

Molecular Speed and Energy

- Gas molecules travel at a range of speeds -some molecules move much faster than others.
- The average speed of a gas depends on its molar mass-the lighter the mass, the faster the average speed.

Molecular Speed and Energy

- Average speed can be defined several ways for molecules:
- The most probable speed corresponds to the speed at the maximum in a plot of molecules vs speed-if we could measure the speed of individual gas molecules, more of them would have this value than any other value.

Molecular Speed and Energy

Kinetic energy is given by
$\mathrm{E}_{\mathrm{T}}=1 / 2 \mathrm{mu}^{2}$
$\mathrm{m}=$ mass $\quad \mathrm{u}=$ velocity (speed)
$\mathrm{m}_{\mathrm{H} 2}=\left(2.0158 \mathrm{~g} \mathrm{~mol}^{-1}\right) /\left(6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{~mol}^{-1}\right)$
$=3.347 \times 10^{-24} \mathrm{~g}=3.347 \times 10^{-27} \mathrm{~kg}$
$\mathrm{u}_{\mathrm{mp}}=1.57 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{E}_{\mathrm{T}}=1 / 2\left(3.347 \times 10^{-27} \mathrm{~kg}\right)\left(1.57 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$
$=4.13 \times 10^{-21} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=4.13 \times 10^{-21} \mathrm{~J}$

Molecular Speed and Energy

$$
\mathrm{u}_{\mathrm{mp}}\left(\mathrm{CH}_{4}\right)=557 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
\mathrm{E}_{\mathrm{T}}\left(\mathrm{CH}_{4}\right)=1 / 2\left(2.664 \times 10^{-26} \mathrm{~kg}\right)\left(557 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}
$$

$$
=4.13 \times 10^{-21} \mathrm{~J}
$$

$$
\mathrm{u}_{\mathrm{mp}}\left(\mathrm{CO}_{2}\right)=337 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
=4.15 \times 10^{-21} \mathrm{~J}
$$

Even though the three gases $\left(\mathrm{H}_{2}, \mathrm{CH}_{4}\right.$, and $\left.\mathrm{CO}_{2}\right)$ have different speeds, they all possess the same amount of kinetic energy.

Molecular Speed and Energy

The average kinetic energy of a gas is determined by its temperature:

$$
\mathrm{E}_{\mathrm{T}}(\mathrm{~T})=3 / 2 \mathrm{RT} / \mathrm{N}_{\mathrm{A}}
$$

R is the gas constant

$$
\mathrm{E}_{\mathrm{T}}\left(\mathrm{CO}_{2}\right)=1 / 2\left(7.308 \times 10^{-26} \mathrm{~kg}\right)\left(337 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}
$$

$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

- The kinetic energy of the gas depends only on its temperature, not the identity of the gas.

Molecular Speed and Energy

The average speed of a gas is important because it determines a number of properties of a gas:
\rightarrow pressure exerted by a gas-pressure depends on the rate of collision with the walls of a vessel and the force of those collisions.
\rightarrow collision rate-how frequently gas molecules collide, and for reactive collisions, have the opportunity to undergo reaction.
\rightarrow rate of diffusion-how fast one gas mixes with another

Ideal Gas Equation

The properties of an ideal gas lead to an equation that relates the temperature, pressure, and volume of the gas:

$$
\begin{aligned}
& \hline \mathrm{PV}=\mathrm{nRT} \\
& \hline \mathrm{P}=\text { pressure }(\text { atm }) \\
& \mathrm{V}=\text { volume }(\mathrm{L}) \\
& \mathrm{n}=\text { number of moles of gas } \\
& \mathrm{T}=\text { temperature }(\mathrm{K}) \\
& \mathrm{R}=0.08206 \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Ideal Gas Equation

What volume would 2.00 mol of an ideal gas with a
${ }^{\circ} \mathrm{C}$ occupy?
$(1000$ Torr $)(1 \mathrm{~atm} / 760$ Torr $)=1.32 \mathrm{~atm}$
$-25.0^{\circ} \mathrm{C}+273.2{ }^{\circ} \mathrm{C}=248.2 \mathrm{~K}$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$
$=\underline{(2.00 \mathrm{~mol})\left(.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(248.2 \mathrm{~K})}$
(1.32 atm)
$\mathrm{V}=30.9 \mathrm{~L}$

Variations of the Ideal Gas Law

At constant volume:

$$
\begin{aligned}
& \mathrm{nR} / \mathrm{V}=\mathrm{a} \text { constant } \\
& \therefore \mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}
\end{aligned}
$$

If the pressure [temperature] is increased, the temperature [pressure] will increase.
If the pressure [temperature] is decreased, the temperature [pressure] will decrease.

Variations of the Ideal Gas Law

- At constant pressure:

$$
\mathrm{nR} / \mathrm{P}=\mathrm{a} \text { constant }
$$

$\therefore \mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2} \quad$ Charles' Law
If the volume [temperature] is increased, the temperature [volume] will increase.
If the volume [temperature] is decreased, the temperature [volume] will decrease.

Dalton's Law of Partial Pressures

The total pressure of a gas mixture is given by:
$P_{\text {tot }}=n_{\text {tot }} R T / V$
$\mathrm{n}_{\text {tot }}=$ total number of moles of all gases in container
Also
$\frac{\mathrm{P}_{\text {tot }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+\ldots}{\text { Dalton's Law of Partial Pressures }}$
$P_{A}=n_{A} R T / V$ partial pressure of A
$P_{B}=n_{B} R T / V$ partial pressure of B
$\mathrm{P}_{\mathrm{C}}=\mathrm{n}_{\mathrm{C}} \mathrm{RT} / \mathrm{V}$ partial pressure of C

Relative Humidity

- The amount of water in air is frequently expressed as relative humidity.
$\mathrm{RH} \equiv\left(\mathrm{P}_{\mathrm{H} 2 \mathrm{O}} / \mathrm{VP}_{\mathrm{H} 2 \mathrm{O}}\right) \times 100 \%$
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$ is partial pressure of water in air
$\mathrm{VP}_{\text {н2O }}$ is vapor pressure of water at a specific temperature
Vapor pressure is the pressure exerted by $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ over a water sample in which equilibrium with the liquid is established. Vapor pressure depends on the temperature of the liquid - the higher the temperature, the higher the vapor pressure.

AQMD Regulations to improve air quality

The South Coast Air Quality Management District (AQMD) is the governmental agency charged with improving air quality in the LA Basin.
Steps taken include:

- Decreased automotive emissions
- Restrictions on solvent use-LA Times required to change type of ink used
- Severe restrictions on industrial emissionsrefineries in South Bay
- Required change in barbecue lighter fluids

AQMD Regulations to improve air quality

Proposed ideas for further improvement:

- Regulations on diesel engines-reduce emissions of both hydrocarbons and particulates
- Ban of "drive-thru" restaurants-idling cars emit hydrocarbons and NO without useful work being done
- Impose strict emission technologies on drycleaners
- Further restrictions on industrial emissions
- 1 out of 7 vehicle must ZEV by 2025

The van der Waals' Equation

- To better describe real gases, we can use a different equation of state to predict their behavior:
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$ Van der Waals' Equation
where a and b are measured constants
The vdw b constant is a measure of the volume of the gas molecules
The vdw a constant is a measure of the internuclear attractive forces

Real Gases vs Ideal Gases

Gases tend to behave ideally under low pressure conditions

- The time between collisions is much longer so there is less relative time for attractive forces to affect pressure (minimizes effect of a constant)
- The volume occupied by the gas molecules is much smaller than the total volume of the container (minimizes effect of b constant)

