, M

» A birth-death process is a Markov process in which states are numbered a integers, and
transitions are only permitted between “neighboring” states.
» Steady state solution of a birth death process (Kleinrock, Queueing Systems, vol. 1):
— (Theorem) steady state probability p, of being in state 7 is
AA AL

D, Do n=1,72,..,00
Mty - oy

— where p, is the probability of being in state 0

 Now for a proof ...
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Birth-Death (Steady-State) State Occupancy Proof

e [f stable, in the steady state (by Markov process solution described earlier)

0= ;Lj—lpj—l — (‘LL] + )“j )pj + .uj+1pj+1 Flow balance at state j

or
Hi+A; Aj-i .
p]+1 - ‘] ] ] —]—pj_l ] = 1,2,3,...
Hj M
and
A
P1 :—Opo
125
e And the solution 1s...
AA A
P, = 0" n lpO
Hily .ty
n—1 ﬂ,
= Do H—J n:1,2,,°°
J=0 M1
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Birth-Death (Steady-State) State Occupancy Proof, cont.

e Finally, because

JEO Py
we have
Po = 1
1+ z:i;ln';;%)lf

Jj+
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M/M/1 Queue Analysis

e M / M /11is a special case of a birth - death process
-4, =4, foralliand j
-l =, foralliand j

A A A A A A
olBolBo ololR®
M M M M M M

e By simplification

D, :(&) Do n=].,2,...,°°

U
¢ By tradition, the ratio
A
p=—
U
is called the " traffic intensity" and
P, =pP"py
and
1
Po =l-p

:1+p+p2+...+p°°

¢ By substitution

P, :(1—p)p” n=012,..
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M/M/1 Queue Analysis (Continued)

e Utilization U is simply 1 — p, = p
e Mean queue length £/ n ] (or n)

oo

n=)»np,

n=l1
= Zn(l -p)p” “almost” mean of a geometric random variable---factor out a rho first
=1

__P
I-p

e Variance of number of jobs in the system
Var[n] = Ep* |} (E[n])
= [an (—p)p" ]— El2]y
n=l

__p
(-p)

e Probability of n or more jobs in the system

2.p,=2(=pp’=p’
j=n Jj=n
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M/M/1 Queue Analysis (Continued)

e Mean response time 7 (or R) via Little's Law

n=Ar
yields
A :

A (-pn -2
where the response time approaches~as A — u
e CDF of response time is
F(r)y=1-¢ =P
e Mean number of jobs in the queue £ Eq ](or ng)

2

oy P
n,=ym-1)p, =——
1 n=I 1—P
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M/M/1 Queue Example

e Consider the following queue
-1=0.3
- =0.5
e We can calculate the following statistics

- utilization U
U=p=&:93=06
u 0.5

- mean number of jobs in the system n

p 06
1-p 04
- mean response time 7

1 1

u—A:QZZ

1.5

n =

5.0

=
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M/M/1 Queue Example (Continued)

* Consider changing A
— hold p fixed at 0.5

— examine changes in performance metrics

1.0 0
=
0.8 ; 5 40
1
8 0.6 2 30 -
ll . %
‘:32 0.4 Cp?' 20
0.2 1 T % 10
p = 0.80 =
0057376 9 12 15 %0 02 04 06 08 LO
Population n Traftic Intensiggas. r.yp
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M/M/m Queues
M/M/m queues
— m servers rather than one server
— Reasonable model of
 abank queue with multiple tellers
 ashared memory multiprocessor
*  Assumptions
— m servers
— All servers have the same service rate |l
— Single queue for access to the servers
— Arrival rate A

— Formally
A, =A n=0,,.., o
niL n=0,1,.m-1
Hn = mu n=m,m+1,..00
«  What are the state occupancy probabilities?
X A A A A A A
i T} L (m-1)AL L mid il
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M/M/m Queues (Continued)

e State occupancy probabilities
- Just another birth - death process

- Recall general form of the probability occupancies earlier

= lo)«lﬂvn—l Do n= 1,2,_”300
thitly... 1y,
e By simple substitution of the A; and i ;, we have
( A{n
. Po n=12,...m-—1
nlu
Pn =7
)J’l
Do n=mm+1,...,0
kn/l!’/’/ll/l—l’l’l‘lytl”l
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M/M/m Queues (Continued)

or equivalently (with p = A/(mu))

(mp)” n=12,...m-1
' 0
pn:< nn.m
p m n=mm-+1,... oo
' po , ’o.o,
¢ m!

e And, because

2., =1
n=0

we have

| mp K ompy [
po_l+m!(l—p)+n2:1' ! ]

ECE/CS 441: Computer System Analysis .
Module 6, Slide 24




M/M/m Queues (Continued)

A A A A A N \
olijolijo R4
i 200 3M (m-1iL miL mid mil

e [n a similar manner to that for the M/M/1 queue,
- We can derive the "standard" measures
(queue length, utilization, response time, etc.)

- You should do these derivations yourself

® Mean number of jobs in the system 7 =17, + 7,
n=mp+ Pe
I-p
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M/M/m Queues (Continued)

where
A
p=—-
mp
¢ =P(Em jobs)= Y. p, = tnp)’ Po
n=m mi(l-p)

observe that g 1s
- the probability an arriving job must queue
- also known as Erlang's C formula

¢ Expected number of jobs in service 7

m—1 oo

ng= Y.np,+ > mp, =mp

n=1 n=m
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M/M/m Queues (Continued)

e Utilization of each server
- m servers
- mp mean jobs in service
- individual server utilization must be p

e Mean response time 7 = w + s (just apply Little's law)

_ n
r =—

A

:l 1+#
u( m(l—p)]

e Mean waiting time w (Little's law again)

. n
w=—
A
n—n,
A
___pr
mp(l—p)

* 1, (g percentile of waiting time)

7, =max(0,£ln 100 )

¢ 100—¢
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M/M/m Queue Example

* Consider changing m

— hold A and u fixed

— examine changes in performance metrics
* (Observations .

— M/M/m queue has asymptote at
— substantial performance gains with even two servers

3.0

2.5
2.0 ™m ==
1.5

1.0

Mean Queue length 7

0.5 1
m =4

0.0 . . ,
0.0 0.2 0.4 06. 08

AMu
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M/M/1 and M/M/m Queue

e Which is better?
- m queues each with an arrival rate A/m
- one queue with m servers and an arrival rate of A
e Suppose we use mean response time as our metric...
- m M /M /1 queues

1
U—Alm

7=

- one M /M /m queue

| PR
u(l m(l—p)]

where

. (A /u)m
ml(1= A /(mp)) Po

and

Comparison
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* Consider the following

Queueing Comparison

— service rate U fixed at 4, divided evenly among m servers

— fixA=2

— m M/M/1 queues (arrival rate to each is A/m)

— One M/M/m queue

— Increase m

(total arrival rate is A)

* What happens to response time in both queues? Why?
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Mean Response Time as function of m

Queueing system with arrival rate 2, total service rate 4

16

1
m M/M/1 queues
1 M/M/m queue

14

10

Mean Response Time
@
1

0 1 1 L 1 1
0 2 B 6 8 10

Number of Servers

16
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* Consider the following

Queueing Comparison

— service rate U fixed at 2.1, divided evenly among m servers

— varying A (subject to stability constraint)

— m M/M/1 queues (arrival rate to each is A/m)

— One M/M/m queue

(total arrival rate is A)

» What happens as A approaches 2.1? Why?
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Mean

Response Time as a Function of Arrival Rate

Queueing system with Maximum Arrival Rate 2, total service rate 2.1, 4 servers

Mean Response Time

| | I I I I I

m M/M/1 queu'es

M/M/m queue

Arrival Rate
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Extrapolation Scenarios

« (Given queueing formulae, standard questions include

— Performance measures for different parameters

— Parameters values needed to satisfy a particular performance constraint
« Examples:

— What is the mean response time if arrival rate doubles?

— What is the mean queue length if service rate decreases by one third?

— What is the number of servers for mean response time less than five
minutes?

e Approach:
— Plug and crank
— Repeated solution with different parameter values
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Extrapolation Scenarios (Continued)

¢ Concrete example
- multiprocessor system (two processors)
- mean job service time is 15 seconds
- mean job interarrival time is 12 seconds
¢ By inspection
- mean service rate is 4.0 jobs/minute (per processor)
- mean arrival rate is 5.0 jobs/minute

and by plug and crank, we have mean response time 7

7= 1{1 + g} = (0.41 minutes (24.6 seconds)
m(l—p)

u

e How many processors do we need to have 7 < 0.3 minutes?
-solveform =34,...
- find smallest value of m such that 7 < 0.3

- here, m = 3 satisfies this constraint
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M/ M/ m/B Queues

*  Finite buffers
— no more than B jobs in total can be
* queued
* and in service
(i.e., total number of jobs in the system must be less than B)
— jobs arriving when B jobs are present are discarded
*  More formally, this implies

A, =2 n=12,..,B-1
and
) _{nu n=12,.m-1
! mi n=mm+1,.., B

»  Observations
— B >m or servers are wasted
— birth-death process

— finite number of states

A A N A A Y A X\ A
oljolo clBclRe BeolBo
7 24 3id (m-id miL mid miL mid mid
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M/ M/ m/B Queues (Continued)

¢ Applying the state occupancy formula

ln

nlu"
l’l

m!mﬂ—mul’l

Py
Pn =3

Po

e And, because p = —

p}’l:< n.m

e Finally, the probability of zero jobs in the systemis

n=12,. m-1

n=mm+1,.., B

n=12,. m-1

n=mm+1,.., B

B-m+1
Po = zp Q P
n=0

e Now, we can use the state occupancy probablhtles to compute

- mean response time
- mean queue lengths

- effective arrival rates

ImPY” z{ mp)' |
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M/ M/ m/B Queues (Continued)

e Mean queue length 7 (queue plus service)

B
=,
n=l1

and mean number in the queue
B

n,= Y (n—m)p,

n=m+1

e Arrivalsare constrained by waiting space

- effective arrival rate 1 is less than A

- jobs enter the system only when buffers are available
Bl
n=0

and the difference A - 1 is the loss rate

- Because jobs are not lost after entry, the mean response time is

Fe=m=—
A AM1-py)
by Little's law

- Finally, the utilization U of each server is

~

A
U="-=p(1-p,)
mi
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Other Queues

» Other queues can be solved to varying degrees...
» Exact solutions are possible for

— MJ/E /1 (Erlangian service)

— M/DI/1 (special case of M/G/1)

— M/M/1 with bulk arrivals (restricted cases)
* Analysis is more difficulty for:

— G/M/1

— M/G/1

- G/G/1
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M/6/1 Queues

- M/G/1
— General service time distribution
— Otherwise, similar to M/M/1 queues
— The most complex, readily solvable single queue
«  Solution approach
— First, some additional mathematical machinery
— Then, comparisons with M/M/1 queues
*  Service time distribution is general
— Service history matters
— Denote service time already received by X,,(7)
* Arrival distribution is negative exponential
— Arrival history does not matter
— But we do need to know the number of customers N(¢) present
— M(t) is non-Markovian because it depends on service time
»  State-space description
— States are [N(?), X,(?)]
— Mixed discrete/continuous, two-dimensional description
— Analysis via this method (supplementary variables) is ugly
— Use the method of embedded Markov chains...
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M/6/1 Queues (Continued)

What has changed from M/M/1?
— Two-dimensional state space
— State space 1s now continuous (due to X (7))
e Ideally
— Convert [N(?), X,(?)] to one-dimensional N(¢)
— Implicitly specify remaining service duration X(¢)
 How do we do this?
— Look only at selected points in time
— Compute new metrics only at those points
— Choose those points to implicitly carry X(7)
— departures instants make great choices
« Remaining (residual) service X () 1s zero!
» At that instant, we can treat the behavior like a Markov chain
* N(?) is the number of customers left behind

» This is an embedded Markov chain; for details (see Kleinrock, vol. 1) but we
haven’t specified the distribution of departure instants
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M/6/1 Queues (Continued)

« A informal derivation follows (see Kleinrock vol. 1 for details)...
« Notation
— Arrival rate A (Poisson process)
— General service time distribution
* mean x
e variance
« What is the expected time until a customer that arrives completes service?
— Mean time needed to service customers already waiting
* Mean time 1S, x
 Note that this is independent of the distribution of x
— plus the residual time for customer in service ...

« Residual life requires yet another aside...
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Residual Life

e Whatis a “renewal”?

— Informally, a point where random variables which describe a model are
memoryless given current state, with respect to past state.

« Renewal example

— Consider a queue with general service distribution, and Poisson arrival
process

— Most time points are not renewal points, since remaining service time
depends on service time completed.

— However, times at which service completes are renewal points, since
arrival process is Poisson.

 Need to determine the residual lifetime of a customer in service:
— Denote this random variable as R
— Distribution of R depends on

 Distribution of original variable A4 (the service time distribution) at
its renewal point and some time expended after the renewal point
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Residual Life (Continued)

e Suppose
- a('t )is the pdf of A (original variable)
- the original lifetime has expended time 7,
then r('t ), the pdf of R (the residual lifetime)is
re—tle )= alelr>1,)

__ a7)

- P(A>7,)

B a(t)

le
1- J;) a(s )ds

e Intuition
- in general, knowing about the expended time helps

- in short, knowledge changes the pdf

- we saw that this was not true for the exponential distribution

- the geometric distribution is the only case in the discrete domain

e Averageresidual lifetime 7 (claim without proof)

- depends only on the first two moments of the original pdf f(x)

-mean [
-second moment £ (not the variance!)

- mean residual lifetime is

f
2f

vy =
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Residual Life (Continued)

e Example (computer part)
- suppose the pdf b(t ) of the failure time is uniform

- and suppose the mean valueis 10

-+ 0<7<20
b(t)=1" .
0  otherwise
-if the part has been in use for 5 time units, then
- t,<t+t,<20
b(t+t,)= {2(()’ ¢ ¢

otherwise

and

5 1
1—j0b(s)ds=1—%-5=o.75

and finally Observe
_Jis O0<t+¢, <15 — pdf of residual time is not the same as the
r(tT—t,5)= ) ..
0 otherwise original pdf
- notice that — Knowledge of past behavior changes the pdf
o f? 13333 667 — There are only two exceptions
2 2-10 « negative exponential distribution

(continuous)

» geometric distribution (discrete)
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M/6/1 Queues (Continued)

e How long does a new arrival have to wait for service?
- mean time needed to service customers already waiting
* let x denote the mean service time
*mean timeis n, X
* note that this is independent of the distribution of x
- plus the residual time for customer in service

* recall that this is

2
- X
t = o
2x
assuming a customer is in service
* the probability of a customer in serviceis p

e Combining items, the waiting time for a new arrival is

2
_ X

e Little’s Law again!
¢ Expected number of arrivals during this intervalis A7, so

2
— — A— X
I/'q :I/'q;bC'Fpg

and by rearranging terms
l; 2
r,=
2(1-p)
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M/6/1 Queues (Continued)

e As we just saw, the mean time to receive serviceis is
ﬂ; 2
r,E
2(1=p)
¢ Adding the mean service time yields the mean response time
)L; 2
+ _
2(1=p)

* Normally, both 7 and 7, are expressed as (verify the math)

2
Fod, MHC)

po2u(l-p)

r=Xx

and
_ A1+C?)
i e,
21 (1=p)
where C? is the coefficient of variation

and

-0 is the variance of the mean service time

1. o
- —1s the mean service time

J)

-and by simplification (yields original formulation): 1+ C? =1+ Cf =1+ =—=U x
X X
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M/6/1 Queues (Continued)

¢ Via Little's law, the mean number in the systemis
n=Ar
_A_ Xl+c?)
uo2u(l-p)
i P (+c?)
2(1-p)
e Observations
- this is the famous Pollaczek - Khinchin (PK) formula
- learn it, remember it, treasure it!

- C, 1s one for the negative exponential distribution, so

pra+l)_ Pt _ p

o, =
21-p) " 1-p 1-p

as we knew before

n=p+

- C, 1s zero for the deterministic distribution (M / D /1 queue)
LPI+0) _ p (2-p
2(1-p) (1=-p)\ 2
e The value of C| has profound implications

n=p

- larger C. increases mean queue length and response time

- values grow linearly with C_
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Queueing Comparison

* Consider the following
— M/D/1 queue (C, = 0)
— M/M/1 queue (C,=1)
— M/G/1 queue (C, > 1)

Mean Queue Length 7

100

80

60 1

40

2() 1

Traffic Intensity p
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Queueing Example

* Consider the following
— arrival rate A = 0.6
— service rate L = 1.0
— M/D/1, M/M/1, and M/G/1 queues
and compare mean response times

s M/M/
11
u—-1 1.0-06

2.5

r =

« M/D/1

1 AHCT) 1 o6a+0)
puo2u*(l-p) 10 210)(1-06/1.0)

.« M/G/1(C,=2.0)

A(1+c§)_1+ 0.6(1+1)
2u(1-p) 1.0 2(1.0)(1-06/1.0)

F=—+

1
7
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Queueing Example (Continued)
» Consider M/M/1 and M/G/1 queues

— assume same arrival rates for both
— desire same mean response times

— must solve for ratio of service rates

e M/M/1
B 1
r =
:um_)'
e M/G/1
A0 +C?
Fo Ly ( S)

He 2,u§ (1_)‘/ /“Lg)
* Equating, we have

1 1 ﬂ(1+CSz)
=+
My =4 Mg 2“5(1_)’/'ug)

Let’s look at some numerical solutions...
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M/G/1 via Embedded DTMC

e M/G/1 can be analyzed from the point of view of
an embedded DTMC

e Note : state can be defined as (n,r) where n is the
number in system, and r is remaining time of the
job in service.

e Future behavior depends only on n at instants when
r = 0—job departures

e [ he state of the embedded DTMC is the number
of jobs in system at the time the last job left service
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M/G/1 via Embedded DTMC

e SO what is F;;7 The probability that exactly j—i—1
jobs arrived while the last job received service.

e If the arrival process is Poisson, and the service time
IS z, then the number of arrivals during service is
Poisson distributed with mean \zx.

e Let f(x) be the pdf for the service time distribution,
then for:>0and:—-1<

[ (\z)(G—i-1)
P"'j_/o @) G i

and for: =0, Pp1 =1 and Fy, =0 for n > 1.

exp{—Az}
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M/G/1 via Embedded DTMC

o Let {77} be the equilibrium state probabilities for
the embedded DTMC.

e The mean time (from the M/G/1 queue point of
view) the DTMC is in a state i is

— for ¢ > 1, 1/u, the mean of the general service
time distribution.

— for ¢ == 0, 1/X the mean time between arrivals

e From {77} and mean occupancy times we can get
the stationary distribution of the M/G/1 queue.

— Define G = (1/A) 7§+ (1 — nf§) /u—weighted sum
of state probabilities
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M/G/1 via Embedded DTMC

— We have mg = n/G, and for i > 0 we have m; =
7 |G
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Queueing Example (Continued)

Mean Response Time 7

« Comparison Example (Continued)
— arrival rate A = 0.6
— M/M/1 queue (service rate i, = 1.0)
— MJ/G/1 queue (service rate L)

1.1

13 13 14 15

Mean Service Rate g,

ECE/CS 441: Computer System Analysis

Module 6, Slide 56




