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ABSTRACT.  This chapter presents an introduction to the rapidly expanding field of molecular
simulation methodologies for calculations of fluid-phase coexistence, with particular emphasis on high
pressure and supercritical systems.  The first part of the chapter deals with methodological issues.  The
focus is on Monte-Carlo techniques for the determination of free energies and phase equilibria.  Particle
insertion techniques are first briefly discussed.  The Gibbs ensemble Monte Carlo method is then covered
in detail.  While the original method is applicable primarily to simple model potentials, recently
developed configurational-bias sampling techniques allow the study of a broad range of systems.  The
second part of the chapter reviews applications of molecular simulation techniques to systems of interest
for supercritical processes.  Phase diagrams of pure components, including water, hydrocarbons, ionic
and polymeric fluids are first discussed.  Studies of simple mixtures reveal that conformal solution
theories have a significantly greater range of applicability than previously thought.  The chapter
concludes with a discussion of the future promise and limitations of molecular simulation techniques for
the study of fluid phase equilibria.

1.  Introduction

The focus of this chapter is on molecular simulation of phase equilibria.  The phase behavior of a
system is typically the most crucial piece of information needed for modeling processes
involving supercritical fluids.  More generally, the need for accurate description of phase
equilibria for the multicomponent fluid mixtures that are encountered in chemical processes has
been the main driving force for the development of chemical engineering thermodynamics over
the past fifty years.  As a result, high-quality experimental data and good modeling techniques
are now available for many classes of mixtures.  Particularly useful for supercritical fluids are
equation-of-state methods described in detail in the chapter by S. Sandler in this book.
Nevertheless, mixtures such as aqueous or highly polar systems at elevated pressures, systems
containing polymeric molecules, ionic solutions, associating fluids and solutions with
amphiphilic molecules present significant difficulties.  Even for systems for which current
modeling techniques are adequate, the models are mostly phenomenological, relying on
regression of experimental data for determination of their parameters.  The models cannot be
extrapolated with confidence to conditions outside the range of experimental measurements.
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The lack of accurate predictive techniques severely limits the ability of engineers to
propose innovative solutions to old or new problems.  For example, a promising process for the
destruction of aqueous wastes is supercritical water oxidation that relies on the reaction of
organic contaminants with oxygen at pressures and temperatures above the critical point of
water, discussed in the chapter by G. Brunner in this book.  Process design and successful scale-
up without excessive pilot plant trials requires modeling techniques that can deal with
aqueous/organic mixtures at high temperatures and pressures.  Equations of state presently
available rely on experimental data to obtain the binary mixture parameters.  Experimental data
for these systems, however, are scarce and expensive to measure.

An attractive alternative to conventional engineering modeling techniques is large-scale
molecular simulations starting from an assumed intermolecular potential model between the
components of interest.  Referring to the schematic diagram of Figure 1, molecular simulation
methods provide an intermediate layer between direct experimental measurements and
engineering models.  The latter rely on assumptions about the intermolecular forces as well as
theoretical approximations (such as mixing rules for equations of state) to render the statistical
mechanics tractable.  Because fewer approximations are made, molecular simulation methods
can provide results applicable over wider ranges of process conditions and transferable from one
set of conditions to another (e.g. predicting high pressure fluid-fluid equilibria from parameters
determined from low-pressure vapor-liquid measurements).
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Figure 1.  Relationships between engineering and molecular simulation-based
predictions of phase equilibria.
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In addition to their utility as a means of modeling experimental data, molecular
simulations are also useful for providing accurate data for comparisons with approximate
theoretical techniques.  For example, integral-equation methods discussed in the chapters by Lee,
Cummings, Meroni and Lomba have found widespread applications in supercritical fluid
modeling.  The validity of closure relationships and the accuracy of the calculated thermo-
dynamic and structural properties can be established by comparisons of results of simulations
and integral equation theories for the same model potentials.

The possibility for calculating phase equilibria by simulation has existed from the early
days of computer simulation, but has been until recently impractical for multicomponent systems
due to the large number of simulations required and the significant uncertainties associated with
the calculations.  A number of recent developments have greatly expanded the range of systems
that can be practically studied by simulation.  The Gibbs ensemble Monte Carlo simulation
technique [1] is perhaps the most frequently used current technique for the calculation of phase
equilibria in multicomponent fluid mixtures.

It is of interest to compare the relative costs of experimental, simulation-based and
theoretical determination of phase equilibria.  For a single coexistence point for a binary fluid
mixture, the recent review of Gubbins [2] gives a cost of $2,600 and 2 days of a trained
scientist's time for experimental measurement, $30 and 35 CPU hours for a Gibbs ensemble
simulation of a 2-site Lennard-Jones model, and very little cost or time for applying an
engineering correlation.  While these figures are approximate, the relative cost of simulation
versus experiment seems reasonable.  Simulation can of course never replace experiment as a
truly reliable source of data, but the rapidly expanding computing capabilities justify optimism
for an increased role of phase equilibrium simulations in engineering practice.

There are two main classes of molecular simulation techniques, namely molecular
dynamics and Monte Carlo methods.  Molecular dynamics methods are based on solving the
time-evolution equations for a system and can be used for the determination of transport
properties and time correlation functions.  Molecular dynamics simulations of near-critical and
supercritical fluids are discussed in the chapter by Cummings in this book.  The focus of the
present chapter is on Monte Carlo techniques.  Molecular simulation methods are covered in
significantly more detail than is possible in the present book by the standard textbook in the
field, Allen and Tildesley [3].  Recent progress in the field is summarized in the proceedings of a
NATO School devoted to computer simulation [4].  A recent review of applications of molecular
simulation to supercritical extraction is also available [5] with a somewhat different emphasis
from the present chapter.

The structure of the chapter is as follows.  The first half of the chapter is primarily
methodological.  An introduction to importance sampling Monte Carlo is given, followed by
brief descriptions of the main methods available for the determination of free energies and phase
equilibria.  Interfacial simulations, particle insertion and thermodynamic integration methods are
covered.  The Gibbs ensemble methodology for direct determination of fluid phase equilibria is
then described in detail.  The recently proposed Gibbs-Duhem integration method for obtaining
phase diagrams without particle insertions is also discussed.  The section on methodology closes
with a discussion of specialized techniques designed to deal with multisegment, polymeric and
associating systems.  The remainder of the chapter is devoted to a review of applications to date
of molecular simulation techniques to systems of interest for supercritical processes.  Phase
diagrams of pure components, including water and hydrocarbon systems are first discussed.
Recently determined phase diagrams at high pressures for pure ionic and polymeric fluids are
also covered.  Studies of binary and multicomponent simple mixtures reveal that simple
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conformal solution theories have a significantly greater range of applicability than previously
thought.  The chapter concludes with a discussion of the future promise and limitations of
molecular simulation techniques for the study of fluid phase equilibria.

2.  Molecular Simulation Methodologies for Calculating Phase Equilibria

2.1.  INTERMOLECULAR POTENTIAL MODELS AND PERIODIC BOUNDARY CONDITIONS

A recent review of intermolecular potential models useful for condensed phase simulations is
available [6].  In the present section, we can offer only a brief summary of a few basic concepts.
For most simulations of systems of interest to chemical engineers classical intermolecular
potentials are used and quantum effects are ignored.  In real fluids, three-body forces contribute
significantly to the configurational energy of condensed phases [7].  However, simulations using
fully explicit three-body potentials are still prohibitively expensive in terms of computational
resources required, as the number of interactions that need to be calculated is proportional to the
third power of the number of interactions centers.  For this reason, it is common practice to
utilize simplified potentials that are "effective pair-wise additive."  What the last terms means is
that three-body forces are effectively incorporated in the potential parameters, which do not
represent the actual forces acting between a pair of isolated molecules in vacuum.

Many common intermolecular potential models contain terms of the Lennard-Jones type,
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where Uij is the configurational energy of interaction between centers i and j located at a distance
r, and "ij  and #ij  characteristic energy and size parameters for the ij interactions.  This potential,
although not a good representation of the actual intermolecular potential for any particular
substance or pair of substances [7] enjoys continued popularity for reasons of computational
simplicity and because of the availability of a large body of results for its properties.

More realistic potentials are often constructed by using multiple interaction centers, often
of the Lennard-Jones type, to describe molecules that deviate significantly from spherical shape.
For polar molecules, dipole, quadrupole and charge interaction terms can also be added.  As an
illustration of the type of intermolecular potential models used for water, we show in Figure 2
the Simple Point Charge (SPC) model for water [8] for which we later present phase equilibrium
results obtained from molecular simulations.  The model contains a single Lennard-Jones
interaction center located on the oxygen atom and partial fixed charges on the oxygen and
hydrogen atoms.  Realistic potentials for multisegment molecules such as hydrocarbons often
contain terms to describe internal molecular flexibility.  Such terms could include bond bending
or, less commonly, bond stretching energies, and torsional potentials that are periodic functions
of the dihedral angle defined by four consecutive carbon atoms.
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Figure 2.  SPC model of water [8].

No matter which intermolecular potential model is used, simulations must be performed
on a finite system, although in most cases the properties we are interested in are those of a
macroscopic collection of interacting molecules.  The difference is quite significant for typical
system sizes that can be comfortably handled with present-day computers.  To illustrate this
point, consider a spherical droplet of a liquid composed of simple spherical atoms.  A droplet
containing 1000 atoms has a radius of 7 atomic diameters at a typical liquid density.
Correlations of atomic positions in a liquid away from a critical point extend to a distance of a
few atomic diameters, and therefore the majority of atoms in such a droplet would be sufficiently
close to the interface to be affected by it.  The standard trick used to overcome this potential
difficulty is periodic boundary conditions.  The simulated system is placed in a space-filling
central cell, for example a cube in three dimensions.  The simulated system consists of an infinite
number of replicas of the central cell.  An illustration of periodic boundary conditions is given in
Figure 1 of the chapter by Cummings.  Despite the artificial periodicity imposed by this scheme,
properties calculated for systems away from critical points are then not greatly affected by
system size, and can be considered representative of the properties of a bulk fluid.

For most potential models, it is relatively straight-forward to correct the results for the
effects of intermolecular potential cutoff on the calculated thermodynamic properties.  The
corrections are normally performed assuming that there is a uniform distribution of particles for
distances greater that the ones contained within the central simulation cell.  A special difficulty
arises in this respect for potentials that contain polar and ionic terms, which decay with the third
and first power of distance, respectively.  For these systems, the most commonly used method
for long-range corrections is the Ewald summation method, in which all the potential
contributions from the complete infinite periodic array of cells are summed with the aid of
Fourrier transformations.  A tutorial introduction to Ewald sums and program segments for
applying it to molecular simulations of polar and ionic systems is given in [3].

2.2.  IMPORTANCE SAMPLING MONTE CARLO

The main molecular simulation method used for the calculation of free energies and phase
equilibria is the Monte Carlo method, even though some of the techniques described in this
section have counterparts using molecular dynamics.  In general, Monte Carlo methods in
statistical mechanics are used to sample configuration space of a system with a specified
Hamiltonian.  In the canonical ensemble (constant temperature, volume and number of particles),
states occur with probability density, %m

NVT ,
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where m  is the configurational energy of a state and & = 1 / k TB , where kB is Boltzmann's
constant and T is the absolute temperature.

In order to sample configuration space with the correct probability density, the following
scheme is used.  An initial state is constructed, in principle arbitrarily, but preferably close to the
set of states of interest.  The state is then perturbed, commonly by moving a particle to a new
position or orientation, thus generating a new trial state.  The a priori probability, (mn, of
generating trial state n from state m must satisfy the important condition of microscopic
reversibility,

( (mn nm= , (3)

in order to sample the correct limiting distribution (equation 2).  In addition, the set of moves
selected must be ergodic, covering the whole of configuration space for the systems of interest.
Acceptance of the new state is then performed probabilistically (hence the name Monte Carlo),
most commonly according to the Metropolis criterion [9],
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where )mn  is the acceptance probability of trial state n.  A significantly more extensive
introduction to the topic of importance sampling Monte Carlo can be found in [3].

A Monte Carlo simulation consists of a large number of "steps" performed according to
the acceptance criterion of equation 4.  How large a number is required depends on the
complexity of the intermolecular potential studied and the desired accuracy of the results.  For
determining thermodynamic properties of a fluid interacting with a Lennard-Jones potential,
simulations of approximately 104-105 Monte Carlo steps per particle are normally sufficient.

2.3.  SIMULATIONS WITH AN EXPLICIT INTERFACE

Conceptually, the easiest method for calculating phase equilibria by simulation is to set up a
system at conditions at which more than one phases would be present in a macroscopic
thermodynamic system.  Applications of direct interfacial simulations have been reviewed by
Rowlinson and Widom [10] and more recently by Gubbins [11].  Despite the apparent simplicity
of the technique, there are several problems associated with setting up and equilibrating a system
with two coexisting phases.  In particular, simulations involving many particles and very long
equilibration times are often required [12].  Even with large systems, a significant fraction of
particles are close to the interface (see discussion in section 2.1).  When the density difference
between the two coexisting phases is small, it is often not possible to set up a stable two-phase
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system.  Finally, for fluids with low vapor pressures, for any reasonable system size, practically
no particles can be found in the gas phase [13].  For these reasons, direct interfacial simulations
have found relatively few application in predicting phase equilibria.

2.4.  WIDOM TEST PARTICLE INSERTIONS AND GRAND CANONICAL MONTE CARLO

In classical thermodynamics, the chemical potential of a component is a quantity for which no
simple mechanical interpretation can be given.  The chemical potential is a "statistical" property
and as such is harder to obtain from simulations than "mechanical" quantities such as the
configurational energy or pressure.  An elegant theorem proposed by Widom [14] provides a
simple way of calculating chemical potentials by simulation.

&µ & %= ! ! +ln exp lnUtest , (5)

where µ  is the chemical potential of a component in a system (to within a temperature-
dependent constant that does not affect phase equilibrium calculations), Utest  is the energy
experienced by a "test" particle of that component placed in a random position in the simulation
cell and %  is now the molar density.  Figure 3 illustrates the technique.  The darker-shaded
circles represent "real" particles of a fluid that participate in the simulation, while the lighter-
shaded "test" particles are placed at random positions in the system and their energy of
interaction with the real particles determined for use with equation 5.

Figure 3.  Schematic representation of the Widom test particle method for the
determination of chemical potentials.

As illustrated in Figure 3, most attempted insertions of test particles result in overlap with
existing particles in the fluid, with Utest  large and positive.  These insertions do not contribute
significantly to the ensemble average in equation 5.  For simple single-site intermolecular
potentials, such as the Lennard-Jones potential, sampling using the Widom test particle method
can be performed throughout the fluid state.  Sampling fails for the ordered solid phases.

The chemical potential of a system can also be obtain from  Grand Canonical Monte Carlo
(GCMC) simulations, which have a comparable range of applicability as the Widom test particle
technique.  In GCMC, the simulated system is considered at conditions of constant temperature T
(&=1/kBT), volume V, and chemical potential µ.  In addition to particle displacements, attempted
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creations and destructions of particles are performed and accepted with the following
probabilities.
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where N is the instantaneous number of particles in the system.  In GCMC simulations,
therefore, the density of the system that corresponds to a given value of the chemical potential is
obtained at the end of the simulation.

The determination of phase coexistence from Widom test particle insertions or GCMC
then proceeds in the following way.  Consider the schematic diagram shown in Figure 4, which
refers to a one-component system.  From a series of canonical simulations with Widom test
particle insertions, or a series of GCMC simulations, one can obtain the dependence of the
chemical potential on pressure for the gas and liquid.  The coexistence condition is found at the
point of intersection of the two branches.  Away from the critical point, a small change in
chemical potential for the liquid results in a large change in pressure, because the liquid is
incompressible, and the corresponding line is almost horizontal.  For this case, the number of
simulations required is quite small.  These ideas have been applied by Möller and Fischer [15]
and Lotfi et al.[16] to obtain the coexistence properties of the pure Lennard-Jones fluid to a very
high accuracy.  Uncertainties of a fraction of a percent for the liquid density and approximately
1% for the gas density and vapor pressure were achieved.

For binary and multicomponent systems, or for one-component systems close to a critical
point, the method described suffers from the serious disadvantage that the number of simulations
required to locate the point of phase coexistence rapidly increases.  For these systems, the
method of choice is the Gibbs ensemble Monte Carlo technique described in section 2.5.

µ

PPsat

Liquid

Gas

Figure 4.  Schematic representation of the search technique for locating the
point for phase coexistence for a one-component system using chemical

potential determination methods. Psat  is the vapor pressure.
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2.5.  THE GIBBS ENSEMBLE TECHNIQUE

2.5.1  Basic Methodology  The Gibbs ensemble Monte Carlo simulation methodology [1] was
developed  specifically in order to enable direct simulations of phase coexistence in fluids.  A
schematic of the technique is shown in Figure 5.  Let us consider a macroscopic system with two
phases coexisting at equilibrium.  Gibbs ensemble simulations are performed in two microscopic
regions within the bulk phases, away from the interface.  In simulations, this implies that each
region is embedded within periodic boundary conditions with replicas of itself.  The
thermodynamic requirements for phase coexistence are that each region should be in internal
equilibrium, and that temperature, pressure and the chemical potentials of all components should
be the same in the two regions.  System temperature in Monte Carlo simulations is specified in
advance.  The remaining three conditions are respectively satisfied by performing three types of
Monte Carlo "moves", displacements of particles within each region (to satisfy internal
equilibrium), fluctuations in  the volume of the two regions (to satisfy equality of pressures) and
transfers of particles between regions (to satisfy equality of chemical potentials of all
components).

The original methodology was developed for simulations at constant total volume,
appropriate for the study of equilibria in one-component systems.  Panagiotopoulos et al. [17]
extended the methodology to calculations at constant total system pressure, an approach which is
commonly applied to binary and multicomponent mixture simulations.  Smit et al. [18] and Smit
and Frenkel [19] developed significantly the statistical mechanics of the ensemble and provide
equations for the computation of chemical potentials in Gibbs ensemble simulations.

2.5.2  Improving sampling efficiency  The main bottleneck in achieving convergence in Gibbs
ensemble simulations is typically chemical potential equilibration through particle transfers
between phases.  For dense fluid phases, especially for complex, orientation-dependent
intermolecular potentials, configurations with "holes" in which an extra particle can be
accommodated are highly improbable, and the converse step of removing a particle also involves
a large cost in energy.  Because of these factors, the probability of successful particle transfers
becomes prohibitively low.  The same difficulties are present in chemical potential determination
methods based on particle insertions, such as the Widom technique and grand canonical Monte
Carlo.  There have been several proposed modifications to the Gibbs methodology in order to
improve its efficiency for dense fluids and complex potentials.  The particle-identity exchange
algorithm [20] is appropriate for the study of mixtures of components that differ greatly in
molecular size and has been inspired by the semi-grand canonical ensemble technique [21].
Stapleton and Panagiotopoulos [22] have proposed a combination of the excluded volume map
sampling technique [23] and the Gibbs ensemble, applicable to systems with very dense fluid
phases.  Cracknell et al. [24] have described a rotational insertion bias method applicable to
dense phases of structured particles (e.g. water).   The method biases the orientation, rather than
the position, of the particle to be transferred.

The configurational-bias sampling techniques described in section 2.7.1 are the most likely
to significantly improve sampling efficiency for Gibbs ensemble simulations.  Configurational-
bias techniques has been combined with the Gibbs ensemble [25,26] to obtain the phase behavior
of multisegment molecules.
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Figure 5.  Schematic diagram of the Gibbs ensemble simulation technique for direct
determination of phase equilibria.

2.5.3  Approaching critical points  Approaching critical points by molecular simulation methods
is complicated by the use of a finite system and periodic boundary conditions.  At a critical
point, a characteristic correlation length for the macroscopic thermodynamic system approaches
infinity, in the manner described in the chapter by Levelt-Sengers in the present volume.  This
divergence cannot be captured by a simulation which constrains fluctuations to the box length
used.  The techniques of finite size scaling,  to which an introduction is given in [27] can be used
to extrapolate the results from the finite systems to the limit of infinite system size.  In the
following paragraph, we restrict our attention to the topic of determining critical points from
Gibbs ensemble simulations, a topic of considerable interest in the study of supercritical fluids
by simulation.

The recent study of Wilding and Bruce [28] for the two-dimensional Lennard-Jones fluid
using Grand Canonical Monte Carlo represents the best that can be done at present using finite-
size scaling ideas for continuous potentials.  In that study, the location of the critical point was
determined to a high accuracy by performing a series of long simulations (106-107 Monte Carlo
steps per particle) for two different system sizes, <N> . 100 and <N> . 400, along the
coexistence line in the chemical potential/inverse temperature plane.  This plane is defined by the
condition that the probability density of observing a given number of particles in the simulation
box shows two peaks of equal height.  Exactly at the critical point, the shape of the probability
density function is a universal scaling function independent of system size.  As Allen [27] points
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out, the serious "critical point seeker" must have such a scaling function available for the chosen
ensemble, boundary conditions and universality class, and have available a large amount of
computing time.

For more approximate estimates of the location of the critical point, a series of Gibbs
ensemble simulations for different system sizes can be used to extrapolate to infinite system size.
The calculation consists of two parts, one in which the critical point for a given system size is
obtained by extrapolating the coexistence curve below the critical point, and one in which the
infinite system size critical point is from the critical point data for different system sizes.  In
many studies of continuous-space models, the rectilinear diameter rule and the scaling
relationship for the width of the coexistence curve are used to estimate the location of the critical
point.
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where & is an exponent that takes the value 1/2 according to classical (mean-field) theories, and
is close to 1/3 in three dimensions for real fluids and in modern theories of critical phenomena.

The shape of the coexistence curve obtained from Gibbs ensemble simulations at the
vicinity of the critical point has been examined by Mon and Binder [29] for the two-dimensional
lattice Ising model, and by Recht and Panagiotopoulos [30] for a continuous-space square-well
fluid in two and three dimensions.  In two dimensions, a cross-over in the shape of the
coexistence curve from an apparent non-classical exponent away from the critical point to a
classical value at the vicinity of the critical point was observed in both lattice and off-lattice
simulations.  This behavior was not apparent for the three-dimensional off-lattice simulations.

2.6.  GIBBS-DUHEM INTEGRATION

While the Gibbs ensemble technique can be used to obtain the densities and compositions of two
coexisting phases at one temperature from a single simulation, it relies on insertions of particles
to equalize the chemical potentials, and therefore experiences difficulties for dense phases and
long molecules.  If a single point on the coexistence curve is known (e.g. from long Gibbs
ensemble simulations), the remarkably simple and novel method of Kofke [31,32] has the
potential of enabling the calculation of the complete phase diagram from a series of constant-
pressure simulations that do not involve any transfers of particles.  For one-component systems,
the method is based on integrating the Clasius-Clapeyron equation over temperature.
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where "sat" implies that the equation holds on the saturation line, and -H  is the difference in
enthalpy between the two coexisting phases.  The right-hand side of equation 8 involves only
"mechanical" quantities that can be simply determined during a simulation.  The method to date
has been applied only to one-component systems.  However, it is unique among the methods
described in this chapter in that it is also applicable to equilibria involving solids.
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2.7.  HOW TO DEAL WITH "HARD" SYSTEMS

In the context of the present chapter, "hard" systems are ones for which the simple insertion-
based techniques for the calculation of free energies and phase equilibria described in sections
2.4 and 2.5 are not practical.  Such system include multisegment and polymeric molecules as
well as strongly interacting or associating systems.  Some of the advanced techniques applicable
to these systems are covered in more detail than is possible here in [33].

2.7.1  Rosenbluth and Rosenbluth biased sampling methods  The main obstacle for applying the
Widom test particle or the Gibbs ensemble method to calculate chemical potentials and phase
equilibria for multisegment, polymeric, or strongly interacting systems is that random insertions
of a new particle in an existing system of even moderate density are likely to result to overlap
with existing particles, as illustrated in Figure 6, representing a schematic snapshot from a Gibbs
ensemble simulation of a pentameric fluid.  On the other hand, in the exceedingly rare instances
that such an insertion is successful, the resulting energy change is highly favorable, and the
resulting configurations are heavily weighted in calculating the thermodynamic properties.

Figure 6.  Illustration of the difficulty in insertion of an additional
multisegment particle in a dense phase.

Rosenbluth and Rosenbluth [34] presented a powerful idea that is currently finding
numerous applications.  The idea is best explained in the original context of simulation of a
polymeric system constrained on a lattice, although most of applications of interest to the topic
of this book would be for continuous-space models.  Consider the system shown in Figure 7.  It
consists of a simple two-dimensional 5x5 square lattice on which 10  monomers are present.
Now suppose that we would like to compute the chemical potential of a hexamer.  The
approximate probability of finding six unoccupied positions is, to a very crude approximation

valid at the limit of infinite temperature, 
625 10

25
5! .% & % , which represents the probability of

success of Widom-type (unbiased) insertions.  Now consider the following procedure for
inserting the hexamer into the fluid.  First, select an unoccupied  position in the fluid to insert the
first bead, and assign a "Rosenbluth weight" to the insertion equal to the fraction of sites that
were unoccupied, in this case 15/25.  Next, let us consider the sites at the vicinity of the first
bead.  Out of four possible growth directions, one is occupied (taking, of course, periodic
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boundary conditions into account).  We select one of these growth directions at random and
assign a weight of 3/4, again equal to the fraction of unoccupied sites.  For the next bead, we do
not allow for the possibility of the chain "backtracking", and thus the number of available growth
directions is three, out of which one is unoccupied (weight of 1/3).  Growth proceeds in this
fashion until all six beads have been inserted.  The total Rosenbluth weight of the configuration

just generated is 15
25

3
4

1
3

2
3

1
3

3
3

1
30

× × × × × = .  The procedure just described will be almost

always successful, resulting in growth of the full hexamer with Rosenbluth weight typically in
the vicinity of a few percent.  Any property related to the single inserted chain (e.g. the chemical
potential according to equation 5) can be calculated by summing the contributions of each
configuration generated multiplied by the Rosenbluth weight of each.  The properties calculated
in this fashion are fully equivalent, if configuration space is adequately sampled, to the properties
we would have calculated with unbiased insertions.  The advantage we gain is in efficiency.
Instead of sampling rare events with large contributions to the properties, we sample frequent
events with small contributions.

Figure 7.  Schematic illustration of the Rosenbluth and Rosenbluth algorithm.

The original Rosenbluth and Rosenbluth scheme was quite limited in scope, dealing with
configurational properties of single-chain systems without taking into account energy
considerations.  Significant contributions to the development of efficient growth-based
techniques for calculating configurational properties and chemical potentials in dense chain
systems have been made recently [35,36,37].  These schemes share with the original Rosenbluth
and Rosenbluth algorithm the undesirable feature that system configurations are generated with a
probabilities different from their Boltzmann weights.  The configurational-bias Monte Carlo
method [38,39] overcomes this limitation, and allows for efficient sampling of polymer
conformations directly with the correct limiting distribution, thus allowing incorporation of
Rosenbluth and Rosenbluth sampling within conventional Metropolis Monte Carlo simulations.
The combination of configurational-bias Monte Carlo with the Gibbs ensemble to compute phase
diagrams of macromolecular systems has already been mentioned [25,26].
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2.7.2  Incremental Chemical Potentials of Polymeric Systems  Even with Rosenbluth and
Rosenbluth sampling, the computation of free energies and phase equilibria for chain molecules
of length more than 20 or 30 segments encounters serious sampling difficulties.  The "Chain
Increment" method [40] can be used to obtain the chemical potential difference,

µ µ &chain chainn n kT U( ) ( ) ln exp+ ! = ! ! +1 , (9)

where µchain n( ) is the chemical potential of a chain of length n and U+ is the energy experienced
by a segment added at the end of a polymeric molecule.  In principle, n simulations are required
to determine the chemical potential of an n-mer using this method, so it is quite expensive
computationally.  The number of simulations required can be reduced by one of the following
two ways.  The chain increment method can be combined with configurational-bias schemes
described in section 2.7.1 to grow more than a single segment at a given time.  In addition, it has
been found [41] that the chain length dependence of the incremental chemical potential is often
weak and the following approximate relationship holds.

µ µ µchain chain segmentn n n n n( ) ( ) ( ) ( ). + ! ×0 0 0 , (10)

where n0 is the minimum chain length above which the total chemical potential is approximately
linear in chain length.

2.7.3  Cluster Algorithms  Many systems of strongly interacting particles, for example ionic
systems in a medium of low dielectric constant or surfactant systems, exhibit strong clustering
that makes moves of independent particles (e.g. single-ion moves) extremely sluggish.  For
successful simulation of such systems, it is necessary to use algorithms that facilitate the
movement of large parts of the system.  The Swedsen and Wang [42] algorithm was originally
developed to facilitate Monte Carlo sampling of near-critical systems.  The original algorithm
generates configurations with a probability that is proportional to their respective Boltzmann
weights, thus allowing for 100% acceptance of the trial moves [33].  Wu et al. [43] propose an
extension of the original algorithm for self-assembling systems.  The key step in the Swedsen
and Wang algorithm is the creation of "virtual bonds" between neighboring particles.  A
schematic diagram for application of such a scheme to a continuous-space simulation is shown in
Figure 8.  The probability of bond formation between two particles is a function only of their
distance in the Wu et al. modification.  Once the clusters have formed, they are moved as a
whole (that is, without changing the intracluster distances), as shown for one of the clusters in
the right-most panel of Figure 8.  The acceptance probability of the cluster moves is not simply
the Metropolis criterion (equation 4), but takes into account the probabilities of bond formation
of particles at the old and new cluster positions [43].
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Figure 8.  Cluster moves in the spirit of Swedsen and Wang [42].

3.  Some Applications to High Pressure and Supercritical Systems

Section 2 of this chapter presented a brief introduction to methodologies for the
calculation of free energies and phase equilibria by Monte Carlo simulation.  In the present
section, some representative applications to systems of potential interest to the supercritical fluid
community are described.  I use a broad definition of the area of supercritical fluids to include
systems such as water, hydrocarbons and ionic fluids at high pressures and temperatures.  Some
of the more traditional areas of application of supercritical fluids, namely supercritical equilibria
involving solid phases are not represented because little work has been performed in these areas
using molecular simulation.  The reason for this is that most of the methods described in section
2 for the determination of phase behavior are not applicable to solid phases.

3.1  WATER

Because of its technological importance, water has been the subject of a large number of
simulation studies.  Modeling of high pressure aqueous systems is important for development of
supercritical water oxidation processes.  A review of molecular simulation studies of liquid water
is given in the contribution by Cummings in this book.  The present section focuses on the phase
behavior of realistic intermolecular models for water.  The first Gibbs ensemble simulation study
of such a model was by de Pablo and Prausnitz [44]  who used the TIP4P model of Jorgensen et
al. [45] and covered the range from approx. 100°C to the critical point.  The same model, as well
as the older TIPS2 model [46], has been studied at lower temperatures by Cracknell et al. [25],
using the rotational insertion bias method.  The SPC model [8] has been studied by Mezei [47]
using a cavity-biased Gibbs ensemble technique.  In these three studies, spherical truncation of
the potential at distances beyond half the box length was performed.  Some dependence of the
results on system size is expected for polar and ionic systems when spherical truncation is used,
because of the fluctuation in density and number of molecules in each of the two phases.  The
Ewald summation technique which is less sensitive to system size was used by de Pablo et al.
[48] to study the SPC model for water .

Results for the coexistence curves of the TIP4P and SPC models for water are compared to
experimental data in Figure 9. The SPC model reproduces the dielectric constant of water much
better than the TIP4P model [49], but its phase behavior deviates significantly from experiment,
especially at higher temperatures.  One possible reason for this is the following [50].  One feature
of the SPC model that makes it accurate at ambient conditions is that it has a dipole moment of
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2.24 D, higher than the bare dipole moment of water of 1.8 D, in order to incorporate
polarizability effects that are important for the high density liquid.  Strauch and Cummings [50]
examined the phase behavior of an SPC-like model for which the dipole moment was reduced to
1.8 D in the gas phase.  The results were only slightly better than the unmodified SPC model.
We conclude that an intermolecular potential model for water that reproduces accurately
dielectric properties of the liquid at ambient conditions and the phase behavior at high
temperatures is not yet available.

Figure 9.  Phase diagrams for SPC ( ) and TIP4P (•) models for water
[48,44] compared to experimental results (00).

3.2  IONIC FLUIDS

The phase behavior of fluids containing ionic species is of particular interest for applications
related to supercritical water oxidation.  Small concentrations of ions have a strong influence on
the phase behavior of water at the vicinity of its critical point.  Simulations of the vapor-liquid
behavior of a mixed solvent electrolytes for which only the liquid phase contains salt were
performed by Strauch and Cummings [51].

The phase behavior of a different type of ionic system consisting of a pure molten salt
modeled as charged hard spheres of uniform diameter, was studied by Panagiotopoulos [52].
Study of such systems is relevant for determining the phase envelope at the very high
temperatures near the critical point (approx. 3500 K for molten NaCl) at which experimental
measurements are not possible.  These calculations were performed in the Gibbs ensemble with
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single-particle transfers.  The total electroneutrality condition was satisfied by assuming that
each particle is accompanied by a uniform neutralizing continuum of equal and opposite charge.

The estimated critical point, at a reduced temperature Tc
*=0.056 and density %c

* .= 0 04 , is
significantly different from previous theoretical estimates [53].  The recent calculations of

Valleau [54] using the density-scaling Monte Carlo technique for the same system give Tc
*=0.07,

%c
* .= 0 07.  The difference may be due to the use of different type of boundary conditions (Ewald

sum in [52] versus minimum image in [54]).  A promising approach for handling strongly
interacting ionic systems is the use of configurational-bias sampling techniques and cluster
algorithms described in section 2.7 [55].  Recent unpublished results from the author's laboratory
for the restricted primitive model with pair transfers seem to confirm the earlier estimates of
reference [52] for the location of the coexistence curve.

3.3  POLYMERIC SYSTEMS AND LONG-CHAIN HYDROCARBONS

Polymeric systems are the main topic of the chapters by Kiran, Kleintjens, Radosz and McHugh
in this volume, so it will not be necessary to expand on the practical importance and challenges
in modeling of the phase behavior of systems containing polymers in the present chapter.  As
described in section 2.7, predictions of the phase behavior of macromolecular systems from
molecular simulation became possible only recently, with the development of configurational-
bias methods and the Chain Increment method.

An example of the phase behavior of a macromolecular system determined using the
Chain Increment method [40] is given in Figure 10, adapted from [56].  The polymeric model
consists of a string of beads interacting with the Lennard-Jones potential.  Stiff harmonic springs
connect neighboring beads.  The vapor-liquid phase envelope for chains of length n=20, 50 and
100 was determined.  The vapor-liquid phase behavior is physically relevant for long-chain
hydrocarbons at high temperatures, but the primary interest in the phase diagram is that it
provides a means of testing polymer solution theories applicable also to polymer/solvent
equilibria.  The critical temperature increases with chain length and the critical density decreases,
in accordance to experimental observations for polymer/solvent systems [57].  The extrapolated
critical temperature at the limit of infinite chain length was found to coincide, within simulation
uncertainty, to the temperature at which the second virial coefficient for polymer-polymer
interactions becomes zero, and the temperature at which long chains assume quasi-ideal
dimensions.

A calculation of the phase envelope for a realistic model of hydrocarbons was performed
by Siepmann et al. [58]  They applied a combination of configurational-bias Monte Carlo and
the Gibbs ensemble method to obtain the vapor-liquid phase envelopes for normal alkanes of
length 8, 16, 24 and 48 carbon atoms.  The intermolecular potential functions used contained
Lennard-Jones terms to describe methylene and methyl groups, a harmonic bending term for the
bond angle, and a tortional potential term.  Excellent quantitative agreement was obtained for the
phase behavior of the lower alkanes for which reliable experimental data exist.  For the higher
alkanes, the qualitative features of the phase diagrams obtained are comparable to Figure 10:  the
critical temperature increases and the critical density decreases with increasing carbon number.
Measurements of critical properties of long-chain alkanes is difficult because of thermal
decomposition, but knowledge of these properties is important for developing reliable
engineering models for hydrocarbons [59].
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Figure 10.  Phase behavior of a bead-spring polymeric model (adapted from [56]).
Monte Carlo results: ( ) n=100; ( ) n=50; ( ) n=20.  Fitting of Monte Carlo

results to scaling relationships (equation 7) with =0.332: (0).

3.4  PHASE EQUILIBRIA FOR SIMPLE MIXTURES AT HIGH PRESSURES

Several studies of the phase behavior of mixtures with components described by simple
intermolecular potentials have been performed.  Examples of studies done to  test theoretical
approximations are presented in section 3.5.  In this section we focus on two representative
examples of studies which aim at direct comparisons with experiment.

The studies of de Kuijper et al. [60,61] are for the system He/H2 at very high pressures,
using a potential of the (-exp-6 form,
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6 1

6
, (11)

where (ij is an exponent characterizing the ij interaction, and the other symbols have the same
meaning as in equation 1.  Literature values for the potential were used, so that the agreement
between experimental and simulation results shown in Figure 11 is quite satisfactory.  An
interesting comparison was made in [60] between the calculation with the full potential and a
purely repulsive potential of the same form that is truncated and shifted at #ij.  The results are
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also shown in Figure 11 and demonstrate that repulsive forces are the primary cause of fluid-
fluid phase separation in this mixture.

An application of the Gibbs ensemble methodology for the binary system He/N2 was
presented by Stapleton and Panagiotopoulos [22], using Lennard-Jones and quadrupole-
quadrupole interactions with parameters taken from the literature.  The results, partly reproduced
here in Figure 12, show excellent agreement between experiment and simulation.  The
simulations reproduce well the behavior at the vicinity of the minimum temperature of the
mixture critical curve.  Results from perturbation theory using the same intermolecular potential
parameters shown in the same Figure show significant deviations from both experiment and
simulation.

Studies of phase equilibria for mixtures of noble gases modeled as Lennard-Jones particles
are discussed in [9].  Agreement between experiment and simulation was obtained for the system
Ar/Kr without any fitted parameters. For the more asymmetric system Ne/Xe, it was necessary to
adjust one mixture parameter to obtain agreement with experimental data.

Figure 11 (adapted from [60]).  Phase behavior of the system He-H2 at T=300 K.
( ) Gibbs ensemble simulation results for the full (-exp-6 potential, equation

(11); ( ) repulsive (-exp-6 potential; (! ! !) experimental data.
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Figure 12 (adapted from [22]).  Phase behavior of the system He/N2.  (+) Gibbs
ensemble Monte Carlo; ( ) experimental data; (! ! !) perturbation theory.

3.5  RANGE OF VALIDITY OF VAN DER WAALS ONE-FLUID THEORY

In the previous section, comparisons were performed between molecular simulation results and
experimental for phase equilibria of simple mixtures.  In this section, we examine the validity of
a simple theory of the fluid state, the van der Waals one-fluid approximation.  The comparisons
are performed using molecular-simulation generated data for phase equilibria of binary mixtures
in which all interactions are of the Lennard-Jones type (equation 1).  The van der Waals one-
fluid theory is a particular case of the general class of "conformal solutions" theories.  Such
theories assume that the intermolecular potentials in a mixture are of the same functional form,
an assumption that is not strictly satisfied in any real fluid, but is exact for the case under study
here.  According to van der Waals one-fluid theory, the configurational Helmholtz free energy,
Aconf , of a mixture of N particles at a certain temperature T and volume V is

A T N V
Nk T

kT V
N

conf

B m m

( , , ) ,=
" #3 , (12)

where  is function that depends only on the form of the intermolecular potential and thus can
be obtained from a pure fluid obeying that potential (hence the name one-fluid theory).  The
mixture parameters "m  and #m  are given by the equations ("mixing rules"),
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" # " #m m i j ij ij
ii

x x3 3= '' , (13)

# #m i j ij
ii

x x3 3= '' . (14)

For the binary Lennard-Jones mixtures simulations, one is free to chose to study a mixture
of components with specified pure component and unlike pair interactions.  The Lorentz-
Berthelot combining rules are frequently used to relate pure component and unlike-pair
interactions.  A generalized version of these rules is

# 1
# #

ij ij
ii jj=

+

2
, (15)

" 2 " "ij ij ii jj= . (16)

where 1ij  and 2ij  are dimensionless parameters that describe deviations from the Lorentz-
Berthelot rules.

There is general agreement that the theory gives a good representation of thermodynamic
properties of mixtures with components that have similar size and energy interaction parameters,
but the situation is much less clear for highly asymmetric mixtures [62].  Harismiadis et al. [62]
have performed an extensive study of phase equilibria for binary Lennard-Jones mixtures with
size parameter ratios between 1 and 2, and energy parameter ratios also between 1 and 2.
Unlike-pair parameters were given by the Lorentz-Berthelot rules (equations 15 and 16 with 1ij = 
2ij  =1).  For all cases studied, Harismiadis et al. found excellent agreement between simulation
and theoretical predictions.  A representative set of pressure-composition diagrams for systems
with size ratio of #22/#11=1.5 is shown in Figure 13.

Georgoulaki et al. [63] have extended the range of asymmetries to 4:1 for both energy and
size parameter ratios, and have also examined the behavior of mixtures deviating from the
Lorentz-Berthelot rules (1ij or 2ij different from unity).  For highly asymmetric systems and
mixtures deviating from the Berthelot rule van der Waals one-fluid theory was able to describe
the simulation results quite well.  In contrast, for systems deviating from the Lorentz rule,
performance of the theory was less satisfactory.  We conclude from these studies that the range
of applicability of van der Waals one-fluid theory in describing the phase behavior of Lennard-
Jones mixtures is very broad.  Common engineering equations of state effectively reduce to the
van der Waals one-fluid theory when conventional quadratic mixing rules are used.  Their
inability to describe systems encountered in supercritical extraction processes is commonly
attributed to the large asymmetry of the mixtures.  In the light of the comparisons with
simulation results mentioned here it seems that this explanation is not appropriate, and the
reasons for the failure of equations of state may be related to the presence of specific interactions,
such as polar or hydrogen-bonding forces.
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Figure 13.  Phase diagrams for Lennard-Jones mixtures obeying the Lorentz-
Berthelot rules, with #22/#11=1.5 and "22/"11 = 0.66, 0.75 and 1.00, adapted
from reference [62].  Gibbs ensemble Monte Carlo results: (×) T*=1.00; ( )

T*=0.75. Van der Waals one-fluid theory predictions:
(00) T*=1.00; (! !) T*=0.75.
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3.6  SUPERCRITICAL EXTRACTION

There are relatively few studies of the phase behavior for systems of direct interest to
supercritical extraction processes to date.  Solubilities of solid naphthalene in supercritical CO2
have been studied by Shing and Chung [64].  Agreement between simulation and experimental
data was only qualitative when literature potentials for the components were used.

Studies of binary and ternary systems with water, acetone and supercritical CO2 have been
presented by Panagiotopoulos [65].  No attempt was made in [65] to use realistic intermolecular
potential models for the components studied.  Simple effective Lennard-Jones potentials with
pure component parameters obtained from critical properties were used instead.  For the cross
interaction parameters, the Lorentz rule (equation 15 with 1ij =1) was used for all size
parameters, and the Berthelot rule (equation 16 with 2ij =1) was used for the acetone-carbon
dioxide energy interaction parameter.  For the carbon dioxide-water binary system, fitting of high
pressure phase equilibrium data resulted in excellent agreement with experiment for the
composition of both carbon dioxide-rich and water-rich phases with an interaction parameter 2
ij=0.81 [65].  Two cases were studied, (a) in which the acetone-water interaction parameter
assumed the Berthelot value (2ij=1), and (b) in which 2ij for the acetone-water interaction was set
to 0.90.  Table 1 summarizes the effective parameters used.

Table 1.  Effective Lennard-Jones potential parameters from [65]

Interaction " / kB (K) # (nm)

Carbon Dioxide 232.2 0.384
Acetone 443 0.467
Water 540 0.358
Carbon Dioxide/Acetone 320.7 0.426
Carbon Dioxide/Water 286.8 0.371
Acetone/Water 489.1(a)  440.2(b) 0.413

Results obtained from the simulations of the ternary systems are shown in Figure 14.  Also
presented on the same figure are new calculations using the conformal solutions theory described
in the previous section, and experimental results from [66].  The predicted phase diagram is
highly sensitive to the interaction between acetone and water.  Surprisingly, conformal solutions
theory does poorly in predicting the phase behavior of the ternary systems.

4.  Summary and Future Outlook

In this chapter, I presented a review of molecular simulation methods for calculation of
phase equilibria from assumed intermolecular interactions.  There has been rapid progress in the
field over the past decade.  Before the mid-1980's, even the calculation of a phase diagram for a
potential as simple as the Lennard-Jones potential was considered to be a major research project.
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Figure 14.  Phase behavior of a ternary mixture of Lennard-Jones particles
with parameters shown in Table 1 at T=333 K, P=150 bar.  ( !!  !!  !! ) Gibbs

ensemble Monte Carlo [65]; (00) conformal solutions theory; (+00+)
experimental data for the acetone-water-carbon dioxide system [66].
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The Gibbs ensemble technique for simple fluids greatly facilitated the calculation of phase
diagrams for pure components and mixtures.  Applications of finite-size scaling methods are
starting to appear for continuous-space systems that promise to allow accurate determinations of
critical points.  The Gibbs-Duhem integration method allows rapid calculations of complete
phase diagrams even for systems that include solid phases.  Configurational-bias methods have
greatly contributed towards a solution of the sampling problems encountered for complicated
potentials and chain molecules.  Cluster algorithms are available for strongly associating systems
or at the vicinity of critical points.

Applications of these methods to systems of interest for high pressure and supercritical
systems are, to date, restricted primarily to equilibria involving fluid phases using relatively
simple potentials.  The availability of methods to handle complicated potentials will certainly
ensure that molecular simulation will play a continuously expanding role in modeling phase
equilibria.  It is worth considering what changes this is likely to bring.  Direct simulations can be
used to refine theoretical approximations or fit molecular-based parameters to experimental data.
While the latter approach is necessarily empirical in nature, it is preferable to fitting of
macroscopic model parameters, because the resulting molecular-based models are likely to be
applicable outside the range of experimental conditions from which they were derived.
Simulation will never replace experiment in providing primary data for process development and
design.  However, it can certainly play an important role in extending the range and "filling in
the gaps" of experimental measurements.  The recent calculations of Siepmann et al. for the
critical properties of long-chain alkanes are a case in point.  With potentials fitted to
experimental data for the lower alkanes molecular simulation can be used to predict the critical
properties of higher alkanes that are experimentally inaccessible due to thermal decomposition.
Another example is the calculation of the critical point for molten salts mentioned in the section
on ionic fluids.

The main limitation of molecular simulation is, at present, the lack of intermolecular
potentials that can adequately describe complex components.  A priori quantum mechanical
techniques are not yet in position to give potentials accurate for calculations in dense phases.
The most promising approach for the next few years will be using empirical potentials with
parameters fitted to experimental phase equilibrium and thermodynamic data.  A coordinated
research effort to obtain a database of potential parameters will greatly enhance the practical
usefulness of molecular simulation methods.
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