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Module 7: Introduction to Queueing Theory
(Notation, Single Queues, Little’s Result)

(Slides based on Daniel A. Reed, ECE/CS 441 Notes, Fall 1995, used with permission)
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Outline of Section on Queueing Theory

1. Notation
2. Little’s Result
3.  Single Queues
4. Solutions for networks of queues - Product Form Results  (on blackboard, not

slides)
5.  Mean value analysis (if time permits)



ECE/CS 441: Computer System Analysis
Module 6, Slide 3

Queueing Theory Notation
• Queuing characteristics

– Arrival process
– Service time distribution
– Number of servers
– System capacity
– Population size
– Service discipline

• Each of these is described mathematically
– Descriptions determine tractability of (efficient) analytic solution
– Only a small set of possibilities are solvable using standard queueing theory
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Arrival Processes

• Suppose jobs arrive at times t1 , t2 , ... ,tj

– Random variables τj = tj - tj-1 are inter-arrival times
– There are many possible assumptions for the distribution of the τj

– Typical assumptions for the τj:
• Independent
• Identically distributed

– Many other possible assumptions:
• Bulk arrivals
• Balking
• Correlated arrivals

• For Poisson arrival, the inter-arrival times are:
– IID (independent and identically distributed)
– exponentially distributed (i.e., CDF F(x) = 1 - e -x/a)

• Other common arrival time distributions include
– Erlang, Hyper-exponential, Deterministic, General (with a specified mean and

variance)
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Other Queue Features

• Service time
– Interval spent actually receiving service (exclusive of waiting time)
– As with arrival processes, there are many possible assumptions
– Most common assumptions are

• IID random variables
• exponential service time distribution

• Number of servers
– Servers may or may not be identical
– Service discipline determines allocation of customers to servers

• System capacity
– Maximum number of customers in the system (including those in service)
– May be finite or infinite

• Population size
– Total number of potential customers
– May be finite or infinite
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Other Queue Features (Continued)
• Service discipline

– The order waiting customers are serviced
– Many possibilities, including

• First-come-first-serve (FCFS), the most common
• Last-come-first-serve (LCFS)
• Last-come-first-serve preempt resume (LCFS-PR)
• Round robin (RR) with finite quantum size
• Processor sharing (PS) --- RR with infinitesimal quantum size
• Infinite server (IS)

– Almost anything might be used, depending on the the total state of the queue
– As expected, service discipline affects the nature of the stochastic process

that represents the behavior of the queueing system
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Queueing Discipline Specification
• Queueing discipline is typically specified using Kendall’s notation (A/S/m/B/K/SD), where

– Letters correspond to six queue attributes
• A: interarrival time distribution
• S: service time distribution
• m: number of servers
• B: number of buffers (system capacity)
• K: population size
• SD: service discipline

• Interarrival and service time specifiers
– M exponential
– Ek Erlang with parameter k
– Hk hyperexponential with parameter k
– D deterministic
– G general (any distribution, mean and variance used in the solution)

• Bulk arrivals or service are denoted by a superscript
– M[x] denotes exponential arrivals with group size x
– x is generally a random variable with separately specified distribution

• Omitted specifiers assume certain defaults
– infinite buffer capacity
– infinite population size
– FCFS service discipline
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Example Queueing Discipline Specifications

• M/D/5/40/200/FCFS
– Exponentially distributed interarrival times
– Deterministic service times
– Five servers
– Forty buffers (35 for waiting)
– Total population of 200 customers
– First-come-first-serve service discipline

• M/M/1
– Exponentially distributed interarrival times
– Exponentially distributed service times
– One server
– Infinite number of buffers
– Infinite population size
– First-come-first-serve service discipline
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An Introductory Example
• Given these descriptions, what are examples of their application?
• Consider a typical bank

– 5 tellers
– Customers form a single line and are serviced FCFS
– Excluding a run on the bank, the waiting room is effectively infinite
– For a large bank, the population is effectively infinite
– Bulk arrivals are possible if friends arrive together for service

• What about service time and inter-arrival time distributions?
– We can go measure them with a watch at the bank
– Or, we can make mathematically simplifying assumptions
– Latter is most common and exponential distribution is typical

• Combining these facts and assumptions
– M/M/1 queue
– As we shall see, the mean queue length (including one in service) for an M/M/1 queue is

– Where
•  λ is the mean inter-arrival time
•  µ is the mean service time

!µ
!
"
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Notation and Basic “Facts”
• Standard variable names

–  τ is job interarrival time
–  λ = 1/E[τ] mean job arrival rate
–  s is service time per customer (job)
–  m is number of servers
–  µ = 1/E[s] is mean service rate per server
–  n = nq + ns is number of jobs in the system
– nq is number of jobs waiting to receive service
– ns is number of jobs in service
– r is response time (service time plus queueing delay)
– w is waiting time (queueing delay only)

• System must be “stable” to have an interesting steady state solution
– Number of jobs in the system is finite
– Requires the relation λ < mµ hold unless

• the population is finite (queue length is bounded)
• the buffer capacity is finite (arrivals are lost when queue is full)
• (in these cases, system is always stable)
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Notation and Basic “Facts”
• Number of jobs in the system

– n = nq + ns (jobs are either waiting or in service)
–
– and, if the service rates are independent of queue length

• Cov(nq,ns) = 0
• Var[n] = Var[nq] + Var[ns]

• Number and time
– r = w + s (response time is the sum of queueing delay and service)
–
– and, if the service rates are independent of queue length

• Cov(w,s) = 0
• Var[r] = Var[w] + Var[s]

 

E[n] = E[nq ] + E[ns]     (or n = n q + n s)

swrswr += so , variablesrandom are  and , , but,



ECE/CS 441: Computer System Analysis
Module 6, Slide 12

Little’s Law

• Very important result -- Part of the queueing folk literature for the past century
• Formal proof due to J. D. C. Little (1961)
• Relates mean queue length to arrival rate and mean response time
• Mathematically (in seady state),

• Applies to any “black box” queue under the following assumptions
– System is work conserving
– Number of jobs entering is same as number leaving (system is stable)

• Also applies to any transient interval, without requirement that system be stable.
• Note that these are very general conditions, and can apply for any system

(“black box”) in which customers leave and enter subject to the above
constraints.

• An intuitive proof...

n = !r 
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Little’s Law (Continued)
• Sketch of proof (of steady-state case):

– During a long interval, arrivals ≈ departures (else no stability)
– Area under the curve is total job time units
– Mean queue length      is average curve height (area/time)
– Mean time in system     is area/arrivals
– Mean arrival rate is arrivals/time

• A very general result:
– No assumptions about arrival or service processes
– Holds for any queueing discipline (simply charge the area differently)

n 
r jobs x time jobs x time

time jobs

Avg number in system Avg time in system

jobs

time
x

arrival
rate

=

(jobs x time)
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Analysis of Single Queues
• Plan:

– Start with one of the simplest queues, an M/M/1
– Model as a “birth-death” process
– Generalize result to other types of queues

• A birth-death process is a Markov process in which states are numbered a integers, and
transitions are only permitted between “neighboring” states.

• Steady state solution of a birth death process (Kleinrock, Queueing Systems, vol. 1):
– (Theorem) steady state probability pn of being in state n is

– where p0 is the probability of being in state 0
• Now for a proof ...

pn =
!0!1 ...! n"1

µ1µ2 ...µn
p0                 n = 1, 2, ..., #
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Birth-Death (Steady-State) State Occupancy Proof
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Birth-Death (Steady-State) State Occupancy Proof, cont.
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M/M/1 Queue Analysis
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M/M/1 Queue Analysis (Continued)
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M/M/1 Queue Analysis (Continued)
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M/M/1 Queue Example
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M/M/1 Queue Example (Continued)
• Consider changing λ

– hold µ fixed at 0.5
– examine changes in performance metrics
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M/M/m Queues
• M/M/m queues

– m servers rather than one server
– Reasonable model of

• a bank queue with multiple tellers
• a shared memory multiprocessor

• Assumptions
– m servers
– All servers have the same service rate µ
– Single queue for access to the servers
– Arrival rate λ
– Formally

• What are the state occupancy probabilities?

!n = !                   n = 0,1,..., "

µn =
nµ
mµ

# 
$ 
% 

n = 0,1,...m !1
n = m,m+1,..."
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M/M/m Queues (Continued)
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M/M/m Queues (Continued)
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M/M/m Queues (Continued)
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M/M/m Queues (Continued)
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M/M/m Queues (Continued)
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M/M/m Queue Example

• Consider changing m
– hold λ and µ fixed
– examine changes in performance metrics

• Observations
– M/M/m queue has asymptote at
– substantial performance gains with even two servers

!
mµ
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M/M/1 and M/M/m Queue Comparison

 

• Which is better?
   -  m queues each with an arrival rate !/m
   -  one queue with m servers and an arrival rate of !
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Queueing Comparison

• Consider the following
–  service rate µ fixed at 4, divided evenly among m servers
– fix λ =2
– m M/M/1 queues (arrival rate to each is λ/m)
– One M/M/m queue (total arrival rate is λ)
– Increase m

• What happens to response time in both queues?  Why?
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Mean Response Time as function of m



ECE/CS 441: Computer System Analysis
Module 6, Slide 32

Queueing Comparison

• Consider the following
–  service rate µ fixed at 2.1, divided evenly among m servers
– varying λ (subject to stability constraint)
– m M/M/1 queues (arrival rate to each is λ/m)
– One M/M/m queue (total arrival rate is λ)

• What happens as λ approaches 2.1?  Why?
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Mean Response Time as a Function of Arrival Rate
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Extrapolation Scenarios
• Given queueing formulae, standard questions include

– Performance measures for different parameters
– Parameters values needed to satisfy a particular performance constraint

• Examples:
– What is the mean response time if arrival rate doubles?
– What is the mean queue length if service rate decreases by one third?
– What is the number of servers for mean response time less than five

minutes?
• Approach:

– Plug and crank
– Repeated solution with different parameter values
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Extrapolation Scenarios (Continued)
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M/M/m/B Queues
• Finite buffers

– no more than B jobs in total can be
• queued
• and in service

(i.e., total number of jobs in the system must be less than B)
– jobs arriving when B jobs are present are discarded

• More formally, this implies

and

• Observations
–            or servers are wasted
– birth-death process
– finite number of states

!n = !                    n = 1,2,..., B "1

µn =
nµ
mµ

! 
" 
# 

n = 1,2,..., m !1
n = m,m+1,..., B

B ! m
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M/M/m/B Queues (Continued)
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M/M/m/B Queues (Continued)
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Other Queues
• Other queues can be solved to varying degrees...
• Exact solutions are possible for

– M/Er /1 (Erlangian service)
– M/D/1 (special case of M/G/1)
– M/M/1 with bulk arrivals (restricted cases)

• Analysis is more difficulty for:
– G/M/1
– M/G/1
– G/G/1
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M/G/1 Queues
• M/G/1

– General service time distribution
– Otherwise, similar to M/M/1 queues
– The most complex, readily solvable single queue

• Solution approach
– First, some additional mathematical machinery
– Then, comparisons with M/M/1 queues

• Service time distribution is general
– Service history matters
– Denote service time already received by X0(t)

• Arrival distribution is negative exponential
– Arrival history does not matter
– But we do need to know the number of customers N(t) present
– N(t) is non-Markovian because it depends on service time

• State-space description
– States are [N(t), X0(t)]
– Mixed discrete/continuous, two-dimensional description
– Analysis via this method (supplementary variables) is ugly
– Use the method of embedded Markov chains...
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M/G/1 Queues (Continued)
• What has changed from M/M/1?

– Two-dimensional state space
– State space is now continuous (due to X0(t))

• Ideally
– Convert [N(t), X0(t)] to one-dimensional N(t)
– Implicitly specify remaining service duration X0(t)

• How do we do this?
– Look only at selected points in time
– Compute new metrics only at those points
– Choose those points to implicitly carry X0(t)
– departures instants make great choices

• Remaining (residual) service X0(t) is zero!
• At that instant, we can treat the behavior like a Markov chain
• N(t) is the number of customers left behind
• This is an embedded Markov chain; for details (see Kleinrock, vol. 1) but we

haven’t specified the distribution of departure instants
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M/G/1 Queues (Continued)

• A informal derivation follows (see Kleinrock vol. 1 for details)...
• Notation

– Arrival rate λ (Poisson process)
– General service time distribution

• mean
• variance

• What is the expected time until a customer that arrives completes service?
– Mean time needed to service customers already waiting

• Mean time is
• Note that this is independent of the distribution of x

– plus the residual time for customer in service ...
• Residual life requires yet another aside...

x 

n q x 
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Residual Life
• What is a “renewal”?

– Informally, a point where random variables which describe a model are
memoryless given current state, with respect to past state.

• Renewal example
– Consider a queue with general service distribution, and Poisson arrival

process
– Most time points are not renewal points, since remaining service time

depends on service time completed.
– However, times at which service completes are renewal points, since

arrival process is Poisson.
• Need to determine the residual lifetime of a customer in service:

– Denote this random variable as R
– Distribution of R depends on

• Distribution of original variable A (the service time distribution) at
its renewal point and some time expended after the renewal point
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Residual Life (Continued)
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Residual Life (Continued)
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Observe
– pdf of residual time is not the same as the

original pdf
– Knowledge of past behavior changes the pdf
– There are only two exceptions

• negative exponential distribution
(continuous)

• geometric distribution (discrete)
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M/G/1 Queues (Continued)
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Little’s Law again!
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M/G/1 Queues (Continued)
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M/G/1 Queues (Continued)
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Queueing Comparison
• Consider the following

– M/D/1 queue (Cs = 0)
– M/M/1 queue (Cs = 1)
– M/G/1 queue (Cs > 1)
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Queueing Example
• Consider the following

– arrival rate λ = 0.6
– service rate µ = 1.0
– M/D/1, M/M/1, and M/G/1 queues

and compare mean response times
• M/M/1

• M/D/1

• M/G/1 (Cs = 2.0)

r = 1
µ ! "

=
1

1.0 ! 0.6
= 2.5

r = 1
µ
+
! 1+Cs

2( )
2µ 2 1" #( )

=
1
1.0

+
0.6(1+ 0)

2(1.0)(1" 0.6 /1.0)
= 1.75

r = 1
µ
+
! 1+Cs

2( )
2µ 2 (1" #)

=
1
1.0

+
0.6(1+1)

2(1.0)(1" 0.6 /1.0)
= 3.25
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Queueing Example (Continued)
• Consider M/M/1 and M/G/1 queues

– assume same arrival rates for both
– desire same mean response times
– must solve for ratio of service rates

• M/M/1

• M/G/1

• Equating, we have

• Let’s look at some numerical solutions...

r = 1
µm ! "

r = 1
µg

+
! 1+Cs

2( )
2µg

2 1" ! / µg( )

1
µm ! "

=
1
µg

+
" 1+Cs

2( )
2µg

2 1! " / µg( )
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M/G/1 via Embedded DTMC
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M/G/1 via Embedded DTMC
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M/G/1 via Embedded DTMC
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M/G/1 via Embedded DTMC
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Queueing Example (Continued)
• Comparison Example (Continued)

– arrival rate λ = 0.6
– M/M/1 queue (service rate µm = 1.0)
– M/G/1 queue (service rate µg)


