Mohr's Circle

Academic Resource Center

Introduction

- The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr's Circle.
- This graphical representation is extremely useful because it enables you to visualize the relationships between the normal and shear stresses acting on various inclined planes at a point in a stressed body.
- Using Mohr's Circle you can also calculate principal stresses, maximum shear stresses and stresses on inclined planes.

Stress Transformation Equations

$$S_{x_1} - \frac{S_x + S_y}{2} = \frac{S_x - S_y}{2} \cos 2q + t_{xy} \sin 2q$$

$$t_{x_1y_1} = -\frac{S_x + S_y}{2} \sin 2q + t_{xy} \cos 2q$$

Derivation of Mohr's Circle

- If we vary θ from 0° to 360° , we will get all possible values of σx_1 and $\tau x_1 y_1$ for a given stress state.
- Eliminate θ by squaring both sides of 1 and 2 equation and adding the two equations together.

$$\left(\sigma_{x1} - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \tau_{x1y1}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$

Derivation of Mohr's Circle (cont'd)

Define σ_{avq} and R

$$\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Substitue for σ_{avg} and R to get

$$(\sigma_{x1} - \sigma_{avg})^2 + \tau_{x1y1}^2 = R^2$$

which is the equation for a **circle** with centre $(\sigma_{avq}, 0)$ and radius R.

Mohr's Circle Equation

• The circle with that equation is called a Mohr's Circle, named after the German Civil Engineer Otto Mohr. He also developed the graphical technique for drawing the circle in 1882.

$$(\sigma_{x1} - \sigma_{avg})^2 + \tau_{x1y1}^2 = R^2$$

• The graphical method is a simple & clear approach to an otherwise complicated analysis.

Sign Convention for Mohr's Circle

- Shear Stress is plotted as positive downward
- θ on the stress element = 2θ in Mohr's circle

Constructing Mohr's Circle: Procedure

- 1. Draw a set of coordinate axes with σx_1 as positive to the right and $\tau x_1 y_1$ as positive downward.
- 2. Locate point *A*, representing the stress conditions on the *x* face of the element by plotting its coordinates $\sigma x_1 = \sigma_x$ and $\tau x_1 y_1 = \tau_{xy}$. Note that point *A* on the circle corresponds to $\theta = 0^\circ$.
- 3. Locate point *B*, representing the stress conditions on the *y* face of the element by plotting its coordinates $\sigma x_1 = \sigma_y$ and $\tau x_1 y_1 = -\tau_{xy}$. Note that point *B* on the circle corresponds to $\theta = 90^\circ$.

Procedure (cont'd)

- 4. Draw a line from point A to point B, a diameter of the circle passing through point c (center of circle). Points A and B are at opposite ends of the diameter (and therefore 180° apart on the circle).
- 5. Using point c as the center, draw Mohr's circle through points A and B. This circle has radius R. The center of the circle c at the point having coordinates $\sigma x_1 = \sigma_{avg}$ and $\tau x_1 y_1 = 0$.

Stress Transformation: Graphical Illustration

Explanation

- On Mohr's circle, point A corresponds to $\theta = 0$. Thus it's the reference point from which angles are measured.
- The angle 2θ locates the point D on the circle, which has coordinates σx_1 and $\tau x_1 y_1$. D represents the stresses on the x_1 face of the inclined element.
- Point E, which is diametrically opposite point D is located 180° from cD. Thus point E gives the stress on the y_I face of the inclined element.
- Thus, as we rotate the x_1y_1 axes counterclockwise by an angle θ , the point on Mohr's circle corresponding to the x_1 face moves ccw by an angle of 2θ .

Explanation

- Principle stresses are stresses that act on a principle surface. This surface has no shear force components (that means $\tau x_1 y_1 = 0$)
- This can be easily done by rotating A and B to the σx_1 axis.
- σ_1 = stress on x_1 surface, σ_2 = stress on y_1 surface.
- The object in reality has to be rotated at an angle θ_p to experience no shear stress.

Explanation

- The same method to calculate principle stresses is used to find maximum shear stress.
- Points A and B are rotated to the point of maximum $\tau x_1 y_1$ value. This is the maximum shear stress value τ_{max} .
- Uniform planar stress (σ_s) and shear stress (τ_{max}) will be experienced by both x_1 and y_1 surfaces.
- The object in reality has to be rotated at an angle θ_s to experience maximum shear stress.

Example 1

Draw the Mohr's Circle of the stress element shown below. Determine the principle stresses and the maximum shear stresses.

What we know:

 $\sigma_{\rm x} = -80 \text{ MPa}$

 $\sigma_{\rm v} = +50 \text{ MPa}$

 $\tau_{xv} = 25 \text{ MPa}$

Coordinates of Points

A: (-80,25)

B: (50, -25)

Example 1 (cont'd)

$$c = \sigma_{avg} = \frac{\sigma_x + \sigma_y}{2} = \frac{-80 + 50}{2} = -15$$

$$R = \sqrt{(50 - (-15))^2 + (25)^2}$$

$$R = \sqrt{65^2 + 25^2} = 69.6$$

Example 1 (cont'd)

Example 1 (cont'd)

Example 2

Given the same stress element (shown below), find the stress components when it is inclined at 30° clockwise. Draw the corresponding stress elements.

What we know:

 $\sigma_{\rm x} = -80 \text{ MPa}$

 $\sigma_y = +50 \text{ MPa}$

 $\tau_{xy} = 25 \text{ MPa}$

Coordinates of Points

A: (-80,25)

B: (50,-25)

Example 2 (cont'd)

Using stress transformation equation (θ =30°):

$$S_{x_1} - \frac{S_x + S_y}{2} = \frac{S_x - S_y}{2} \cos 2q + t_{xy} \sin 2q$$

$$t_{x_1y_1} = -\frac{S_x + S_y}{2}\sin 2q + t_{xy}\cos 2q$$

$$\sigma_{x} = -25.8 \text{ MPa}$$
 $\sigma_{y} = -4.15 \text{ MPa}$ $\tau_{xy} = 68.8 \text{ MPa}$

Example 2 (cont'd)

Graphical approach using Mohr's Circle (and trigonometry)

