Module 7: Introduction to Queueing Theory (Notation, Single Queues, Little's Result)

(Slides based on Daniel A. Reed, ECE/CS 441 Notes, Fall 1995, used with permission)

Outline of Section on Queueing Theory

1. Notation
2. Little's Result
3. Single Queues
4. Solutions for networks of queues - Product Form Results (on blackboard, not slides)
5. Mean value analysis (if time permits)

Queueing Theory Notation

- Queuing characteristics
- Arrival process
- Service time distribution
- Number of servers
- System capacity
- Population size
- Service discipline
- Each of these is described mathematically
- Descriptions determine tractability of (efficient) analytic solution
- Only a small set of possibilities are solvable using standard queueing theory

Arrival Processes

- Suppose jobs arrive at times $t_{1}, t_{2}, \ldots, t_{j}$
- Random variables $\tau_{j}=t_{j}-t_{j-1}$ are inter-arrival times
- There are many possible assumptions for the distribution of the τ_{j}
- Typical assumptions for the τ_{j} :
- Independent
- Identically distributed
- Many other possible assumptions:
- Bulk arrivals
- Balking
- Correlated arrivals
- For Poisson arrival, the inter-arrival times are:
- IID (independent and identically distributed)
- exponentially distributed (i.e., $\operatorname{CDF} F(x)=1-e^{-x / a}$)
- Other common arrival time distributions include
- Erlang, Hyper-exponential, Deterministic, General (with a specified mean and variance)

Other Queue Features

- Service time
- Interval spent actually receiving service (exclusive of waiting time)
- As with arrival processes, there are many possible assumptions
- Most common assumptions are
- IID random variables
- exponential service time distribution
- Number of servers
- Servers may or may not be identical
- Service discipline determines allocation of customers to servers
- System capacity
- Maximum number of customers in the system (including those in service)
- May be finite or infinite
- Population size
- Total number of potential customers
- May be finite or infinite

Other Queue Features (Continued)

- Service discipline
- The order waiting customers are serviced
- Many possibilities, including
- First-come-first-serve (FCFS), the most common
- Last-come-first-serve (LCFS)
- Last-come-first-serve preempt resume (LCFS-PR)
- Round robin (RR) with finite quantum size
- Processor sharing (PS) --- RR with infinitesimal quantum size
- Infinite server (IS)
- Almost anything might be used, depending on the the total state of the queue
- As expected, service discipline affects the nature of the stochastic process that represents the behavior of the queueing system

Queueing Discipline Specification

- Queueing discipline is typically specified using Kendall's notation $(A / S / m / B / K / S D)$, where
- Letters correspond to six queue attributes
- A : interarrival time distribution
- S : service time distribution
- m : number of servers
- B : number of buffers (system capacity)
- K : population size
- SD: service discipline
- Interarrival and service time specifiers
- M exponential
- $\quad E_{k}$ Erlang with parameter k
- H_{k} hyperexponential with parameter k
- D deterministic
- G general (any distribution, mean and variance used in the solution)
- Bulk arrivals or service are denoted by a superscript
- $M^{[x]}$ denotes exponential arrivals with group size x
- x is generally a random variable with separately specified distribution
- Omitted specifiers assume certain defaults
- infinite buffer capacity
- infinite population size
- FCFS service discipline

Example Queueing Discipline Specifications

- $M / D / 5 / 40 / 200 / F C F S$
- Exponentially distributed interarrival times
- Deterministic service times
- Five servers
- Forty buffers (35 for waiting)
- Total population of 200 customers
- First-come-first-serve service discipline
- $M / M / 1$
- Exponentially distributed interarrival times
- Exponentially distributed service times
- One server
- Infinite number of buffers
- Infinite population size
- First-come-first-serve service discipline

An Introductory Example

- Given these descriptions, what are examples of their application?
- Consider a typical bank
- 5 tellers
- Customers form a single line and are serviced FCFS
- Excluding a run on the bank, the waiting room is effectively infinite
- For a large bank, the population is effectively infinite
- Bulk arrivals are possible if friends arrive together for service
- What about service time and inter-arrival time distributions?
- We can go measure them with a watch at the bank
- Or, we can make mathematically simplifying assumptions
- Latter is most common and exponential distribution is typical
- Combining these facts and assumptions
- $M / M / 1$ queue
- As we shall see, the mean queue length (including one in service) for an $M / M / 1$ queue is
- Where $\frac{\lambda}{\mu-\lambda}$
- λ is the mean inter-arrival time
- μ is the mean service time

Notation and Basic "Facts"

- Standard variable names
- τ is job interarrival time
- $\lambda=1 / E[\tau]$ mean job arrival rate
- $\quad s$ is service time per customer (job)
- m is number of servers
- $\mu=1 / E[s]$ is mean service rate per server
- $n=n_{q}+n_{s}$ is number of jobs in the system
- n_{q} is number of jobs waiting to receive service
- n_{s} is number of jobs in service
$-r$ is response time (service time plus queueing delay)
- wis waiting time (queueing delay only)
- System must be "stable" to have an interesting steady state solution
- Number of jobs in the system is finite
- Requires the relation $\lambda<m \mu$ hold unless
- the population is finite (queue length is bounded)
- the buffer capacity is finite (arrivals are lost when queue is full)
- (in these cases, system is always stable)

Notation and Basic "Facts"

- Number of jobs in the system
$-n=n_{q}+n_{s}$ (jobs are either waiting or in service)
$-\quad E[n]=E\left[n_{q}\right]+E\left[n_{s}\right] \quad\left(\right.$ or $\left.\bar{n}=\bar{n}_{q}+\bar{n}_{s}\right)$
- and, if the service rates are independent of queue length
- $\operatorname{Cov}\left(n_{q}, n_{s}\right)=0$
- $\operatorname{Var}[n]=\operatorname{Var}\left[n_{q}\right]+\operatorname{Var}\left[n_{s}\right]$
- Number and time
$-r=w+s$ (response time is the sum of queueing delay and service)
- but, r, w, and s are random variables, so $\bar{r}=\bar{w}+\bar{s}$
- and, if the service rates are independent of queue length
- $\operatorname{Cov}(w, s)=0$
- $\operatorname{Var}[r]=\operatorname{Var}[w]+\operatorname{Var}[s]$

Little's Law

- Very important result -- Part of the queueing folk literature for the past century
- Formal proof due to J. D. C. Little (1961)
- Relates mean queue length to arrival rate and mean response time
- Mathematically (in seady state),

$$
\bar{n}=\lambda \bar{r}
$$

- Applies to any "black box" queue under the following assumptions
- System is work conserving
- Number of jobs entering is same as number leaving (system is stable)
- Also applies to any transient interval, without requirement that system be stable.
- Note that these are very general conditions, and can apply for any system ("black box") in which customers leave and enter subject to the above constraints.
- An intuitive proof...

Little's Law (Continued)

- Sketch of proof (of steady-state case):
- During a long interval, arrivals \approx departures (else no stability)
- Area under the curve is total job time units (jobs x time)
- Mean queue length \bar{n} is average curve height (area/time)

arrival rate
$\frac{\text { jobs } \times \text { time }}{\text { time }}=\frac{\text { jobs }}{\text { time }} \times \frac{\text { jobs } \times \text { time }}{\text { jobs }}$

- A very general result:

Avg number in system
Avg time in system

- No assumptions about arrival or service processes
- Holds for any queueing discipline (simply charge the area differently)

Analysis of Single Queues

- Plan:
- Start with one of the simplest queues, an $M / M / 1$
- Model as a "birth-death" process
- Generalize result to other types of queues

- A birth-death process is a Markov process in which states are numbered a integers, and transitions are only permitted between "neighboring" states.
- Steady state solution of a birth death process (Kleinrock, Queueing Systems, vol. 1):
- (Theorem) steady state probability p_{n} of being in state n is

$$
p_{n}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}} p_{0} \quad n=1,2, \ldots, \infty
$$

- where p_{0} is the probability of being in state 0
- Now for a proof ...

Birth-Death (Steady-State) State Occupancy Proof

- If stable, in the steady state (by Markov process solution described earlier)

$$
0=\lambda_{j-1} p_{j-1}-\left(\mu_{j}+\lambda_{j}\right) p_{j}+\mu_{j+1} p_{j+1} \quad \text { Flow balance at state } \mathrm{j}
$$

or

$$
p_{j+1}=\left(\frac{\mu_{j}+\lambda_{j}}{\mu_{j+1}}\right) p_{j}-\frac{\lambda_{j-1}}{\mu_{j+1}} p_{j-1} \quad j=1,2,3, \ldots
$$

and

$$
p_{1}=\frac{\lambda_{0}}{\mu_{1}} p_{0}
$$

- And the solution is...

$$
\begin{aligned}
p_{n} & =\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}} p_{0} \\
& =p_{0} \prod_{j=0}^{n-1} \frac{\lambda_{j}}{\mu_{j+1}} \quad n=1,2, \ldots, \infty
\end{aligned}
$$

Birth-Death (Steady-State) State Occupancy Proof, cont.

- Finally, because

$$
\sum_{j=0}^{\infty} p_{j}=1
$$

we have

$$
p_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \prod_{j=0}^{n-1} \frac{\lambda_{j}}{\mu_{j+1}}}
$$

M/M/1 Queue Analysis

- $M / M / 1$ is a special case of a birth - death process
- $\lambda_{\mathrm{i}}=\lambda_{j}$ for all i and j
- $\mu_{\mathrm{i}}=\mu_{j}$ for all i and j

- By simplification

$$
p_{n}=\left(\frac{\lambda}{\mu}\right)^{n} p_{0} \quad n=1,2, \ldots, \infty
$$

- By tradition, the ratio

$$
\rho=\frac{\lambda}{\mu}
$$

is called the " traffic intensity" and

$$
p_{n}=\rho^{n} p_{0}
$$

and

$$
p_{0}=\frac{1}{1+\rho+\rho^{2}+\ldots+\rho^{\infty}}=1-\rho
$$

- By substitution

$$
p_{n}=(1-\rho) \rho^{n} \quad n=0,1,2, \ldots \infty
$$

M/M/1 Queue Analysis (Continued)

- Utilization U is simply $1-p_{0}=\rho$
- Mean queue length $E[n]$ (or \bar{n})

$$
\begin{aligned}
\bar{n} & =\sum_{n=1}^{\infty} n p_{n} \\
& =\sum_{n=1}^{\infty} n(1- \\
& =\frac{\rho}{1-\rho}
\end{aligned}
$$

$$
=\sum_{n=1}^{\infty} n(1-\rho) \rho^{n} \quad \text { "almost" mean of a geometric random variable---factor out a rho first }
$$

- Variance of number of jobs in the system

$$
\begin{aligned}
& \operatorname{Var}[n]=E\left[n^{2}\right]-(E[n])^{2} \\
&=\left(\sum_{n=1}^{\infty} n^{2}(1-\rho) \rho^{n}\right)-(E[n])^{2} \\
&=\frac{\rho}{(1-\rho)^{2}}
\end{aligned}
$$

- Probability of n or more jobs in the system

$$
\sum_{j=n}^{\infty} p_{j}=\sum_{j=n}^{\infty}(1-\rho) \rho^{j}=\rho^{n}
$$

M/M/1 Queue Analysis (Continued)

- Mean response time \bar{r} (or R) via Little's Law

$$
\bar{n}=\lambda \bar{r}
$$

yields

$$
\bar{r}=\frac{\bar{n}}{\lambda}=\frac{\rho}{(1-\rho) \lambda}=\frac{1}{\mu-\lambda}
$$

where the response time approaches ∞ as $\lambda \rightarrow \mu$

- CDF of response time is

$$
F(r)=1-e^{-r \mu(1-\rho)}
$$

- Mean number of jobs in the queue $E\left[n_{q}\right]\left(\right.$ or $\left.\bar{n}_{q}\right)$

$$
\bar{n}_{q}=\sum_{n=1}^{\infty}(n-1) p_{n}=\frac{\rho^{2}}{1-\rho}
$$

M/M/1 Queue Example

- Consider the following queue
$-\lambda=0.3$
- $\mu=0.5$
- We can calculate the following statistics
- utilization U

$$
U=\rho=\frac{\lambda}{\mu}=\frac{0.3}{0.5}=0.6
$$

- mean number of jobs in the system \bar{n}

$$
\bar{n}=\frac{\rho}{1-\rho}=\frac{0.6}{0.4}=1.5
$$

- mean response time \bar{r}

$$
\bar{r}=\frac{1}{\mu-\lambda}=\frac{1}{0.2}=5.0
$$

M/M/1 Queue Example (Continued)

- Consider changing λ
- hold μ fixed at 0.5
- examine changes in performance metrics

M/M/m Queues

- $\quad M / M / m$ queues
- m servers rather than one server
- Reasonable model of
- a bank queue with multiple tellers
- a shared memory multiprocessor
- Assumptions
- m servers
- All servers have the same service rate μ
- Single queue for access to the servers
- Arrival rate λ
- Formally

$$
\begin{aligned}
& \lambda_{n}=\lambda \\
& \mu_{n}= \begin{cases}n \mu & n=0,1, \ldots, \infty \\
m \mu & n=0,1, \ldots m-1\end{cases} \\
& n=m, m+1, \ldots
\end{aligned} ~ . ~ \begin{array}{ll}
n=m
\end{array}
$$

- What are the state occupancy probabilities?

M/M/m Queues (Continued)

- State occupancy probabilities
- Just another birth - death process
- Recall general form of the probability occupancies earlier

$$
p_{n}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}} p_{0} \quad n=1,2, \ldots, \infty
$$

- By simple substitution of the λ_{j} and μ_{j}, we have

$$
p_{n}=\left\{\begin{array}{cc}
\frac{\lambda^{n}}{n!\mu^{n}} p_{0} & n=1,2, \ldots, m-1 \\
\frac{\lambda^{n}}{m!m^{n-m} \mu^{n}} p_{0} & n=m, m+1, \ldots, \infty
\end{array}\right.
$$

M/M/m Queues (Continued)

or equivalently (with $\rho=\lambda /(m \mu)$)

$$
p_{n}= \begin{cases}\frac{(m \rho)^{n}}{n!} p_{0} & n=1,2, \ldots, m-1 \\ \frac{\rho^{n} m^{m}}{m!} p_{0} & n=m, m+1, \ldots, \infty\end{cases}
$$

- And, because

$$
\sum_{n=0}^{\infty} p_{n}=1
$$

we have

$$
p_{0}=\left[1+\frac{(m \rho)^{m}}{m!(1-\rho)}+\sum_{n=1}^{m-1} \frac{(m \rho)^{n}}{n!}\right]^{-1}
$$

M/M/m Queues (Continued)

- In a similar manner to that for the $\mathrm{M} / \mathrm{M} / 1$ queue,
- We can derive the "standard" measures (queue length, utilization, response time, etc.)
- You should do these derivations yourself
- Mean number of jobs in the system $\bar{n}=\bar{n}_{q}+\bar{n}_{s}$

$$
\bar{n}=m \rho+\frac{\rho \varsigma}{1-\rho}
$$

M/M/m Queues (Continued)

where

$$
\begin{aligned}
& \rho=\frac{\lambda}{m \mu} \\
& \varsigma=P(\geq m \text { jobs })=\sum_{n=m}^{\infty} p_{n}=\frac{(m \rho)^{m}}{m!(1-\rho)} p_{0}
\end{aligned}
$$

observe that ς is

- the probability an arriving job must queue
- also known as Erlang's C formula
- Expected number of jobs in service \bar{n}_{s}

$$
\bar{n}_{s}=\sum_{n=1}^{m-1} n p_{n}+\sum_{n=m}^{\infty} m p_{n}=m \rho
$$

M/M/m Queues (Continued)

- Utilization of each server
- m servers
- $m \rho$ mean jobs in service
- individual server utilization must be ρ
- Mean response time $\bar{r}=\bar{w}+\bar{s}$ (just apply Little's law)

$$
\begin{aligned}
\bar{r} & =\frac{\bar{n}}{\lambda} \\
& =\frac{1}{\mu}\left(1+\frac{\varsigma}{m(1-\rho)}\right)
\end{aligned}
$$

- Mean waiting time \bar{w} (Little's law again)

$$
\begin{aligned}
\bar{w} & =\frac{\bar{n}_{q}}{\lambda} \\
& =\frac{\bar{n}-\bar{n}_{s}}{\lambda} \\
& =\frac{\rho}{m \mu(1-\rho)}
\end{aligned}
$$

- r_{q} (q percentile of waiting time)

$$
r_{q}=\max \left(0, \frac{\bar{w}}{\varsigma} \ln \frac{100 \varsigma}{100-q}\right)
$$

M/M/m Queue Example

- Consider changing m
- hold λ and μ fixed
- examine changes in performance metrics
- Observations
- $M / M / m$ queue has asymptote at $\frac{\lambda}{m \mu}$
- substantial performance gains with even two servers

M/M/1 and $M / M / m$ Queue Comparison

- Which is better?
- m queues each with an arrival rate λ / m
- one queue with m servers and an arrival rate of λ
- Suppose we use mean response time as our metric...
- $m M / M / 1$ queues

$$
\bar{r}=\frac{1}{\mu-\lambda / m}
$$

- one $M / M / m$ queue

$$
\bar{r}=\frac{1}{\mu}\left(1+\frac{\varsigma}{m(1-\rho)}\right)
$$

where

$$
\varsigma=\frac{(\lambda / \mu)^{m}}{m!(1-\lambda /(m \mu))} p_{0}
$$

and

$$
p_{0}=\left[1+\frac{(\lambda / \mu)^{m}}{m!(1-\lambda /(m \mu))}+\sum_{n=1}^{m-1} \frac{(\lambda / \mu)^{n}}{n!}\right]^{-1}
$$

Queueing Comparison

- Consider the following
- service rate μ fixed at 4 , divided evenly among m servers
$-\operatorname{fix} \lambda=2$
- $m M / M / 1$ queues (arrival rate to each is λ / m)
- One $M / M / m$ queue (total arrival rate is λ)
- Increase m
- What happens to response time in both queues? Why?

Mean Response Time as function of m

Queueing Comparison

- Consider the following
- service rate μ fixed at 2.1 , divided evenly among m servers
- varying λ (subject to stability constraint)
- $m M / M / 1$ queues (arrival rate to each is λ / m)
- One $M / M / m$ queue (total arrival rate is λ)
- What happens as λ approaches 2.1? Why?

Mean Response Time as a Function of Arrival Rate

Extrapolation Scenarios

- Given queueing formulae, standard questions include
- Performance measures for different parameters
- Parameters values needed to satisfy a particular performance constraint
- Examples:
- What is the mean response time if arrival rate doubles?
- What is the mean queue length if service rate decreases by one third?
- What is the number of servers for mean response time less than five minutes?
- Approach:
- Plug and crank
- Repeated solution with different parameter values

Extrapolation Scenarios (Continued)

- Concrete example
- multiprocessor system (two processors)
- mean job service time is 15 seconds
- mean job interarrival time is 12 seconds
- By inspection
- mean service rate is 4.0 jobs/minute (per processor)
- mean arrival rate is $5.0 \mathrm{jobs} /$ minute and by plug and crank, we have mean response time \bar{r}

$$
\bar{r}=\frac{1}{\mu}\left[1+\frac{\varsigma}{m(1-\rho)}\right]=0.41 \text { minutes (} 24.6 \text { seconds) }
$$

- How many processors do we need to have $\bar{r}<0.3$ minutes?
- solve for $m=3,4, \ldots$
- find smallest value of m such that $\bar{r}<0.3$
- here, $m=3$ satisfies this constraint

$M / M / m / B$ Queues

- Finite buffers
- no more than B jobs in total can be
- queued
- and in service
(i.e., total number of jobs in the system must be less than B)
- jobs arriving when B jobs are present are discarded
- More formally, this implies

$$
\lambda_{n}=\lambda \quad n=1,2, \ldots, B-1
$$

and

$$
\mu_{n}= \begin{cases}n \mu & n=1,2, \ldots, m-1 \\ m \mu & n=m, m+1, \ldots, B\end{cases}
$$

- Observations
- $B \geq m$ or servers are wasted
- birth-death process
- finite number of states

$M / M / m / B$ Queues (Continued)

- Applying the state occupancy formula

$$
p_{n}=\left\{\begin{array}{cc}
\frac{\lambda^{n}}{n!\mu^{n}} p_{0} & n=1,2, \ldots, m-1 \\
\frac{\lambda^{n}}{m!m^{n-m} \mu^{n}} p_{0} & n=m, m+1, \ldots, B
\end{array}\right.
$$

- And, because $\rho=\frac{\lambda}{m \mu}$

$$
p_{n}= \begin{cases}\frac{(m \rho)^{n}}{n!} p_{0} & n=1,2, \ldots, m-1 \\ \frac{\rho^{n} m^{m}}{m!} p_{0} & n=m, m+1, \ldots, B\end{cases}
$$

- Finally, the probability of zero jobs in the system is

$$
p_{0}=\sum_{n=0}^{B} p_{n}=\left[1+\frac{\left(1-\rho^{B-m+1}\right)(m \rho)^{n}}{m!(1-\rho)}+\sum_{n=1}^{m-1} \frac{(m \rho)^{n}}{n!}\right]^{-1}
$$

- Now, we can use the state occupancy probabilities to compute
- mean response time
- mean queue lengths
- effective arrival rates

M/M/m/B Queues (Continued)

- Mean queue length \bar{n} (queue plus service)

$$
\bar{n}=\sum_{n=1}^{B} n p_{n}
$$

and mean number in the queue

$$
\bar{n}_{q}=\sum_{n=m+1}^{B}(n-m) p_{n}
$$

- Arrivals are constrained by waiting space
- effective arrival rate $\tilde{\lambda}$ is less than λ
- jobs enter the system only when buffers are available

$$
\tilde{\lambda}=\sum_{n=0}^{B-1} \lambda p_{n}=\lambda\left(1-p_{B}\right)
$$

and the difference $\lambda-\tilde{\lambda}$ is the loss rate

- Because jobs are not lost after entry, the mean response time is

$$
\bar{r}=\frac{\bar{n}}{\tilde{\lambda}}=\frac{\bar{n}}{\lambda\left(1-p_{B}\right)}
$$

by Little's law

- Finally, the utilization U of each server is

$$
U=\frac{\tilde{\lambda}}{m \mu}=\rho\left(1-p_{B}\right)
$$

Other Queues

- Other queues can be solved to varying degrees...
- Exact solutions are possible for
- $M / E_{r} / 1$ (Erlangian service)
- $M / D / 1$ (special case of $M / G / 1$)
- $M / M / 1$ with bulk arrivals (restricted cases)
- Analysis is more difficulty for:
- $G / M / 1$
- M/G/1
- $G / G / 1$

M/G/1 Queues

- $\quad M / G / 1$
- General service time distribution
- Otherwise, similar to $M / M / 1$ queues
- The most complex, readily solvable single queue
- Solution approach
- First, some additional mathematical machinery
- Then, comparisons with $M / M / 1$ queues
- Service time distribution is general
- Service history matters
- Denote service time already received by $X_{0}(t)$
- Arrival distribution is negative exponential
- Arrival history does not matter
- But we do need to know the number of customers $N(t)$ present
- $N(t)$ is non-Markovian because it depends on service time
- State-space description
- States are $\left[N(t), X_{0}(t)\right]$
- Mixed discrete/continuous, two-dimensional description
- Analysis via this method (supplementary variables) is ugly
- Use the method of embedded Markov chains...

M/G/1 Queues (Continued)

- What has changed from $M / M / 1$?
- Two-dimensional state space
- State space is now continuous (due to $X_{0}(t)$)
- Ideally
- Convert $\left[N(t), X_{0}(t)\right]$ to one-dimensional $N(t)$
- Implicitly specify remaining service duration $X_{0}(t)$
- How do we do this?
- Look only at selected points in time
- Compute new metrics only at those points
- Choose those points to implicitly carry $X_{0}(t)$
- departures instants make great choices
- Remaining (residual) service $X_{0}(t)$ is zero!
- At that instant, we can treat the behavior like a Markov chain
- $N(t)$ is the number of customers left behind
- This is an embedded Markov chain; for details (see Kleinrock, vol. 1) but we haven't specified the distribution of departure instants

M/G/1 Queues (Continued)

- A informal derivation follows (see Kleinrock vol. 1 for details)...
- Notation
- Arrival rate λ (Poisson process)
- General service time distribution
- mean \bar{x}
- variance
- What is the expected time until a customer that arrives completes service?
- Mean time needed to service customers already waiting
- Mean time is $\bar{n}_{q} \bar{x}$
- Note that this is independent of the distribution of x
- plus the residual time for customer in service ...
- Residual life requires yet another aside...

Residual Life

- What is a "renewal"?
- Informally, a point where random variables which describe a model are memoryless given current state, with respect to past state.
- Renewal example
- Consider a queue with general service distribution, and Poisson arrival process
- Most time points are not renewal points, since remaining service time depends on service time completed.
- However, times at which service completes are renewal points, since arrival process is Poisson.
- Need to determine the residual lifetime of a customer in service:
- Denote this random variable as R
- Distribution of R depends on
- Distribution of original variable A (the service time distribution) at its renewal point and some time expended after the renewal point

- Suppose

Residual Life (Continued)

- $a(t)$ is the pdf of A (original variable)
- the original lifetime has expended time t_{e} then $r(t)$, the pdf of R (the residual lifetime) is

$$
\begin{aligned}
r\left(\tau-t_{e} \mid t_{e}\right) & =a\left(\tau \mid \tau>t_{e}\right) \\
= & \frac{a(\tau)}{P\left(A>\tau_{e}\right)} \\
= & \frac{a(\tau)}{1-\int_{0}^{t_{e}} a(s) d s}
\end{aligned}
$$

- Intuition
- in general, knowing about the expended time helps
- in short, knowledge changes the pdf
- we saw that this was not true for the exponential distribution
- the geometric distribution is the only case in the discrete domain
- Average residual lifetime \bar{r} (claim without proof)
- depends only on the first two moments of the original pdf $f(x)$
- mean \bar{f}
- second moment \bar{f}^{2} (not the variance!)
- mean residual lifetime is

$$
\bar{r}=\frac{\bar{f}^{2}}{2 \bar{f}}
$$

Residual Life (Continued)

- Example (computer part)
- suppose the pdf $b(t)$ of the failure time is uniform
- and suppose the mean value is 10

$$
b(t)=\left\{\begin{array}{cl}
\frac{1}{20} & 0<\tau \leq 20 \\
0 & \text { otherwise }
\end{array}\right.
$$

-if the part has been in use for 5 time units, then

$$
b\left(t+t_{e}\right)=\left\{\begin{array}{cc}
\frac{1}{20} & t_{e}<t+t_{e} \leq 20 \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
1-\int_{0}^{5} b(s) d s=1-\frac{1}{20} \cdot 5=0.75
$$

and finally

$$
r\left(\tau-t_{e} \mid 5\right)=\left\{\begin{array}{rr}
\frac{1}{15} & 0<\tau+t_{e} \leq 15 \\
0 & \text { otherwise }
\end{array}\right.
$$

- notice that

$$
\bar{r}=\frac{\bar{f}^{2}}{2 \bar{f}}=\frac{133.33}{2 \cdot 10}=6.67
$$

Observe

- pdf of residual time is not the same as the original pdf
- Knowledge of past behavior changes the pdf
- There are only two exceptions
- negative exponential distribution (continuous)
- geometric distribution (discrete)

M/G/1 Queues (Continued)

- How long does a new arrival have to wait for service?
- mean time needed to service customers already waiting
* let \bar{x} denote the mean service time
* mean time is $\bar{n}_{q} \bar{x}$
* note that this is independent of the distribution of x
- plus the residual time for customer in service
* recall that this is

$$
\bar{t}=\frac{\bar{x}^{2}}{2 \bar{x}}
$$

assuming a customer is in service

* the probability of a customer in service is ρ
- Combining items, the waiting time for a new arrival is

$$
\bar{r}_{q}=\bar{n}_{q} \bar{x}+\rho \frac{\bar{x}^{2}}{2 \bar{x}}
$$

- Expected number of arrivals during this interval is $\lambda \bar{r}$, so

$$
\bar{r}_{q}=\bar{r}_{q} \lambda \bar{x}+\rho \frac{\bar{x}^{2}}{2 \bar{x}}
$$

and by rearranging terms

$$
\bar{r}_{q}=\frac{\lambda \bar{x}^{2}}{2(1-\rho)}
$$

M/G/1 Queues (Continued)

- As we just saw, the mean time to receive service is is

$$
\bar{r}_{q}=\frac{\lambda \bar{x}^{2}}{2(1-\rho)}
$$

- Adding the mean service time yields the mean response time

$$
\bar{r}=\bar{x}+\frac{\lambda \bar{x}^{2}}{2(1-\rho)}
$$

- Normally, both \bar{r} and \bar{r}_{q} are expressed as (verify the math)

$$
\bar{r}=\frac{1}{\mu}+\frac{\lambda\left(1+C_{s}^{2}\right)}{2 \mu^{2}(1-\rho)}
$$

and

$$
\bar{r}_{q}=\frac{\lambda\left(1+C_{s}^{2}\right)}{2 \mu^{2}(1-\rho)}
$$

where C_{s}^{2} is the coefficient of variation

$$
C_{s}^{2}=\frac{\sigma^{2}}{\bar{x}^{2}}
$$

and
$-\sigma^{2}$ is the variance of the mean service time
$-\frac{1}{\mu}$ is the mean service time

- and by simplification (yields original formulation): $1+C_{s}^{2}=1+\frac{\sigma^{2}}{\bar{x}^{2}}=1+\frac{\bar{x}^{2}-\bar{x}^{2}}{\bar{x}^{2}}=\frac{\bar{x}^{2}}{\bar{x}^{2}}=\mu^{2} \bar{x}^{2}$

M/G/1 Queues (Continued)

- Via Little's law, the mean number in the system is

$$
\begin{aligned}
\bar{n} & =\lambda \bar{r} \\
& =\frac{\lambda}{\mu}+\frac{\lambda^{2}\left(1+C_{s}^{2}\right)}{2 \mu^{2}(1-\rho)} \\
& =\rho+\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}
\end{aligned}
$$

- Observations
- this is the famous Pollaczek - Khinchin (PK) formula
- learn it, remember it, treasure it!
- C_{s} is one for the negative exponential distribution, so

$$
\bar{n}=\rho+\frac{\rho^{2}(1+1)}{2(1-\rho)}=\rho+\frac{\rho^{2}}{1-\rho}=\frac{\rho}{1-\rho}
$$

as we knew before
$-C_{s}$ is zero for the deterministic distribution ($M / D / 1$ queue)

$$
\bar{n}=\rho+\frac{\rho^{2}(1+0)}{2(1-\rho)}=\frac{\rho}{(1-\rho)}\left(\frac{2-\rho}{2}\right)
$$

- The value of C_{s} has profound implications
- larger C_{s} increases mean queue length and response time
- values grow linearly with C_{s}

Queueing Comparison

- Consider the following
- $M / D / 1$ queue $\left(C_{s}=0\right)$
- $M / M / 1$ queue $\left(C_{s}=1\right)$
- $M / G / 1$ queue $\left(C_{s}>1\right)$

Queueing Example

- Consider the following
- arrival rate $\lambda=0.6$
- service rate $\mu=1.0$
- $M / D / 1, M / M / 1$, and $M / G / 1$ queues
and compare mean response times
- $M / M / 1$

$$
\bar{r}=\frac{1}{\mu-\lambda}=\frac{1}{1.0-0.6}=2.5
$$

- $M / D / 1$

$$
\bar{r}=\frac{1}{\mu}+\frac{\lambda\left(1+C_{s}^{2}\right)}{2 \mu^{2}(1-\rho)}=\frac{1}{1.0}+\frac{0.6(1+0)}{2(1.0)(1-0.6 / 1.0)}=1.75
$$

- $M / G / 1\left(C_{s}=2.0\right)$

$$
\bar{r}=\frac{1}{\mu}+\frac{\lambda\left(1+C_{s}^{2}\right)}{2 \mu^{2}(1-\rho)}=\frac{1}{1.0}+\frac{0.6(1+1)}{2(1.0)(1-0.6 / 1.0)}=3.25
$$

Queueing Example (Continued)

- Consider $M / M / 1$ and $M / G / 1$ queues
- assume same arrival rates for both
- desire same mean response times
- must solve for ratio of service rates
- $M / M / 1$

$$
\bar{r}=\frac{1}{\mu_{m}-\lambda}
$$

- $M / G / 1$

$$
\bar{r}=\frac{1}{\mu_{g}}+\frac{\lambda\left(1+C_{s}^{2}\right)}{2 \mu_{g}^{2}\left(1-\lambda / \mu_{g}\right)}
$$

- Equating, we have

$$
\frac{1}{\mu_{m}-\lambda}=\frac{1}{\mu_{g}}+\frac{\lambda\left(1+C_{s}^{2}\right)}{2 \mu_{g}^{2}\left(1-\lambda / \mu_{g}\right)}
$$

- Let's look at some numerical solutions...

M/G/1 via Embedded DTMC

- M/G/1 can be analyzed from the point of view of an embedded DTMC
- Note : state can be defined as (n, r) where n is the number in system, and r is remaining time of the job in service.
- Future behavior depends only on n at instants when $r=0-\mathrm{job}$ departures
- The state of the embedded DTMC is the number of jobs in system at the time the last job left service

M/G/1 via Embedded DTMC

- So what is $P_{i j}$? The probability that exactly $j-i-1$ jobs arrived while the last job received service.
- If the arrival process is Poisson, and the service time is x, then the number of arrivals during service is Poisson distributed with mean λx.
- Let $f(x)$ be the pdf for the service time distribution, then for $i>0$ and $i-1 \leq j$

$$
P_{i j}=\int_{0}^{\infty} f(x) \frac{(\lambda x)^{(j-i-1)}}{(j-i-1)!} \exp \{-\lambda x\}
$$

and for $i=0, P_{0,1}=1$ and $P_{0, n}=0$ for $n>1$.

M/G/1 via Embedded DTMC

- Let $\left\{\pi_{i}^{*}\right\}$ be the equilibrium state probabilities for the embedded DTMC.
- The mean time (from the $M / G / 1$ queue point of view) the DTMC is in a state i is
- for $i>1,1 / \mu$, the mean of the general service time distribution.
- for $i==0,1 / \lambda$ the mean time between arrivals
- From $\left\{\pi_{i}^{*}\right\}$ and mean occupancy times we can get the stationary distribution of the M/G/1 queue.
- Define $G=(1 / \lambda) \pi_{0}^{*}+\left(1-\pi_{0}^{*}\right) / \mu$-weighted sum of state probabilities

M/G/1 via Embedded DTMC

- We have $\pi_{0}=\pi_{0}^{*} / G$, and for $i>0$ we have $\pi_{i}=$ π_{i}^{*} / G

Queueing Example (Continued)

- Comparison Example (Continued)
- arrival rate $\lambda=0.6$
- $M / M / 1$ queue (service rate $\mu_{m}=1.0$)
- $M / G / 1$ queue (service rate μ_{g})

