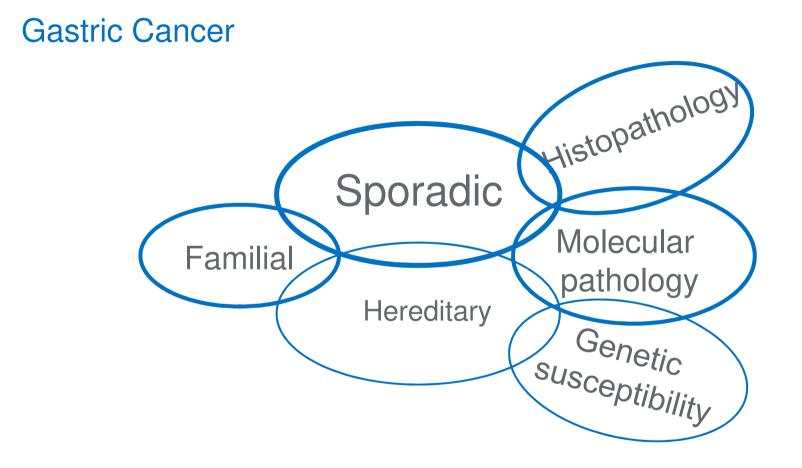


Molecular Pathology of Gastric Cancer

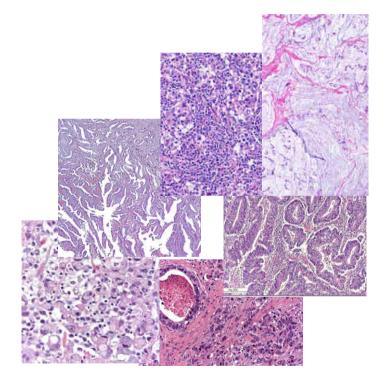
Novel insights and possible future applications

Fátima Carneiro i3S/Ipatimup & Medical Faculty/ CHS João Porto, Portugal

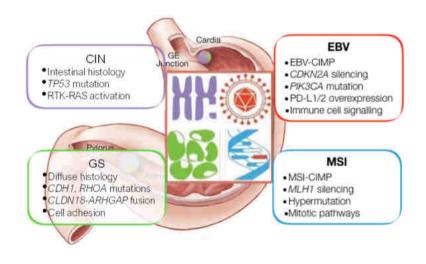


Outline

1. Major histological types of gastric cancer and the variants with clinical relevance (WHO 2018)

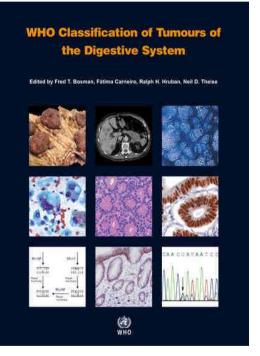

2. Major molecular classifications of gastric cancer

3. Molecular targets for therapy



Gastric cancer

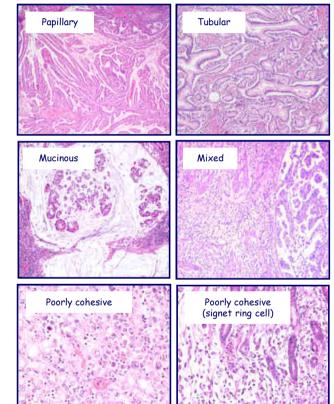
Morphological heterogeneity



Molecular heterogeneity

Gullo I et al Pathobiology 2018; TCGA Nature 2014

WHO Classification of Tumours of the Digestive System, 4th edition, 2010



WHO Classification of Gastric Carcinoma,4th edition, 2010

Gregory Y. Lauwers Fátima Carneiro David Y. Graham Maria-Paula Curado Silvia Franceschi Elizabeth Montgomery Masae Tatematsu Takenori Hattori

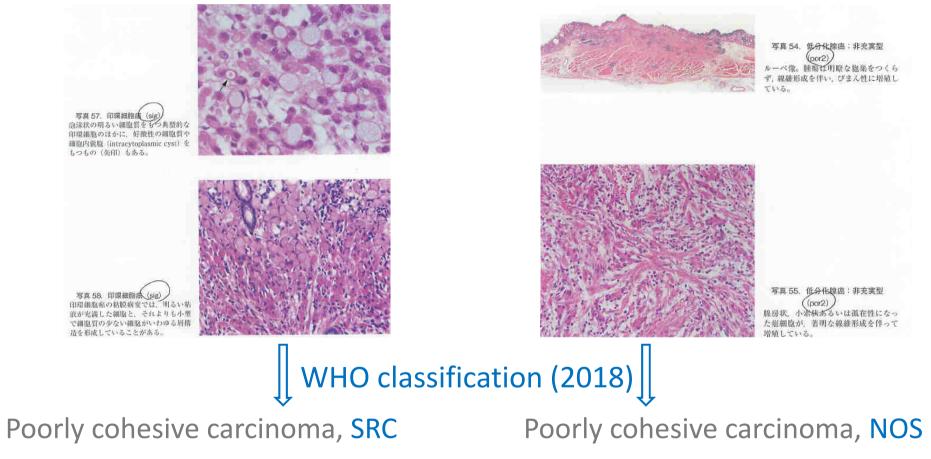
ICD-O Code

Adenocarcinoma	8140/3
Papillary adenocarcinoma	8260/3
Tubular adenocarcinoma	8211/3
Mucinous adenocarcinoma	8480/3
Poorly cohesive carcinoma	8490/3
(Signet-ring cell carcinoma and variants)	
Mixed carcinoma	8255/3

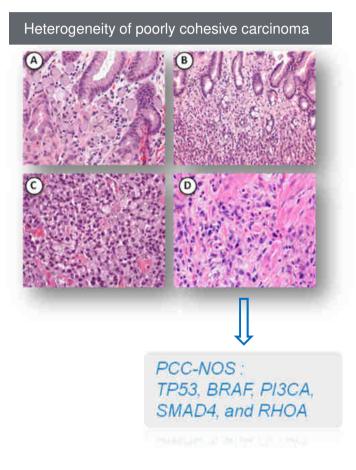
WHO-5th Edition – Editorial board

WHO Classification of Tumours 5th Edition, 1st Editorial Board, Digestive System 5-6 February 2018, IARC, Lyon, FRANCE

WHO, 5th edition


Laurén	Nakamura	JGCA	WHO
(1965)	(1968)	(2017)	(2018)
Intestinal	Differentiated	Papillary: pap	Papillary
		Tubular 1, well-differentiated: tub1	Tubular, well-differentiated
		Tubular 2, moderately-differentiated: tub2	Tubular, moderately-differentiated
Indeterminate	Undifferentiated	Poorly 1 (solid type): por 1	Tubular, poorly-differentiated (solid)
Diffuse	Undifferentiated	Signet ring cell carcinoma (SRC): sig	Poorly cohesive, SRC type
		Poorly 2 (non-solid type): por2	Poorly cohesive, NOS
Intestinal/diffuse/indeterminate	Differentiated/	Mucinous	Mucinous
	Undifferentiated		
Mixed		Description according to the proportion	Mixed
		(e.g. por2>sig>tub2)	
Not defined	Not defined	Special type:	Histological variants:
		Adenosquamous carcinoma	Adenosquamous carcinoma
		Squamous cell carcinoma	Squamous cell carcinoma
		Undifferentiated carcinoma	Undifferentiated carcinoma
		Carcinoma with lymphoid stroma	Carcinoma with lymphoid stroma
		Hepatoid adenocarcinoma	Hepatoid carcinoma
		Adenocarcinoma with enteroblastic	Adenocarcinoma with enteroblastic
		differentiation	differentiation
		Adenocarcinoma of fundic gland type	Adenocarcinoma of fundic gland type
			Micropapillary adenocarcinoma

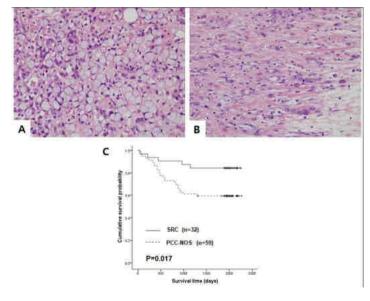
Laurén	Nakamura	JGCA	WHO
(1965)	(1968)	(2017)	(2018)
Intestinal	Differentiated	Papillary: pap	Papillary
		Tubular 1, well-differentiated: tub1	Tubular, well-differentiated
		Tubular 2, moderately-differentiated: tub2	Tubular, moderately-differentiated
Indeterminate	Undifferentiated	Poorly 1 (solid type): por 1	Tubular, poorly-differentiated (solid)
Diffuse	Undifferentiated	Signet ring cell carcinoma (SRC): sig	Poorly cohesive, SRC type
		Poorly 2 (non-solid type): por2	Poorly cohesive, NOS
Intestinal/diffuse/indeterminate	Differentiated/	Mucinous	Mucinous
	Undifferentiated		
Mixed		Description according to the proportion	Mixed
		(e.g. por2>sig>tub2)	
Not defined	Not defined	Special type:	Histological variants:
		Adenosquamous carcinoma	Adenosquamous carcinoma
		Squamous cell carcinoma	Squamous cell carcinoma
		Undifferentiated carcinoma	Undifferentiated carcinoma
		Carcinoma with lymphoid stroma	Carcinoma with lymphoid stroma
		Hepatoid adenocarcinoma	Hepatoid carcinoma
		Adenocarcinoma with enteroblastic	Adenocarcinoma with enteroblastic
		differentiation	differentiation
		Adenocarcinoma of fundic gland type	Adenocarcinoma of fundic gland type
			Micropapillary adenocarcinoma



Laurén	Nakamura	JGCA	WHO
(1965)	(1968)	(2017)	(2018)
Intestinal	Differentiated	Papillary: pap	Papillary
		Tubular 1, well-differentiated: tub1	Tubular, well-differentiated
		Tubular 2, moderately-differentiated: tub2	Tubular, moderately-differentiated
Indeterminate	Undifferentiated	Poorly 1 (solid type): por 1	Tubular, poorly-differentiated (solid)
Diffuse	Undifferentiated	Signet ring cell carcinoma (SRC): sig	Poorly cohesive, SRC type
		Poorly 2 (non-solid type): por2	Poorly cohesive, NOS
Intestinal/diffuse/indeterminate	Differentiated/ Undifferentiated	Mucinous	Mucinous
Mixed		Description according to the proportion	Mixed
		(e.g. por2>sig>tub2)	
Not defined	Not defined	Special type:	Histological variants:
		Adenosquamous carcinoma	Adenosquamous carcinoma
		Squamous cell carcinoma	Squamous cell carcinoma
		Undifferentiated carcinoma	Undifferentiated carcinoma
		Carcinoma with lymphoid stroma	Carcinoma with lymphoid stroma
		Hepatoid adenocarcinoma	Hepatoid carcinoma
		Adenocarcinoma with enteroblastic	Adenocarcinoma with enteroblastic
		differentiation	differentiation
		Adenocarcinoma of fundic gland type	Adenocarcinoma of fundic gland type
			Micropapillary adenocarcinoma

JGCA, Japanese Gastric Cancer Association (2017)

Poorly cohesive carcinoma: mutational signatures

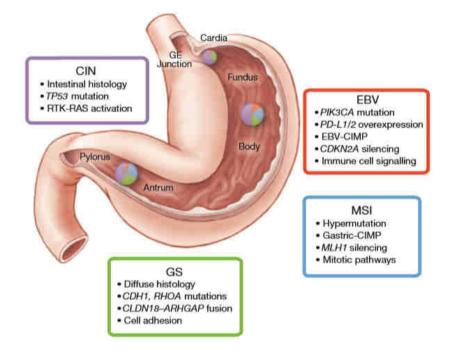


Histopathology

Histopathology 2018, 72, 556-568. DOI: 10.1111/his.13383

Gastric poorly cohesive carcinoma: a correlative study of mutational signatures and prognostic significance based on histopathological subtypes

Chae H Kwon,^{1,2} Young K Kim,^{1,2} Sojeong Lee,^{1,2} Ahrong Kim,^{1,2} Hye J Park,^{1,2} Yuri Choi,^{1,2} Yeo J Won,^{1,2} Do Y Park^{1,2} & Gregory Y Lauwers³


Consensus on the pathological definition and classification of poorly cohesive gastric carcinoma

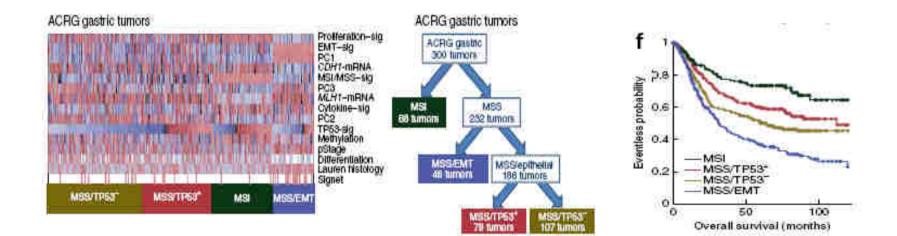
Gastric Cancer https://doi.org/10.1007/s10120-018-0868-0 SPECIAL ARTICLE Consensus on the pathological definition and classification of poorly cohesive gastric carcinoma C. Mariette¹ · F. Carneiro² · H. I. Grabsch^{3,4} · R. S. van der Post⁵ · W. Allum⁶ · Giovanni de Manzoni⁷ on behalf of European Chapter of International Gastric Cancer Association Poorl

Poorly-Cohesive Carcinoma - SRC (>90%) - SRC/NOS (10% - 90%) - NOS (<10%)

Laurén	Nakamura	JGCA	WHO
(1965)	(1968)	(2017)	(2018)
Intestinal	Differentiated	Papillary: pap	Papillary
		Tubular 1, well-differentiated: tub1	Tubular, well-differentiated
		Tubular 2, moderately-differentiated: tub2	Tubular, moderately-differentiated
Indeterminate	Undifferentiated	Poorly 1 (solid type): por 1	Tubular, poorly-differentiated (solid)
Diffuse	Undifferentiated	Signet ring cell carcinoma (SRC): sig	Poorly cohesive, SRC phenotype
		Poorly 2 (non-solid type): por2	Poorly cohesive, other cell types
Intestinal/diffuse/indeterminate	Differentiated/	Mucinous	Mucinous
	Undifferentiated		
Mixed		Description according to the proportion	Mixed
		(e.g. por2>sig>tub2)	
Not defined	Not defined	Special type:	Histological variants:
		Adenosquamous carcinoma	Adenosquamous carcinoma
		Squamous cell carcinoma	Squamous cell carcinoma
		Undifferentiated carcinoma	Undifferentiated carcinoma
		Carcinoma with lymphoid stroma	Carcinoma with lymphoid stroma
		Hepatoid adenocarcinoma	Hepatoid carcinoma
		Adenocarcinoma with enteroblastic	Adenocarcinoma with enteroblastic
		differentiation	differentiation
		Adenocarcinoma of fundic gland type	Adenocarcinoma of fundic gland type
		C 11	Micropapillary adenocarcinoma

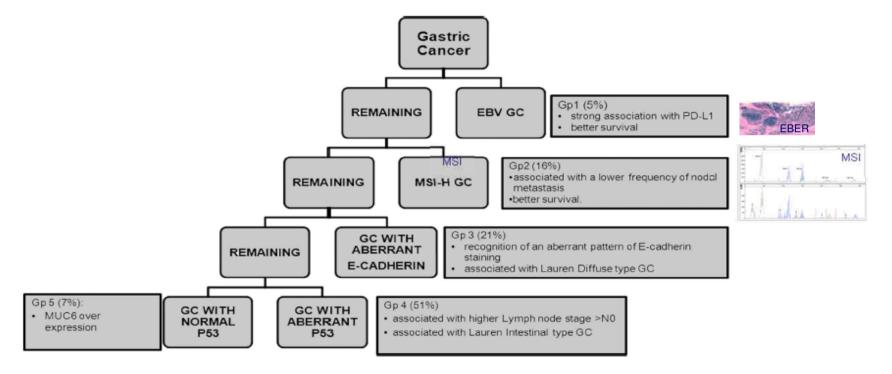
Molecular classification of gastric cancer (TCGA)

ARTICLE

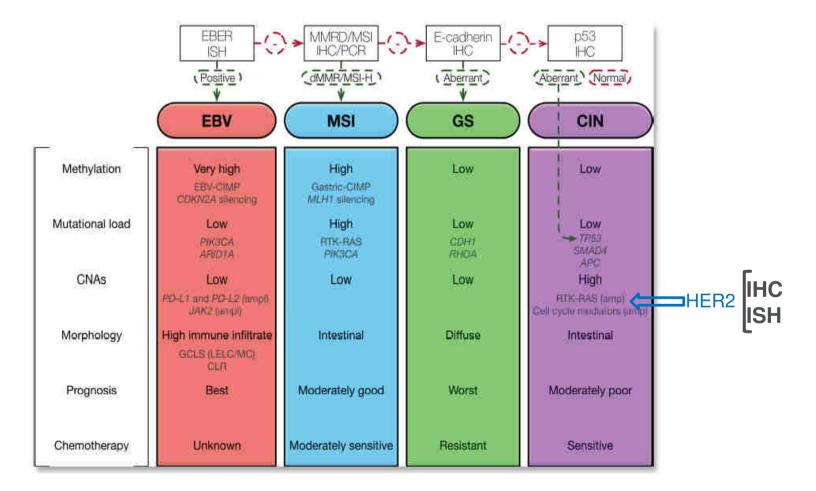

Mei 10 1030/nature 13400

Comprehensive molecular characterization of gastric adenocarcinoma

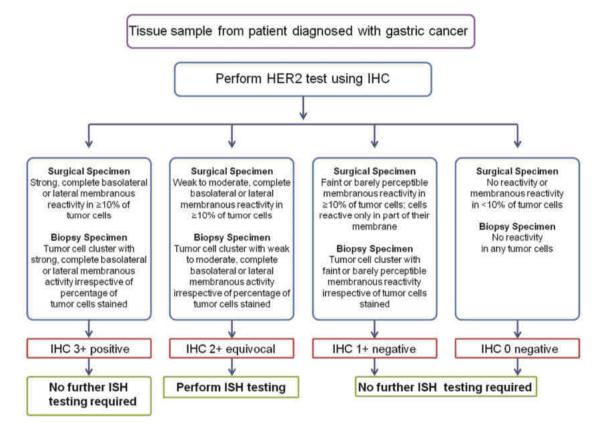
The Cancer Genome Atlas Research Network*


The Cancer Genome Atlas (TCGA) project; Nature 2014

Molecular classification of gastric cancer (ACRG)

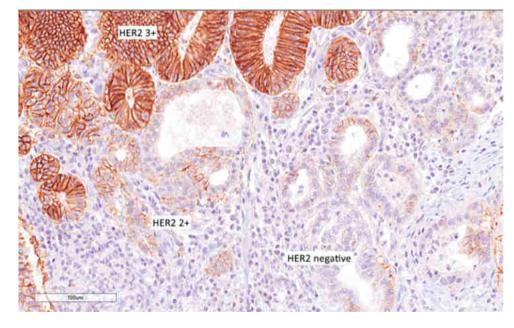

Asian Cancer Research Group. Cristescu R *et al*: Nature Medicine 21; 449, 2015

A protein and mRNA expression-based classification of gastric cancer

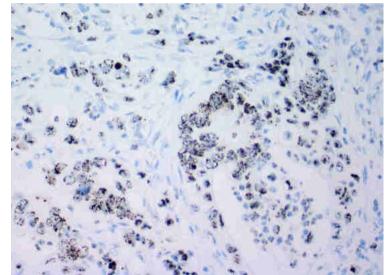


Setia M *et al.* Mod Pathol 29:772, 2016 Ahn S et al. Am J Surg Pathol 41:106, 2017

Molecular classification of gastric cancer



Evaluation of HER2 status

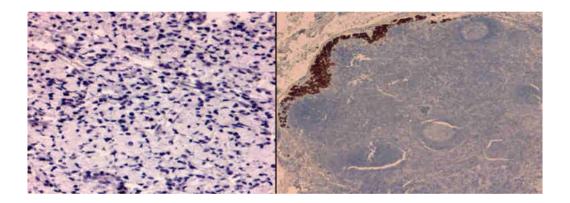


Evaluation of HER2 status

Immunohistochemistry

In situ hybridization

Minimum biopsy set for HER2 evaluation


Gastric Cancer DOI 10.1007/s10120-015-0502-3

ORIGINAL ARTICLE

Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer "Minimum biopsy set for HER2 evaluation in gastric and gastro-oesophageal cancer" Endosc Int Open. 2015 Apr;3(2):E165-70 doi: 10.1055/s-0034-1391359

Tominaga N et al. Gastric Cancer 2016. doi: 10.1007/s10120-015-0502-3.


Differential expression of HER2 in gastric carcinoma and lymph node metastases

Putative impact on the therapeutic management and prognosis of the patients

leni A et al. Int J Mol Sci 2014. doi: 10.3390/ijms151222331

HER-2 in gastric carcinoma: prognostic and/or predictive factor

Predictive factor

ToGA Trial

HER-2 overexpression in 22% of advanced gastric cancers; improved survival in patients treated with with trastuzumab

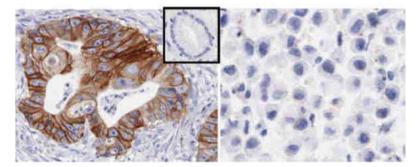
ASCO 2009 (LBA 4509)

Prognostic factor < YES (56%) NO (44%)

HER-2 amplification in intestinal-type gastric carcinoma

Blood born metastases Poor prognosis

David L *et al*; Mod Pathol 5:384, 1992 Barros-Silva J *et al*; Br J Cancer 100: 487,2009


HER2 status in gastric cancer (prognostic and/or preditive factor?)

• HER2 expression is not related to gastric cancer patient prognosis and only a very small subgroup of intestinal type GC may potentially respond to HER2 targeting therapy.

Cellular Oncology 32 (2010) 57-65 DOI 10.3233/CLO-2009-0497 IOS Press

HER2 expression in gastric cancer: Rare, heterogeneous and of no prognostic value – conclusions from 924 cases of two independent series

Heike Grabsch a.*, Shivan Sivakumar*, Sally Gray*, Helmut E. Gabbert* and Wolfram Müller*

HER2 status in gastric cancer (prognostic and/or preditive factor?)

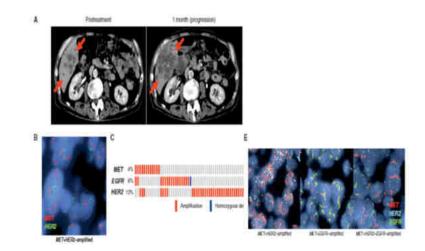
JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Level of *HER2* Gene Amplification Predicts Response and Overall Survival in HER2-Positive Advanced Gastric Cancer Treated With Trastuzumab

It is not only the quality but also the quantity

Resistance to HER2 targeted therapy in gastric cancer


•Patients initially respond to HER2 targeted therapy but eventually become resistant to treatment.

•Individual tumours with similar clinical stage have different clinical outcomes.

Putative causes

Heterogeneity of HER2 expression
Presence of ERBB2/EGFR co-amplification in the same tumour cells or even in the same tumour cells.

•HER2 copy number in ctDNA

Lee HE et.al. Eur J Cancer 2013; Kim J et al J Clin Invest 2014; Kwak EL et al Cancer Discov 2015; . Wang et al. Eur J Cancer 2018, 88: 92-100

Potential molecular targets in gastric cancer

Anti-EGFR

negative phase-3: EXPAND, REAL3

Lordick et al. Lancet Oncol 2013 Waddell et al. Lancet Oncol 2013

Anti-MET

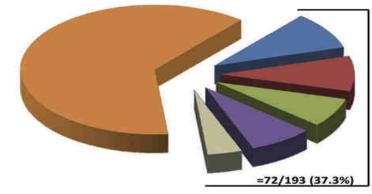
negative phase-3: MetMab, RiloMet

Shah et al. ASCO 2015 Cunningham et al. ASCO 2015

anti-FGFR

preliminary phase-2: Shine

Bang et al. ASCO 2015


KRAS

non druggable (?)

HER2

positive phase-3: ToGA

Bang et al. Lancet 2010

■FGFR2 ■KRAS ■ERBB2 ■EGFR ■MET ■RTK/RAS Absent

Deng N, et al. Gut 2012;61:673-84

Actionable gene-based classification by NGS toward precision medicine

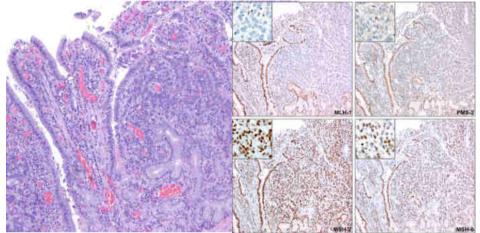
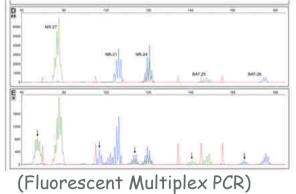

Number	Mutation gene	Frequency	SCNA gene	Alteration	Frequency
1	TP53	53.1%	ERBB2	AMP	12.1%
2	ARID7A	15.9%	CENE!	AMP	6.8%
3	CDH1	14.096	KRAS	AMP	5.8%
4	BRCA2	10.6%	ZNF217	AMP	5.8%
5	ARID18	10.1%	CDKN2A	DEL	5.396
6	ATM	9.7%	CDKN2B	DEL	5.346
7.	PIK3CA	8.7%	GATA4	AMP	4.396
8	APC	8.2%	MYC	AMP	2.4%
9	ACVR2A	7.2%	CCND3	AMP	1.9%
10	CHD2	6.3%	CD274	AMP	1.996
11	KMT2D	6.3%	CDK6	AMP	1.9%
12	RNF43	5,8%	EGFR	AMP	1.996
13	EPHA2	5.8%	FGFR2	AMP	1.996
14	TGFBR2	5:3%	JAK2	AMP	1.9%
15	FLCN	4.346	GNAS	AMP	1.946
16	PAL82	4.3%	CCND1	AMP	1,496
17	PTPRT	4.3%	MET	AMP	1,496
18	RADSO	43%	HSP90AB1	AMP	1.4%
19	BRCAT	3.996	SMAD4	DEL.	1.496
20	5TK11	3.9%	TER	DEL	1.4%6

Table 1	Frequent	gene alterations	in 207	Japanese gastric cancers

Genome Med. 2017;9. doi: 10.1186/s13073-017-0484-3


MSI in gastric carcinoma

Mismatch Repair Deficiency (MMRd)

(Immunohistochemistry)

Microsatellite Instability (MSI)

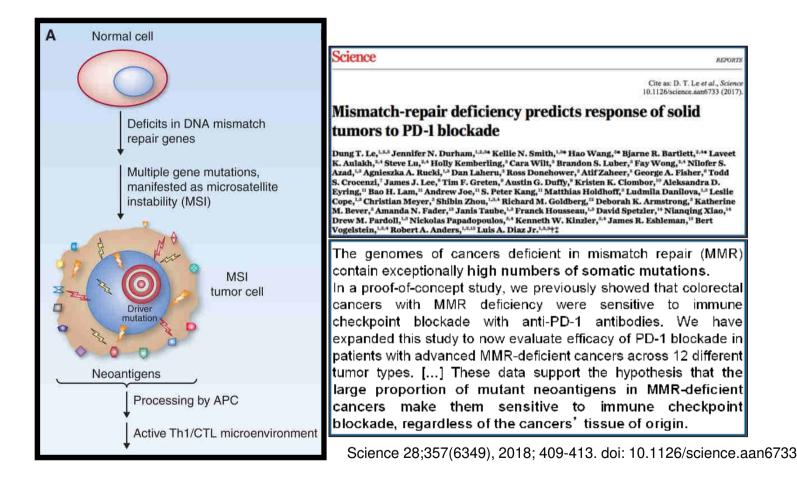
Next Generation Sequencing (NGS)

• Instability signatures

• Instability burden (correlation with overall survival)

MSI in gastric carcinoma

Molecular marker of good prognosis in sporadic gastric cancer (caused by *hMLH1* promoter hypermethylation)


Survival of patients

MSI and Prognosis

JAMA Oncol. 3(9):1197, 2017. doi:10.1001/jamaoncol.2016.6762

MSI and immunotherapy

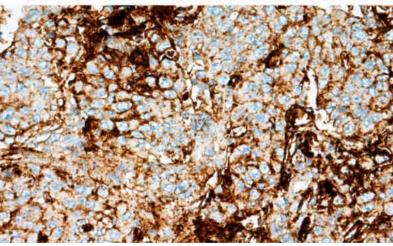
Gastric cancer and immune checkpoint blockade

Predictive biomarkers

MSI-high status

Science

REPORTS


Cite as: D. T. Le et al., Science 10.1126/science.aan6733 (2017).

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

PD-L1 expression

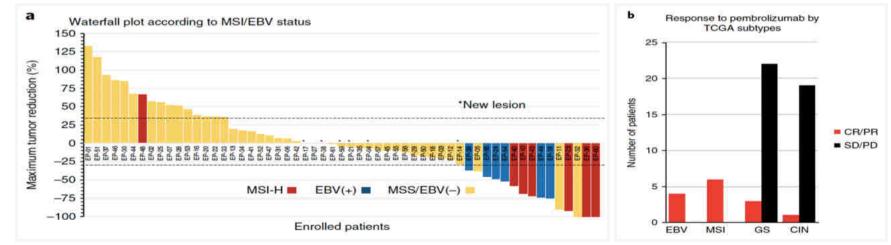
Original Article

Clinical Utility of the Combined Positive Score for Programmed Death Ligand-1 Expression and the Approval of Pembrolizumab for Treatment of Gastric Cancer

Le DT et al Science 2017; Kulangara K Arch Pathol Lab Med. 2018; Kim ST Nat Med 2018

Gastric cancer and immune checkpoint blockade

medicine



Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer

EBV+ and MSI-high status

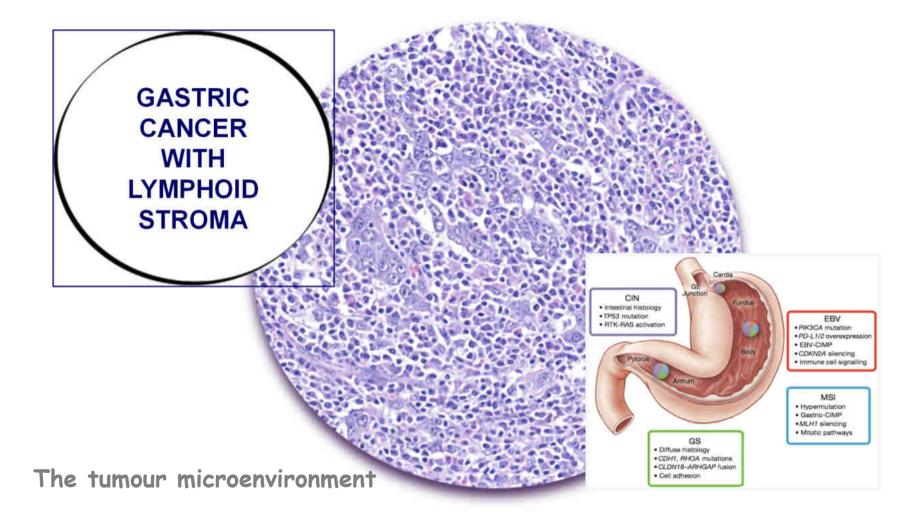
ARTICLES

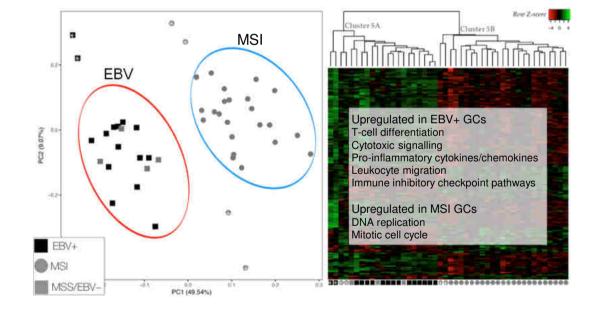
https://doi.org/10.1038/s41591-018-0101-2

Le DT et al Science 2017; Kulangara K Arch Pathol Lab Med. 2018; Kim ST Nat Med 2018

Predictive biomarkers

EBV infection and MSI in gastric cancer

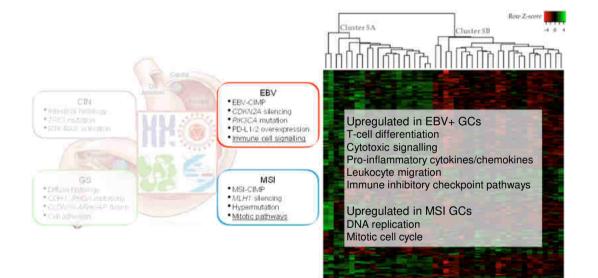



Article

The Transcriptomic Landscape of Gastric Cancer: Insights into Epstein-Barr Virus Infected and Microsatellite Unstable Tumors

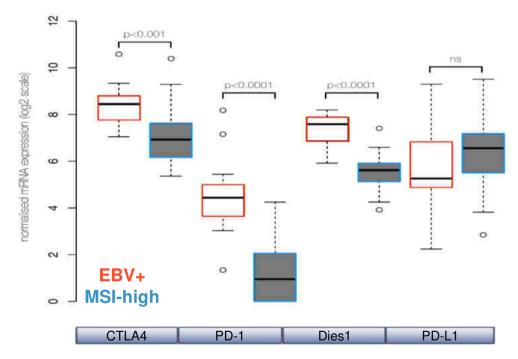
Irene Gullo ^{1,2,3,4}, Joana Carvalho ^{3,4}, Diana Martins ^{3,4}, Diana Lemos ^{3,4}, Ana Rita Monteiro ^{3,4}, Marta Ferreira ^{3,4}, Kakoli Das ⁵, Patrick Tan ^{5,6,7}, Carla Oliveira ^{3,4}, Fátima Carneiro ^{1,2,3,4} and Patrícia Oliveira ^{3,4,*}

EBV+ and MSI GCs displayed distinct transcriptomic signatures

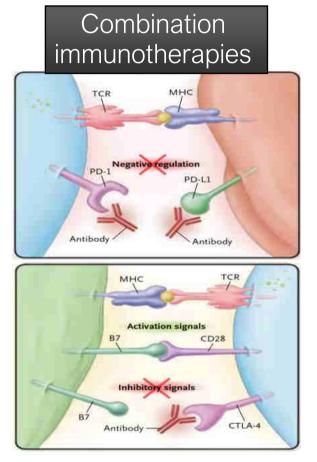


Unclustered analysis: differentially expressed (DE) genes

Gullo I et al: Int J Mol Sci, 2018


EBV+ and MSI GCs displayed distinct transcriptomic signatures

Unclustered analysis: differentially expressed (DE) genes


Gullo I et al: Int J Mol Sci, 2018

Immunotherapy targets in EBV and MSI gastric cancers

PD-L1 protein expression

- Cancer cells: No differences
- Immune cells: EBV+ showed higher expression than MSI-high cases (p=0.0052)

Ribas A et al NEJM 2012

Tumour types for which imune check point immunotherapies are FDA-approved

Tumor type	Therapeutic agent	FDA approval year
Melanoma	Ipilimumab	2011
Melanoma	Nivolumab	2014
Melanoma	Pembrolizumab	2014
Non-small cell lung cancer	Nivolumab	2015
Non-small cell lung cancer	Pembrolizumab	2015
Melanoma (BRAF wild-type)	lpilimumab + nivolumab	2015
Melanoma (adjuvant)	Ipilimumab	2015
Renal cell carcinoma	Nivolumab	2015
Hodgkin lymphoma	Nivolumab	2016
Urothelial carcinoma	Atezolizumab	2016
Head and neck squamous cell carcinoma	Nivolumab	2016
Head and neck squamous cell carcinoma	Pembrolizumab	2016
Melanoma (any BRAF status)	lpilimumab + nivolumab	2016
Non-small cell lung cancer	Atezolizumab	2016
Hodgkin lymphoma	Pembrolizumab	2017
Merkel cell carcinoma	Avelumab	2017
Urothelial carcinoma	Avelumab	2017
Urothelial carcinoma	Durvalumab	2017
Urothelial carcinoma	Nivolumab	2017
Urothelial carcinoma	Pembrolizumab	2017
MSI-high or MMR-deficient solid tumors of any histology	Pembrolizumab	2017
MSI-high, MMR-deficient metastatic colorectal cancer	Nivolumab	2017
Pediatric melanoma	Ipilimumab	2017
Hepatocellular carcinoma	Nivolumab	2017
Gastric and gastroesophageal carcinoma	Pembrolizumab	2017
Non-small cell lung cancer	Durvalumab	2018
Renal cell carcinoma	Ipilimumab + nivolumab	2018

James P. Allison and Tasuku Honjo

Discovery of cancer therapy by inhibition of negative immune regulation

Wei SC, Duffy CR, Allison JP. Cancer Discovery 2018. doi: 10.1158/2159-8290.CD-18-0367

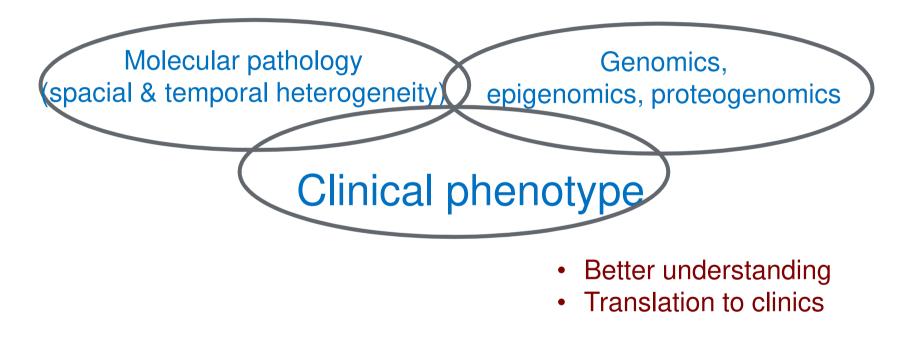
Clinical relevance of molecular diagnosis

Thomas Gruenberger^g, Michel Ducreux^h, Fatima Carneiroⁱ,

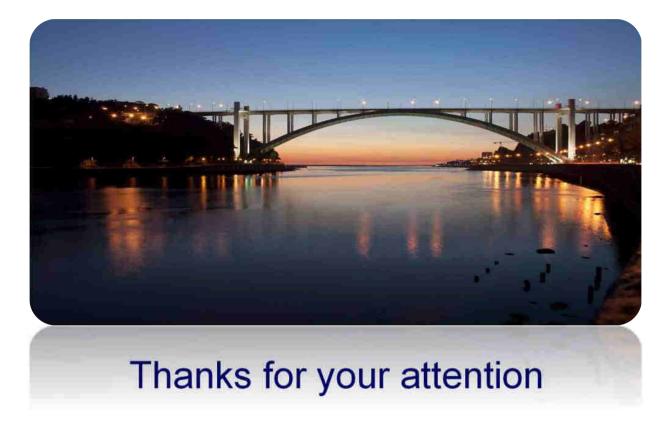
Eric Van Cutsem ^{j,1}, Thomas Seufferlein ^{k,1}, Wolff Schmiegel ^{a,1,*}

Clinical relevance of molecular diagnosis

	Brief summary of the recommen Tumor entity	idations. Molecular genetic marker	Recommendation
	Desophageal and HER2 status gastric adenocarcinoma HER2 status re-testing Liquid biopsy in HER2-testing		Part of standard diagnostics For patients with metastatic or recurrent cancer when initially HER2-neg, or borderline low/1–2+/FISH negative Not enough data, not recommended in routine use
Table 1			
Brief summary of the rec	commendations.		
Tumor entity	Molec	ular genetic marker	Recommendation
Oesophageal and HER2 status		status	Part of standard diagnostics
gastric adenocarcinoma	na HER2	status re-testing	For patients with metastatic or recurrent cancer when initially HER2-neg. or borderline low/1-2+/FISH negative
	Liquid	biopsy in HER2-testing	Not enough data, not recommended in routine use
	MSI		Recommended for stage IV alone
	EBV i	n tissue	Not recommended in routine use
	PD-L1	expression	Not recommended in routine use
	FGFR	expression/gene fusions	Not recommended in routine use
Esophageal SCC	Molec	ular diagnostic	No biomarkers are recommended in routine use
			routine use


Baraniskin A et al. Eur J Cancer, 2017

Take home lessons


- Established predictive biomarkers, such as HER2 (*a*nti-HER2 therapy benefits patients with unresectable or metastatic/recurrent HER2-positive GC, and HER2 testing is used to predict potential therapy response)
- 2) Biomarkers partly established and/or under development such as:
 - a. Receptor tyrosine kinases;
 - b. MSI status and EBV infection;
 - c. Biomarkers for cancer immunotherapy (Tumour mutational load, density of intratumoural CD8+ T cell infiltrates and PD-L1 expression);
 - d. Two molecular subtypes (MSI-high and EBV + might be potential good candidates for immunotherapy targeting of the PD-L1/PD-1 axis).

Upfront molecular testing. Is it time yet?

Integrated Molecular Pathology

- Lloyd M et al: Pathology to enhance precision medicine in oncology: Lessons from landscape ecology. Adv Anat Pathol 22: 267, 2015
- Salto-Tellez M & Kennedy M:Integrated molecular pathology: the Belfast model. Drug Discovery Today 20: 1451, 2015

