Molecular Composition of Gases

Honors chemistry – Semester 2

Understand and use ideal gas law

Describe relationship between gas behavior and chemical formulas of gases

Apply reaction stoichiometry to gas stoichiometry

Key Terms

Ideal gas Ideal gas law Diffusion and Graham's Law Effusion Gay-Lussac's Law of combining volumes Partial pressure and Dalton's Law

Ideal Gas

- = hypothetical gas that perfectly follows gas laws
- Does not condense to liquid at low temp

- Has no attraction/repulsion between particles
- Particles with zero volume

No gas obeys gas laws perfectly

Gas laws good enough in most cases

What if we change temp, pressure <u>and</u> volume??

Boyle's Law

- + Charles' Law
- + Avogadro's Law
- = Ideal Gas Law

Ideal Gas Law

Ideal gas law combines four laws into one PV = nRT

P = pressure V = volume n = # moles T = temperature (in kelvin) R = constant

Ideal Gas Law

Value of R depends upon units of pressure

Pay attention to units ideal gas law problems!

Ideal Gas Law

Works well in most common settings

Fails under very <u>high pressure</u> or very <u>low temp</u>

Why?

- Intermolecular forces become a factor
- Volume of particles becomes non-trivial

How many moles of gas are contained 22.41 L at 101.325 kPa and 0 °C?

PV = nRTR = 8.314 L·kPa / mol·K

n = PV / RT

- = (101.325 kPa)(22.41 L) / (8.314 L·kPa / mol·K)(273 K)
- = 1.00 mol

What is the volume of 17.5 mol of H_2 at 2.75 atm and 385 K?

- PV = nRT R = 0.0821 L·atm / mol·K
- V = nRT/P
 - = ((17.5 mol)(0.0821 L·atm / mol·K)(385 K)) / (2.75 atm)
 - = 201 L

Calculate the pressure in kPa exerted by 43 mol of nitrogen in a 65 L cylinder at 5 °C. 1500 kPa

How many moles of air molecules are contained in a 2.00 L flask at 98.8 kPa and 25.0 °C? 7.98 x 10⁻² mol

Gas Stoichiometry

Stoichiometry = ratios between compounds in a chemical equation

<u>Ratio of gas volumes</u> = <u>ratio of moles</u> of those gases (Avogadro's Law)

Gas Stoichiometry

Example

 $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2 O_{(g)}$

Mole ratio $H_2: O_2 = 2:1$ $H_2: H_2O = 1:1$ $O_2: H_2O = 1:2$

Volume ratio $H_2: O_2 = 2:1$ $H_2: H_2O = 1:1$ $O_2: H_2O = 1:2$

Gas Stoichiometry

To find volume of gas produced in reaction you may need to use:

- mole ratio between chemicals
- volume ratio between gasses
- ideal gas law to convert moles to volume

Example

How many liters of hydrogen gas are produced at 280.0 K and 96.0 kPa if 1.74 mol sodium react with excess water?

 $2Na_{(s)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$

Gather information:

- $R = 8.314 L \cdot k Pa/mol \cdot K$
- T = 280.0K

 $n_{H2} = ? mol H_2$

P = 96.0 kPa n_{Na} = 1.74 mol Na V_{H2} = ? L H₂

Use mole ratio to find # moles of H₂ produced

Now use ideal gas law to find volume of H₂

What volume of O₂ gas is collected at 25 °C and 101 kPa from decomposition of 37.9 g potassium chlorate?

 $2\text{KCIO}_{3(s)} \rightarrow 2\text{ KCI}_{(s)} + 3\text{O}_{2(g)}$

Collect information:

 $R = 8.314 L \cdot k Pa/mol \cdot K$

T = 25 °C = 298 K

 $n = ? mol O_2$

P = 101 kPa m_{KClO3} = 37.9 g KClO₃ V = ? L O₂

Convert grams KClO₃ to moles

Use mole ratio to find moles of O₂

Use ideal gas law to find volume of O₂

Example

$$37.9 g KClO_3 \times \frac{1 mol KClO_3}{122.6 g} = 0.309 mol$$

$\frac{\text{KCIO}_{3}:O_{2} = 2:3}{0.309 \text{ mol KCIO}_{3} \times \frac{3 \text{ mol } O_{2}}{2 \text{ mol KCIO}_{3}} = 0.464 \text{ mol } O_{2}$

V = nRT/P

$$=\frac{0.464 \ mol \ O_2\left(\frac{8.314 \ L \cdot kPa}{mol \cdot K}\right) 298 \ K}{101 \ kPa}=11.4 \ L \ O_2$$

Practice

Liquid hydrogen and oxygen are burned in a rocket. What volume of water vapor at 555 °C and 76.4 kPa can be produced from 4.67 kg of H₂?

$$2H_{2(I)} + O_{2(I)} \rightarrow 2H_2O_{(g)}$$

Hint:

Convert kg H₂ to moles H₂

Use mole ratio H₂ : H₂O to find moles H₂O

Use ideal gas law to find volume of H₂O

$2.1 \times 10^5 L H_2 0$

Practice

How many grams of sodium are needed to produce 2.24 L of hydrogen at 23 °C and 92.5 kPa? $2Na_{(s)} + 2H_2O_{(I)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$

Hint:

Use ideal gas law to find moles of H₂ Use mole ratio H₂ : Na to find moles Na needed Convert moles Na to grams Na

3.87 g Na

Diffusion

Diffusion = the mixing of different gases by random molecular motion and collision

Gases spread from areas of high concentration to low concentration

Increases entropy

Heavy molecules move slower than light ones

Effusion

Effusion = gas escapes through a tiny hole under pressure

Rate of effusion inversely proportional to mass of molecule (light gasses effuse faster)

Think about it: Would H_2 or CO_2 leak out of small hole faster? Why?

Graham's Law

- Graham's Law: Rate of diffusion is inversely proportional to the square root of its mass
- Speed of two molecules, A and B, at same temp and pressure related by

$$\frac{V_A}{V_B} = \sqrt{\frac{M_B}{M_A}}$$

• Re-write equation as $\frac{1}{2}M_A V_A^2 = \frac{1}{2}M_B V_B^2$ (kinetic energy)

At same temp, heavy gas moves slower

Example

If O_2 moves at 480 m/s at room temp, how fast does SF_6 move?

Use Graham's Law

$$\frac{V_A}{V_B} = \sqrt{\frac{M_B}{M_A}}$$

$$\frac{V_{\rm SF6}}{V_{\rm O2}} = \sqrt{\frac{M_{\rm O2}}{M_{\rm SF6}}}$$

 $V_{SF6} = 220 \text{ m/s}$

Dalton's Law of Partial Pressure

In mixture of gasses, each gas exerts a partial pressure proportional to # moles of that gas

Total system pressure = sum of all the partial pressures

• $P_{total} = P_A + P_B + P_C + ...$

Example:

- A system has P₀₂ of 1.0 atm and P_{c02} of 3.5 atm
- $P_{total} = P_{O2} + P_{CO2} = 1.0 \text{ atm} + 3.5 \text{ atm} = 4.5 \text{ atm}$