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ABSTRACT. The aim of this work was to underline the physiological role of the 

antioxidant peroxiredoxin (PRDX) family in gilthead sea bream (Sparus aurata L.), a 

perciform fish extensively cultured in the Mediterranean area. First, extensive BLAST 

searches were done on the gilthead sea bream cDNA database of the AQUAMAX 

European Project (www.sigenae.org/iats), and six contigs were unequivocally identified 

as PRDX1-6 after sequence completion by RT-PCR. The phylogenetic analysis 

evidenced three major clades corresponding to PRDX1-4 (true 2-Cyst PRDX subclass), 

PRDX5 (atypical 2-Cys PRDX subclass) and PRDX6 (1-Cys PRDX subclass) that 

reflected the present hierarchy of vertebrates. However, the PRDX2 branch of modern 

fish including gilthead sea bream was related to the monophyletic PRDX1 node rather 

than to PRDX2 cluster of mammals and primitive fish, which probably denotes the 

acquisition of novel functions through vertebrate evolution. Transcriptional studies by 

means of quantitative real-time PCR evidenced a ubiquitous PRDX gene expression that 

was tissue-specific for each PRDX isoform. In a second set of transcriptional studies, 

liver and head kidney were chosen as target tissues in fish challenged with i) the 

intestinal parasite Enteromyxum leei, ii) a plant oil (VO) diet with deficiencies in 

essential fatty acids and iii) prolonged exposure to high rearing densities. These studies 

showed that PRDX genes were highly and mostly constitutively expressed in the liver 

and were not affected by dietary intervention or high density. In contrast, head kidney 

was highly sensitive to the different experimental challenges: significantly lower values 

were found for PRDX5 in the three trials, for PRDX6 in parasitized and high density 

fish and for PRDX1 in parasitized and VO fish. PRDX2, 3 and 5 were decreased only in 

VO, high density and parasitized animals, respectively. These findings would highlight 

the role of PRDXs as integrative and highly predictive biomarkers of health and welfare 

in fish and gilthead sea bream in particular. 

Key words: Sparus aurata; antioxidant enzymes; Myxozoa; essential fatty acids; stress; 

immune response. 
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1. Introduction 

 

Peroxiredoxins (PRDXs) are the most recently discovered family of antioxidant 

enzymes that catalyze the reduction of peroxides and alkyl peroxides using thioredoxin 

as the immediate reducing-cofactor [1,2]. PRDXs are non-selenium dependent enzymes 

initially identified in yeast [3], but they have been discovered in all kingdoms of life. 

The presence of multiple genes, encoding each one for a different isoform, was first 

reported in mammals in which six PRDXs have been identified to date. Five of them 

have two conserved and catalytically active Cys residues (PRDX1 to 5), though only 

that of the N-terminal region is directly involved in peroxidatic activity. PRDX6 only 

has the catalytic Cys residue of the N-terminal region and thus belongs to 1-Cys PRDX 

subclass with both glutathione peroxidase and phospholipase A activities leading to 

reduced membrane phospholipid peroxidation [4,5].  

PRDX1 and 2, also referred as natural killer enhancing factors (NKEF-A, NKEF-

B), are localized in the cytosol [6,7], whereas the other members of the 2-Cys PRDX 

subclass are widely distributed with PRDX3 in mitochondria [8], PRDX4 in 

endoplasmatic reticulum and extracellular space [9] and PRDX5 in cytosol, 

mitochondria and peroxisomes [10]. In contrast, PRDX6 is restricted to cytosol [11], 

and the catalytic efficiency of all PRDXs is less than that of catalase or glutathione 

peroxidases by one or three orders of magnitude [12]. However, PRDXs are abundant 

proteins, typically constituting 0.1-0.8% of total soluble protein, and the overexpression 

of NKEF-A and B can decrease efficiently the cytosol level of H2O2 [13,14], which is 

now considered an ubiquitous intracellular messenger at subtoxic concentrations [15]. 

On the other hand, reduction of mitochondrial H2O2 by overexpressed PRDX3 is a key 

regulator of apoptosis [16,17]. Aberrant expression of most PRDX family members has 
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also been reported in various kinds of cancers, and their silencing is currently tested to 

enhance radiotherapy effects [18]. Thus, PRDXs can represent a first line of defense 

against oxidative stress, but they are also crucial to turn off the inflammatory and 

immune response mediated by H2O2 [15,19,20].  

In fish, NKEF-A and B have been characterized in a wide range of teleosts 

including  rainbow trout (Oncorhynchus mykiss) [21], carp (Cyprinus carpio) [22,23], 

channel catfish (Ictalurus punctatus) [24], Japanese flounder (Paralichthys olivaceus) 

[25], turbot (Psetta maxima) [26], pufferfish (Tetraodon nigroviridis) [27], ayu 

(Plecoglossus altivelis) [28], bluefin tuna (Thunnus maccoyii) [29] and lamprey 

(Lampetra japonica) [30]. Recently, PRDX4 has been cloned and characterized in 

yellowtail kingfish (Seriola lalandi) [31]. PRDX6 has also been cloned and 

characterized in catfish [32], Atlantic salmon (Salmo salar) [33] and turbot [34]. 

Additional fish PRDX sequences, like sablefish (Anoplopoma fimbria) PRDX3 

(GenBank accession number BT083182) and PRDX5 (GenBank accession number 

BT082491) are available as direct submissions on public databases. However, complete 

and integrative studies are still lacking in fish, and the aim of the present study was to 

identify and address the tissue-specific regulation of all the members of PRDX family in 

gilthead sea bream, Sparus aurata, a successfully cultured fish in the Mediterranean 

area. To pursue this issue, extensive BLAST searches for PRDXs were done on the 

gilthead sea bream cDNA database of the AQUAMAX European Project 

(www.sigenae.org/iats), and six contigs were unequivocally identified as PRDX1 to 6 

after sequence completion by RT-PCR. The expression analysis of PRDX isoforms was 

then addressed by quantitative real-time PCR (qPCR) with special emphasis on liver 

and head kidney as target tissues in fish challenged with three different aquaculture 

stressors i) an intestinal parasite, ii) nutrient deficient diets and iii) high rearing 
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densities. The chronic exposure to Enteromyxum leei, a commonly occurring intestinal 

parasite in gilthead sea bream [35], was chosen as infection model. The total 

replacement of fish oil with a blend of vegetable oils in plant protein-based diets was 

chosen as a model of nutrient deficiencies in essential fatty acids (EFA) with 

detrimental effects on growth [36,37] and antioxidant capacity [38]. High rearing 

density was also selected as a common aquaculture stressor to assess the stress-

mediated response in a pair-fed model [39].  

 

2. Materials and methods 

 

2.1. Animal care and sampling 

 

Juveniles of gilthead sea bream were reared in the indoor experimental facilities 

of the Institute of Aquaculture Torre de la Sal (IATS). Day length and temperature 

followed natural changes at our latitude (40º5´N; 0º10´E), although water was heated in 

the infection trial to keep temperature always above 18 ºC. The oxygen content of water 

was always higher than 85% saturation, and unionized ammonia remained below toxic 

levels (<0.02 mg/l). Except when indicated, fish were fed a commercial diet (Proaqua, 

Palencia, Spain) containing 47% protein and 21% lipid. At the sampling time, fish were 

overnight fasted and decapitated under anesthesia (3-aminobenzoic acid ethyl ester, 100 

mg/l). Target tissues were rapidly excised, frozen in liquid nitrogen, and stored at -80ºC 

until RNA extraction and analysis. All procedures were carried out according to the 

national and institutional regulations on animal experimental handling (IATS-CSIC 

Review Board). 
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2.2. Experimental setup 

 

Tissue screening for PRDX gene expression was carried out in two year-old fish. 

Two randomly selected fish from an IATS stock were sampled and target tissues 

(intestine, head kidney, spleen, brain, eyes, gills, heart, white skeletal muscle, liver, 

adipose tissue and testis) were excised and deep frozen in liquid nitrogen in less than 10 

min.  

To analyze the effect of three types of challenging experimental conditions on 

PRDX gene expression, samples were obtained from earlier studies already published 

[36,39,40]. The infection trial was performed by exposure of juvenile fish (134 g initial 

body weight) to E. leei-contaminated effluent [40]. After 113 days of exposure, two 

categories of recipient fish were obtained: non-parasitized (exposed but not infected, R-

NON PAR) and parasitized (exposed and infected, R-PAR) fish, which were compared 

with control animals (not exposed to the parasite, CTRL). Head kidney samples were 

obtained from fish of the three categories.  

The effect of the nutritional background (dietary EFA level) was analyzed from 

head kidney and liver samples obtained from a previous dietary trial [36]. Briefly, 

juvenile fish of 16 g initial body weight were fed to visual satiety from May to mid-

August with plant protein diets containing either fish oil (FO diet) or a blend of 

vegetable oils at the 100% of FO replacement (VO diet). At the end of the trial, weight 

gain of VO fish was significantly reduced and 8 randomly selected fish per dietary 

treatment were sampled for collection of tissue samples. 

The effects of prolonged confinement exposure were analyzed from head kidney 

and liver samples obtained from a previous experiment in which the effect of acute and 

prolonged crowding stresses on mitochondrial chaperones was also assessed [39]. 
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Briefly, fish were reared at high (HD, 45–50 kg/m3) and low (LD-PF, 10 kg/m3) 

densities in a pair-fed study with a standard fish diet. Over the course of the 3 weeks-

trial at midsummer, body weight of juvenile fish (18 g initial body weight) increased 

more than two-fold in the two experimental groups. Parallel decreases (10% reduction) 

in growth rates (P < 0.09) and feed efficiency (P < 0.10) were found in the HD group in 

comparison to LD-PF fish.  

 

2.3. RNA extraction and RT procedure 

  

Total RNA from target tissues was extracted using the ABI PRISM™ 6100 

Nucleic Acid PrepStation (Applied Biosystems, Foster City, CA, USA) with a DNAse 

step. The RNA yield was 30-50 µg with absorbance measures (A260/280) of 1.9-2.1. 

Reverse transcription (RT) of 500 ng total RNA with random decamers was performed 

with the High-Capacity cDNA Archive Kit (Applied Biosystems). Negative control 

reactions were run without reverse transcriptase.  

 

2.4. Completion of PRDX sequences by RT-PCR 

 

Degenerated and specific primers for the completion of PRDX1 sequence 

between two non-overlapping contigs were designed after initial searches in the gilthead 

sea bream cDNA database. Forward primer (5´- CAG CCA AAG CWG TKA TGC C) 

and reverse (5´- TAA TCG GGA GAG GTG TCT TTG G) primer were located 47 

nucleotides downstream the start codon and 287 nucleotides downstream the stop 

codon, respectively. PCR amplification was made with 2 µl of liver RT reactions  and 2 

units of Platinum Taq DNA polymerase (Invitrogen, Gaithersburg, MD, USA). Thirty 
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five cycles were carried out with denaturation at 94 ºC for 30 s, annealing at 52 ºC for 

60 s, and extension at 72 ºC for 90 s.  

 

2.5. Gene expression analyses 

 

qPCR was performed using an iCycler IQ Real-time Detection System (Bio-Rad, 

Hercules, CA, USA). Briefly, diluted RT reactions were conveniently used for PCR 

reactions in 25-µl volume in combination with a SYBR Green Master Mix (Bio-Rad) 

and specific primers for PRDX1-6 and housekeeping genes (β-actin, elongation factor 

1, 18S rRNA and α-tubulin) at a final concentration of 0.9 µM (Table 1). The efficiency 

of PCR reactions for target and reference genes varied between 95% and 98%. The 

dynamic range of standard curves (serial dilutions of RT-PCR reactions) spanned five 

orders of magnitude, and the amount of product in a particular sample was determined 

by interpolation of the cycle threshold (Ct) value. The specificity of reaction was 

verified by analysis of melting curves and by electrophoresis and sequencing of PCR 

amplified products. Reactions were performed in triplicate and the fluorescence data 

acquired during the extension phase were ultimately normalized to β-actin by the delta-

delta method [41].  

 

2.6. Sequence and phylogenetic analyses 

  

All amplified PCR-products were gel-extracted and sequenced by the deoxy chain 

termination method (ABI PRISM dRhodamine terminator cycle sequencing kit, Perkin-

Elmer, Wellesley, MA, USA). A BLAST-X search strategy was used to corroborate the 

identity of amplified products. Multiple sequence alignments were carried out with 
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ClustalW. A phylogenetic tree was constructed on the basis of amino acid differences 

(poisson correction) with the Neighbor Joining (NJ) algorithm (complete deletion) in 

MEGA version 4.0 [42]. A total of 38 additional PRDX sequences from 16 species were 

used in the analysis. Reliability of the tree was assessed by bootstrapping, using 1000 

bootstrap replications.  

 

 2.7. Statistics 

 

 Data on gene expression are represented as the mean ± SEM of 6-8 fish. For 

each PRDX isoform, the specific effects of pathogen exposure, dietary treatment and 

stocking density on transcript levels were analyzed by Student t-test (when two groups 

were compared) or by One-way analysis of variance (ANOVA) followed by Student-

Newman-Keuls test. The significance level was set at P < 0.05. All the statistical 

analyses were performed using Sigma Stat software (SPSS Inc., Chicago, IL, USA). 

 

3. Results 

 

As shown in Table 2, searches in the AQUAMAX gilthead sea bream database 

recognized (E-value ≤ 3e-92) five contigs of 2-6 clones in depth as complete codifying 

sequences of 197 (NKEF-B), 247 (PRDX3), 263 (PRDX4), 190 (PRDX5) and 221 

(PRDX6) amino acids in length. Two additional non-overlapping contigs of 314 and 

667 bp in length were identified as NKEF-A (E-value 1e-105) after gap sequence 

completion (81 amino acids) by RT-PCR. All these gilthead sea bream PRDX 

sequences were introduced in GenBank with accession numbers GQ252679 (NKEF-A), 

GQ252680 (NKEF-B), GQ252681 (PRDX3), GQ252682 (PRDX4), GQ252683 
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(PRDX5) and GQ252684 (PRDX6). Amino acid sequence alignments evidenced that 

gilthead sea bream PRDXs present a minimum of 72 % similarity (63 % identity) with 

human orthologous genes. 

As depicted in Figure 1, PRDX1-4 sequences of gilthead sea bream share the 

characteristic signatures of the true 2-Cys PRDX subclass with a strict conservation of 

N- and C-terminal catalytically active Cys residues. The sequence recognized as the 

gilthead sea bream PRDX5 shows the alternative C-terminal Cys residue as a member 

of the atypical 2-Cyst PRDX subclass. In contrast, the sequence named as gilthead sea 

bream PRDX6 has only the N-terminal Cys residue and it was recognized as an 

antioxidant enzyme of the 1-Cys PRDX subclass. Within the gilthead sea bream PRDX 

family, the highest amino acid identity (83%) and similarity (91%) was found between 

NKEFs (PRDX1 and 2) decreasing up to 48-55% and 59-66% when PRDX3 and 4 were 

included in the analysis. Amino acid identity and similarity between PRDX5 and 

PRDX1-4 were reduced up to 12-15% and 24-28%, respectively. A reduced but higher 

degree of amino acid identity (15-23%) and similarity (30-41%) was found when 

PRDX6 and family members of the PRDX1-4 subclass were compared. 

The phylogenetic tree undertaken in the present study evidenced three major 

clades corresponding to PRDX1-4 (true 2-Cyst PRDX subclass), PRDX5 (atypical 2-

Cys PRDX subclass) and PRDX6 (1-Cys PRDX subclass) according to the present 

hierarchy of vertebrates (Figure 2). Of note, within the long-branch covering the true 2-

Cys PRDX subclass, PRDX1, 3 and 4 were recognized as monophyletic clusters. This, 

however, is not the case of PRDX2 node and, interestingly, the PRDX2 branch of 

modern fish (pufferfish, turbot, gilthead sea bream, tuna) was related to neighboring 

PRDX1 node rather than to PRDX2 cluster of mammals and primitive fish (lamprey). 
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Primers for qPCR amplification of PRDX isoforms were designed within 

codifying and non-codifying sequences (reverse primers of NKEFs) to assure the 

specificity of the amplified product, confirmed by curve melting analysis and DNA 

sequencing. Up to four housekeeping genes (β-actin, α-tubulin, elongation factor I, 18S 

rRNA) were used on gene expression analysis and given the expression profile within 

and among tissues, β-actin was finally chosen as the most reliable reference gene in the 

normalization procedure. On this basis, a representative tissue-specific profile of 

gilthead sea bream PRDX isoforms is shown in Figure 3. PRDX genes were 

ubiquitously expressed in gilthead sea bream, although most PRDX isoforms were 

mainly found in liver and secondly in skeletal muscle, heart and brain. Overall, the 

abundance of PRDX mRNAs was low in gills, adipose tissue, intestine and 

immunorelevant tissues (head kidney and spleen), but the relative mRNA expression of 

NKEF-B in comparison to other PRDXs genes was 10-20 higher in head kidney than in 

other tissues as inferred from this and the more specific transcriptional studies described 

below.   

In head kidney, the tissue-specific expression profile of PRDX isoforms was 

altered by pathogen exposure (Figure 4A). Thus, transcript levels of NKEF-A, PRDX3, 

5 and 6 were decreased significantly in the head kidney of R-PAR fish. By contrast, in 

R-NON PAR fish, the expression pattern of PRDX isoforms remained almost unaltered 

(PRDX4-6) or increased (NKEFs and PRDX3) in comparison to CTRL and R-PAR 

fish. Fish fed VO (that developed essential fatty acid deficiencies) also showed an 

altered expression profile of PRDXs in head kidney, and transcript levels of NKEFs and 

PRDX5 were significantly lower (Figure 4B). Prolonged exposure to high stocking 

densities also decreased the overall expression of PRDXs in the head kidney of on-
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growing gilthead sea bream, becoming transcript levels of PRDX4, 5 and 6 significantly 

lower (Figure 4C). 

The specific effects of dietary treatment and confinement exposure upon hepatic 

transcript levels of PRDXs are shown in Figure 5. In this case, we failed to detect any 

significant effect of either dietary treatment or high density rearing upon PRDX mRNA 

levels, which evidences not only a high but also more constitutive expression of PRDXs 

in the hepatic tissue. 

 

4. Discussion 

 

PRDXs constitute a class of ubiquitous enzymatic antioxidants that have been 

identified in various organisms ranging from prokaryotic bacteria to eukaryotic 

organisms including yeast, plants and animals [3,19]. In particular, up to six PRDXs 

have been described in mammals, and the present study highlights their conservation in 

a modern fish that belongs to family Sparidae, order Perciformes. This is, thereby, the 

first study, indentifying unequivocally six mammalian PRDX counterparts in a teleost 

fish. Importantly, the concomitant gene expression of mitochondrial PRDX3 and 5 was 

also addressed for the first time in fish, and this will serve to match the primary 

antioxidant defense of mitochondrial respiratory chain as evidenced in mice during the 

experimentally-induced myocardial infarction [43].  

The mapping of gilthead sea bream PRDX sequences also contributes to highlight 

invariant amino acids as well as the shared-derived amino acids within each cluster and 

vertebrate PRDX node. Hence, from already available sequences in fish, chicken and 

mammals it becomes conclusive that the major divergence among vertebrate PRDXs 

lies at the N-terminus with a strict conservation of amino acid residues surrounding the 



 

13 
 

N- and C-terminal catalytic Cys residues of PRDX1-4. Similar to mammals, the           

C-terminal region of the gilthead sea bream PRDX5 is smaller than those of true 2-Cys 

PRDX enzymes, and interestingly both in gilthead sea bream and sablefish the 

sequences identified as PRDX5 conserve the alternative Cys residue at the C-terminus 

belonging thus members of the atypical 2-Cys PRDX subclass. On the other hand, in a 

wide range of fish species, including gilthead sea bream, PRDX6 has only the N-

terminal Cys residue and this PRDX isoform was unequivocally recognized as a 

member of 1-Cys PRDX subclass. As indicated by several authors in fish [27,34,44] 

and mammals [19,45], the PRDX family can be viewed through vertebrate evolution as 

a highly conserved family of antioxidant enzymes, though the phylogenetic tree with the 

long NKEF-B branch within the true 2-Cys PRDX subclass might reflect the 

acquisitions of novel PRDX functions just after the split of tetrapods and modern fish. 

The expression of the six PRDX genes in the 11 gilthead sea bream tissues 

examined in this study confirms their ubiquity. Even though there might be a 

discrepancy between expression levels of the transcripts and the proteins, it still 

illustrates the importance of such enzymes in the basal defense metabolism of these 

tissues. This idea is reinforced by recent studies on knock-out or transgenic PRDX 

mice, which suggest that PRDX enzymes play a key role in several metabolic processes 

though they are not mandatory for life [17,46-48]. For instance, aberrant patterns of 

PRDX expression have been reported in the central nervous system of patients affected 

by neurodegenerative disorders [20], and reduced expression of PRDXs is a major 

factor in the etiology of cataracts [49]. Accordingly, a high expression level of NKEF-B 

and mitochondrial PRDXs was found in brain and eyes of gilthead sea bream. Since 

these organs and tissues are extremely vulnerable to oxidative damage, this PRDX 

expression pattern would contribute to protect them against oxidative insults. Liver is 
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also prone to be exposed to oxidative by-products of metabolic activity and it is 

remarkable the high constitutive expression of all the members of the PRDX family in 

the hepatic tissue of gilthead sea bream. Likewise, the intestinal mucosa is vulnerable to 

oxidative damage and NKEF-B was highly expressed in the intestine of gilthead sea 

bream, as reported for NKEF-A and B in pufferfish [27]. The tissue specific-distribution 

of PRDX6 has also been documented in fish, and both this and a previous study in 

turbot [34] support an important role of this particular PRDX isoform in liver, skeletal 

muscle and heart.  

 Modulation of PRDX expression by various stress signals has been observed by 

many research groups in both vertebrate and invertebrate species. Thus, the 

transcription of a Pacific oyster PRDX6 was increased by pollution [50], whereas a         

1-Cys PRDX was down regulated in Pseudopleuronectes americanus injected with 

hexavalent chromium [51], but a PRDX was up-regulated in Platichthys flesus injected 

with cadmium [52]. The expression of a 2-Cys PRDX gene was enhanced by acute 

hypo-osmotic stress in the crustacean Eurypanopeus depressus [53], whereas the oyster 

Saccostrea glomerata exposed to reduced salinity had a lower PRDX6 mRNA 

expression [54]. Thermal stress increased transcripts levels of PRDX4 and PRDX5 in a 

bivalve [55] and protein levels of a non-specified NKEF in gilthead sea bream [56]. All 

this draw a complex regulatory balance, and interestingly in the present study, the 

expression of the six PRDX genes remained unaltered in the hepatic tissue of gilthead 

sea bream challenged with either VO or high-rearing densities. In contrast, PRDX 

transcription in the head kidney was especially sensitive to aquaculture stressors, 

including a parasite challenge, which supports a role of PRDXs on the host immune 

defense of gilthead sea bream. This concept is not new and several authors have 

proposed that PRDX transcription is regulated with the dual purpose to attenuate 
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mitochondrial reactive oxygen species (ROS) production and turn-off the inflammatory 

and immune response for the prevention of the excessive host response. Thus, PRDX3 

knockout mice were more susceptible to LPS-induced oxidative stress than the wild-

type [48,57]. Also, transplantation of PRDX2¯/¯ bone marrow cells into wild type mice 

increased the number of peripheral blood mononuclear cells and bone-marrow derived 

dendritic cells [58]. At the same time, PRDXs in malaria parasites participate in the 

defense against the host attacks becoming these antioxidant enzymes good targets for 

chemotherapy [59].  

Available literature data show that most infection models of aquatic organisms 

with bacteria or virus or vaccination procedures mediate an increase in gene or protein 

expression of PRDXs [28,44,60,61], but some viral and bacterial models [62,63] induce 

a decrease in the expression of some PRDXs. The observed differences might be due to 

differences in the challenging agent, the tissue type and the kinetics of the infection 

making comparative analysis difficult. Furthermore, the information on the effect of 

parasite infection on PRDXs expression is very scarce. Hamsters infected with 

Opisthorchis viverrini showed up-regulation of PRDX6 at 30 days post infection [64], 

but there are no data concerning fish models. In our model of chronic parasite infection 

in which samples were taken in a time much longer that all the pathogen models thus far 

studied, it was noteworthy that the host expression of most PRDX isoforms was 

significantly down-regulated in head kidney. This fact can be viewed as a disease 

outcome at the later stages of the infection, in which an anti-inflammatory stage is 

promoted by the host to avoid the excessive immune reaction, as suggested by the lower 

IL-1β and TNF-α observed in the intestine of R-PAR fish [40]. In contrast and 

importantly, the transcription rate of NKEFs and PRDX3 was significantly up-regulated 

in R-NON PAR fish. This observation would be indicative of an enhanced immune 
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response, in agreement with the also increased expression of growth factors with 

immune-stimulatory properties [40].  

Oxidative damage can be treated nutritionally in different mammalian models 

[65]. In fish, nutritional intervention is also capable of modifying the expression of 

PRDXs. A low phosphorous diet decreased the expression of a NKEF in the pyloric 

caeca of rainbow trout in only 20 days [66], whereas kidney was marginally responsive 

to dietary phosphorus levels [67]. In Gadus morhua, substitution of fish meal by 

soybean meal produced no effect on the expression of PRDX-4 in the intestine [68]. In 

Sander lucioperca larvae, high levels of phospholipids increased the expression of 

hepatic PRDX1, whereas low levels decreased it [69]. In the present model, which 

induced a deficiency in EFAs, though dietary intervention did not alter the hepatic 

expression, it produced a marked down regulation in the head kidney. These fish also 

showed a lower plasma antioxidant capacity and depleted glutathione levels in liver, but 

the concurrent increase in the reduced/oxidized glutathione (GSH/GSSG) ratio was 

interpreted as an index of reduced oxidative stress that was coincident with an enhanced 

respiratory burst of blood leukocytes after PMA stimulation [38]. Given the inhibitory 

role of PRDXs on immune response, these observations were consistent with a 

significant down-regulated expression of NKEFs. Also, the results of the present study 

evidenced a significant down-regulated expression of PRDX5 that agrees with a 

reduced risk of oxidative stress in fish fed vegetal oils due to the low levels of tissue 

polyunsaturated fatty acids [37,70]. However, at the same time, these animals exhibited 

a lower buffer antioxidant capacity to face stressful oxidative challenges and this 

paradoxical dualism might explain, at least in part, why dietary requirements for 

optimal growth do not necessarily coincide with those for optimal functioning of the 

immune and antioxidant system. In particular, this was inferred from a recent study with 
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gilthead sea bream where enteromyxosis signs (lower growth, condition factor, specific 

growth rate, haematocrit) as well as E. leei  infection course were worse in fish fed diets 

with high levels of vegetable oils [71]. 

Several studies have addressed the effects of handling and crowding conditions 

on oxidative stress in fish. For instance, a microarray analysis of the time-course stress 

response of gilthead sea bream after acute confinement exposure (100 Kg/m3) 

highlighted a vast array of metabolic adjustments with an increased ROS scavenging 

accompanied by a general decline of ROS production [72]. Less evident are 

transcriptional changes after prolonged exposure to intermediate high- stocking 

densities, but some of them are persistent over time. For instance, the induced 

expression of mitochondrial chaperones of the heat shock protein 70 family (GRP75 or 

mortalin) was persistent in liver but not in head kidney after prolonged exposure to 

intermediate-high stock densities [39]. Despite this, we observed here that the head 

kidney expression of PRDX4-6 was significantly down-regulated by prolonged 

exposure to  high-rearing densities, which might be indicative of the well known 

immunosuppressive effects of  stressors related to rearing conditions [73, 74], regardless 

of changes of feed intake in a pair-fed experimental model. 

In summary, six gilthead sea bream PRDX isoforms were unequivocally 

recognized as PRDX mammalian counterparts with a ubiquitous expression that was 

tissue-specific for each PRDX isoform. Correlative evidence in challenged fish also 

supported a role on antioxidant defense and intracellular signaling, emerging the PRDX 

family as an integrative biomarker of fish health and welfare. However, further studies 

are needed to undertake specific effects and compensatory mechanisms in an oxidative 

milieu of intensive aquaculture conditions and epizootic outbreaks of different etiology. 
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Figure Legends 

 

Figure 1. (A) Amino acid alignment of gilthead sea bream PRDX. Black squares mark 

the position of catalytically active cysteine residues, and the alternative C-terminal 

cysteine of PRDX5 is marked with a white square. Conserved regions surrounding 

those cysteines are shaded in black, and conserved residues among most PRDX 

sequences are shaded in grey. Asterisks indicate identities among all six sequences. 

(B) Percentages of identity and similarity (in parentheses) between gilthead sea 

bream PRDXs. 

Figure 2. Phylogenetic tree of the six members of the PRDX family. GenBank accession 

numbers are provided in parentheses for each sequence. 

Figure 3. Tissue specific expression of the transcripts coding for the six gilthead sea 

bream PRDXs. Each value is the mean ± SEM of 2 stock animals. β-actin was used 

as housekeeping gene in the normalization procedure. 

Figure 4. Effect of three challenging experimental trials on the relative quantification of 

the transcripts coding for the six gilthead sea bream PRDXs in head kidney. β-actin 

was used as housekeeping gene in the normalization procedure. Each value is the 

mean ± SEM of 6-8 animals. Statistically significant changes among experimental 

conditions for a given transcript are marked with different letters (ANOVA-I 

followed by Student-Newman-Keuls test, P < 0.05) or asterisks (Student t-test, * P 

< 0.05, ** P < 0.01, *** P < 0.001). (A) Infection trial: CTRL = animals not 

exposed to parasite; R-NON PAR = exposed but not infected; R-PAR = exposed 

and infected. (B) Nutritional stress trial: FO = animals fed plant protein diets with 

fish oil; VO = animals fed plant protein diets with a blend of vegetable oils. (C) 
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Confinement exposure trial: LD-PF = low culture density (10 kg/m3); HD = high 

culture density (40-50 kg/m3). 

Figure 5. Effect of two challenging experimental trials on the relative quantification of 

the transcripts coding for the six gilthead sea bream PRDXs in liver. β-actin was 

used as housekeeping gene in the normalization procedure. Each value is the mean 

± SEM of 6-8 animals. (A) Nutritional stress trial:  FO = animals fed plant protein 

diets with fish oil; VO = animals fed plant protein diets with a blend of vegetable 

oils. (B) Confinement exposure trial: LD-PF = low culture density (10 kg/m3); HD 

= high culture density (40-50 kg/m3). 
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Table 1. Forward and reverse primers for quantitative real-time PCR. 
 

     
Gene Accession number  Primer sequence Position 
     
     
PRDX1 
(NKEF-A) 

GQ252679 
F CTC CAA GCA ATA ATA AGC CCA AAG 605-628 
R TCA CTC TAC AGA CAA CAG AAC AC 779-757 

     
PRDX2 
(NKEF-B) 

GQ252680 
F CAA GCA GTA AAT GTG AAG GTC 676-696 
R GAT TGG ACG CCA TGA GAT AC 774-755 

     

PRDX3 GQ252681 
F ATC AAC ACC CCA CGC AAG ACT G  430-451 
R ACC GTT TGG ATC AAT GAG GAA CAG ACC 579-553 

     

PRDX4 GQ252682 
F TCT TCC TCC TCA CCA CAC TCA CTT CTG 79-105 
R CGG GCT TTG AAA TCT TGG CTT TGC 240-217 

     

PRDX5 GQ252683 
F GAG CAC GGA ACA GAT GGC AAG G 590-611 
R TCC ACA TTG ATC TTC TTC ACG ACT CC 762-737 

     

PRDX6 GQ252684 
F AGA GAC AAG GAC GGA ATG C 418-436 
R TGT GGC GAC CTT CTT CTG 585-568 

     

ß-Actin X89920 
F TCC TGC GGA ATC CAT GAG A 811-829 
R GAC GTC GCA CTT CAT GAT GCT 861-841 

     
Elongation 
Factor 1 

AF184170 
F CCC GCC TCT GTT GCC TTC G 560-578 
R CAG CAG TGT GGT TCC GTT AGC 694-674 

 
α-tubulin 

 
AY326430 

 
F 

 

GAC ATC ACC AAT GCC TGC TTC 

 
514-534 

  
R GTG GCG ATG GCG GAG TTC 647-630 
   

18S rRNA AY993930 F GCA TTT ATC AGA CCC AAA ACC 182-202 

  
R AGT TGA TAG GGC AGA CAT TCG 316-296 
   

     

Table(s)



Table 2. Classification of identified genes according to BLAST searches. 

aNumber of sequences 
bGene identity determined through BLAST searches 
cBest BLAST-X protein sequence match (lowest E value) 
dExpectation value 
ePercentage of identity with human PRDX amino acid sequence. Number in parentheses is referred to amino acid similarity 
fNucleotide sequence between the two non-overlapping clones for PRDX1 was completed using a PCR approach with degenerated (F: 
5´-CAG CCA AAG CWG TKA TGC C) and specific (R: 5’-TAA TCG GGA GAG GTG TCT TTG G) primers  
 

Contig(s) Fa Contig size (nt) Annotationb Best matchc Ed Identity / 
similaritye 

iats013b06 f 4 1017 PRDX1 (NKEF-A) ACQ58049 1e-105 82 (88) 

iats104d11 4 838 PRDX2 (NKEF-B) ACQ58196 6e-105 77 (86) 

iats013f22 4 1039 PRDX3 ACQ58889 4e-128 74 (81) 

iats08b25g20 6 874 PRDX4 ACM47312 1e-130 79 (84) 

iats016020 3 1092 PRDX5 ACQ58198 3e-92 63 (72) 

iats08b05j10 2 757 PRDX6 ADJ57694 3e-103 75 (82) 

Table(s)



(A) 

 

NKEF-A ------------------------------------------------------------MAAGNAQIGKLAPD  14 

NKEF-B -----------------------------------------------------------------MSAGNARIG   9 

PRDX3  ----------------MAATIGRLLRTSARVAAGGLKVAACQHGASGAARAFTGPALQRACFSTSTSRWAPAVT  58 

PRDX4  MESVVHTNQKKELFCRPRAALLFFLLTTLTFAEEGAQVKNSQCHNYAGGHVYPGEAFRVPVSDHSLHLSKAKIS  74 

PRDX5  ----------------------------------------MLSITGSLIKNTRVVQCVRLLHTSPIARMPIQVG  34 

PRDX6  -------------------------------------------------------------------MPGILLG   7 

                         *     * *    *  *  *                                              

                                                 �                                    

NKEF-A FTAKAVMPDGQFRRTVKDLKMSDYRG-KYVVFFFYPLDFTFVCP-TEIIAFSDAADDFKKIGCEVIAAS-VDSH  81 

NKEF-B QPAPDFSATAVVNGQFKDIKLSDYKG-KYVVFFFYPLDFTFVCP-TEIVAFSDRADEFRSAGCEVIGCS-VDSH  80 

PRDX3  QPAPDFKATAVLNGEFKEMSLADFKG-KYLVLFFYPLDFTFVCP-TEIISFSDKASEFHDVNCEVVGVS-VDSH 129 

PRDX4  KPAPHFEGTAVINGEFKELKLSDYKG-KYIVFFFYPLDFTFVCP-TEIIAFSDRVHEFQAINTEVVACS-VDSQ 145 

PRDX5  EQLPAVEVQEGEPG--NKVAMDQLFKGKKGVLFAVPGAFTPGCSKTHLPGFVEQASELKGKGIQEVACISVNDA 106 

PRDX6  DEFPNFEADTTVG----RIKFHDFLGSSWRILFSHPRDFTPVCT-TELACAAKLTDEFKKRGVKMIALS-IDSV  75 

          *                            *  *  **  *  *                                      

                                                                                     

NKEF-A FSHLAWINTPRKQGGLG--TMKIPLVSDTRRTISTDYGVLKEDDG------IAYRGLFIIDDKGILRQITINDL 147 

NKEF-B FSHLAWINTPRKQGGLG--PMKIPLVADLTKTISKDYGVLKEDDG------IAYRGLFVIDDKGILRQITINDL 146 

PRDX3  FTHLAWINTPRKTGGLG--HIHIPLLSDLNKQISRDYGVLLEGPG------IALRGLFLIDPNGVVRHMSVNDL 195 

PRDX4  FTHLAWINTPRKQGGLG--PMKIPLLSDLTHQISKDYGVYLEDQG------HTLRGLFIIDGKGILRQITMNDL 211 

PRDX5  FVMAAWGKEHGTDGKVR-------MLADPTGAFTKAVDLLLDSDQ----------IVQVLGNKRSKRYSMLVED 163 

PRDX6  EDHKAWSKDVMSVSSAADKDLPFPIIADDKRELSVKLGMLDPDERDKDGMPLTARCVFVVGPDKKLKLSILYPA 149 

           **                     *                          *                          

                       �        �                                                     

NKEF-A PVGRSVEETLRLVQAFQFTDKHGEVCPAGWKPGSDTIKPDVQKSKDFFSKQ--------------------- 198 

NKEF-B PVGRSVDETLSLVQAFQHTDKHGEVCPAGWKPGSDTIIPDVEKSKTFFSKQ--------------------- 197 

PRDX3  PVGRCVEETLRLVKAFQFVETHGEVCPASWTPESPTIKPTPEGSKEYFEKVN-------------------- 247 

PRDX4  PVGRSVDETLRLVQAFQYTDKHGEVCPAGWKPGSDTIIPDPSGKLKYFDKLN-------------------- 263 

PRDX5  GVVKKINVEPDGTGLTCSLASSILSDL--------------------------------------------- 190 

PRDX6  TTGRNFDELLRVIDSLQLTAQKKVATPVDWKPGDKVMVIPSLSEAEAANLFPNGVTTKEVPSGKKYLRYTQP 221 

                                    * *                                              

 

 

 

(B) 

 
  NKEF-B PRDX3 PRDX4 PRDX5 PRDX6 

NKEF-A 83(91) 48(61) 52(59) 15(27) 23(41) 

NKEF-B  51(62)  55(62) 15(28) 23(40) 

PRDX3   52(66) 12(26) 15(30) 

PRDX4    12(24) 16(30) 

PRDX5     11(26) 
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Figure(s)
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FIGURE 3

Figure(s)
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Figure(s)
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Figure(s)


