Molecular Composition of Gases

Honors chemistry - Semester 2

Objectives

Understand and use ideal gas law

Describe relationship between gas behavior and chemical formulas of gases

Apply reaction stoichiometry to gas stoichiometry

Key Terms

Ideal gas
Ideal gas law
Diffusion and Graham's Law

Effusion

Gay-Lussac's Law of combining volumes
Partial pressure and Dalton's Law

Ideal Gas

= hypothetical gas that perfectly follows gas laws

- Does not condense to liquid at low temp

- Has no attraction/repulsion between particles
- Particles with zero volume

Gas Laws

No gas obeys gas laws perfectly

Gas laws good enough in most cases

What if we change temp, pressure and volume??

Boyle's Law
+ Charles' Law
+ Avogadro's Law
= Ideal Gas Law

Ideal Gas Law

Ideal gas law combines four laws into one

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\begin{aligned}
& \mathrm{P}=\text { pressure } \\
& \mathrm{V}=\text { volume } \\
& \mathrm{n}=\# \text { moles }
\end{aligned}
$$

$\mathrm{T}=$ temperature (in kelvin)
R = constant

Ideal Gas Law

Value of R depends upon units of pressure

Pay attention to units ideal gas law problems!

Ideal Gas Law

Works well in most common settings

Fails under very high pressure or very low temp

Why?

- Intermolecular forces become a factor
- Volume of particles becomes non-trivial

Example

How many moles of gas are contained 22.41 L at 101.325 kPa and $0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{R}=8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{n}=\mathrm{PV} / \mathrm{RT}
$$

$$
=(101.325 \mathrm{kPa})(22.41 \mathrm{~L}) /(8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{~K})(273 \mathrm{~K})
$$

$$
=1.00 \mathrm{~mol}
$$

Example

What is the volume of 17.5 mol of $\mathrm{H}_{\mathbf{2}}$ at 2.75 atm and 385 K ?

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$=((17.5 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})(385 \mathrm{~K})) /(2.75 \mathrm{~atm})$
$=201 \mathrm{~L}$

Practice

Calculate the pressure in kPa exerted by 43 mol of nitrogen in a 65 L cylinder at $5^{\circ} \mathrm{C}$.
1500 kPa

How many moles of air molecules are contained in a 2.00 L flask at 98.8 kPa and $25.0^{\circ} \mathrm{C}$?
$7.98 \times 10^{-2} \mathbf{~ m o l}$

Gas Stoichiometry

Stoichiometry = ratios between compounds in a chemical equation
$\underline{\text { Ratio of gas volumes }=\underline{\text { ratio of moles }} \text { of those gases }}$ (Avogadro's Law)

Gas Stoichiometry

Example
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Mole ratio
$\mathrm{H}_{2}: \mathrm{O}_{2}=2: 1$
$\mathrm{H}_{2}: \mathrm{H}_{2} \mathrm{O}=1: 1$
$\mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}=1: 2$

Volume ratio
$\mathrm{H}_{2}: \mathrm{O}_{2}=2: 1$
$\mathrm{H}_{2}: \mathrm{H}_{2} \mathrm{O}=1: 1$
$\mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}=1: 2$

Gas Stoichiometry

To find volume of gas produced in reaction you may need to use:

- mole ratio between chemicals
- volume ratio between gasses
- ideal gas law to convert moles to volume

Example

How many liters of hydrogen gas are produced at 280.0 K and 96.0 kPa if 1.74 mol sodium react with excess water?

$$
2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Gather information:
$\mathrm{R}=8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$
P = 96.0 kPa
$\mathrm{T}=280.0 \mathrm{~K}$
$\mathrm{n}_{\mathrm{H} 2}=$? $\mathrm{mol} \mathrm{H}_{2}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{Na}}=1.74 \mathrm{~mol} \mathrm{Na} \\
& \mathrm{~V}_{\mathrm{H} 2}=\text { ? } \mathrm{LH}_{2}
\end{aligned}
$$

Example

Use mole ratio to find \# moles of H_{2} produced

Now use ideal gas law to find volume of H_{2}

Example

What volume of O_{2} gas is collected at $25^{\circ} \mathrm{C}$ and 101 kPa from decomposition of 37.9 g potassium chlorate?

$$
2 \mathrm{KClO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}
$$

Collect information:

$$
\begin{array}{ll}
\mathrm{R}=8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{~K} & \mathrm{P}=101 \mathrm{kPa} \\
\mathrm{~T}=25^{\circ} \mathrm{C}=298 \mathrm{~K} & \mathrm{~m}_{\mathrm{KClO3}}=37.9 \mathrm{~g} \mathrm{KClO}_{3} \\
\mathrm{n}=? \mathrm{~mol} \mathrm{O}_{2} & \mathrm{~V}=? \mathrm{~L} \mathrm{O}_{2}
\end{array}
$$

Example

Convert grams KClO_{3} to moles

Use mole ratio to find moles of O_{2}

Use ideal gas law to find volume of O_{2}

Example

$37.9 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{KClO}_{3}}{122.6 \mathrm{~g}}=0.309 \mathrm{~mol}$
$\mathrm{KClO}_{3}: \mathrm{O}_{2}=2: 3$
$0.309 \mathrm{~mol} \mathrm{KClO}_{3} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{KClO}_{3}}=0.464 \mathrm{~mol} \mathrm{O}_{2}$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$=\frac{0.464 \mathrm{~mol} \mathrm{O}}{2}\left(\frac{8.314 \mathrm{~L} \cdot \mathrm{kPa}}{\mathrm{mol} \cdot \mathrm{K}}\right) 298 \mathrm{~K}, 11.4 \mathrm{~L} \mathrm{O} \mathrm{O}_{2}$

Practice

Liquid hydrogen and oxygen are burned in a rocket. What volume of water vapor at $555^{\circ} \mathrm{C}$ and 76.4 kPa can be produced from 4.67 kg of H_{2} ?

$$
2 \mathrm{H}_{2(I)}+\mathrm{O}_{2(I)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Hint:
Convert kg H_{2} to moles H_{2}
Use mole ratio $\mathrm{H}_{2}: \mathrm{H}_{2} \mathrm{O}$ to find moles $\mathrm{H}_{2} \mathrm{O}$
Use ideal gas law to find volume of $\mathrm{H}_{2} \mathrm{O}$
$2.1 \times 10^{5} \mathrm{LH}_{2} \mathrm{O}$

Practice

How many grams of sodium are needed to produce 2.24 L of hydrogen at $23{ }^{\circ} \mathrm{C}$ and 92.5 kPa ? $2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$

Hint:
Use ideal gas law to find moles of H_{2}
Use mole ratio H_{2} : Na to find moles Na needed
Convert moles Na to grams Na
3.87 g Na

Diffusion

Diffusion = the mixing of different gases by random molecular motion and collision

Gases spread from areas of high concentration to low concentration

Increases entropy

Heavy molecules move slower than light ones

Effusion

Effusion = gas escapes through a tiny hole under pressure

Rate of effusion inversely proportional to mass of molecule (light gasses effuse faster)

Think about it:
Would H_{2} or CO_{2} leak out of small hole faster? Why?

(b)

Graham's Law

- Graham's Law: Rate of diffusion is inversely proportional to the square root of its mass
- Speed of two molecules, A and B, at same temp and pressure related by

$$
\frac{V_{A}}{V_{B}}=\sqrt{\frac{M_{B}}{M_{A}}}
$$

- Re-write equation as $\frac{1}{2} M_{A} V_{A}^{2}=\frac{1}{2} M_{B} V_{B}^{2}$ (kinetic energy)

Example

If O_{2} moves at $480 \mathrm{~m} / \mathrm{s}$ at room temp, how fast does SF_{6} move?
Use Graham's Law

$$
\begin{gathered}
\frac{V_{A}}{V_{B}}=\sqrt{\frac{M_{B}}{M_{A}}} \\
\frac{V_{\mathrm{SF} 6}}{V_{02}}=\sqrt{\frac{M_{02}}{M_{\mathrm{SF} 6}}}
\end{gathered}
$$

$V_{\text {SF6 }}=220 \mathrm{~m} / \mathrm{s}$

Dalton's Law

of Partial Pressure
In mixture of gasses, each gas exerts a partial pressure proportional to \# moles of that gas

Total system pressure $=$ sum of all the partial pressures

- $P_{\text {total }}=P_{A}+P_{B}+P_{C}+\ldots$

Example:

- A system has $\mathrm{P}_{\mathrm{O} 2}$ of 1.0 atm and $\mathrm{P}_{\mathrm{co2}}$ of 3.5 atm
- $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{co} 2}=1.0 \mathrm{~atm}+3.5 \mathrm{~atm}=4.5 \mathrm{~atm}$

