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Moment‐Distribution Method

• Classical method.

• Used for Beams and Frames.

• Developed by Hardy Cross in 1924.

• Used by Engineers for analysis of small structures.

• It does not involve the solution of many simultaneous equations.
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Moment‐Distribution Method

• For beams and frames without sidesway, it does not involve the
solution of simultaneous equationssolution of simultaneous equations.

• For frames with sidesway, number of simultaneous equationsFor frames with sidesway, number of simultaneous equations
usually equals the number of independent joint translations.

• In this method, Moment Equilibrium Equations of joints are solved
iteratively by considering the moment equilibrium at one joint at a
time while the remaining joints are considered to be restrainedtime, while the remaining joints are considered to be restrained.
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Definitions and Terminology

Sign Convention

• Counterclockwise member end moments are considered positive.

• Clockwise moments on joints are considered positive.Clockwise moments on joints are considered positive.

Member Stiffness

• Consider a prismatic beam AB, which is hinged at end A and fixed
dat end B.
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Member Stiffness

If we apply a moment M at the end A, the beam rotates by an
angle θ at the hinged end A and develops a moment MBA at theg g p BA
fixed end B, as shown.

MBA = carryover moment

A B

θM = applied moment

MBA  carryover moment

The relationship between the applied moment M and the rotation

L
EI = constant

The relationship between the applied moment M and the rotation
θ can be established using the slope‐deflection equation.
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Member Stiffness

By substituting Mnf = M, θn = θ, and θf = Ψ = FEMnf = 0 into the
slope‐deflection equation, we obtainp q ,

(1)                                                                 4 θ





=

L
EIM

“The bending stiffness, , of a member is defined as the moment
th t t b li d t d f th b t it

 L

K
that must be applied at an end of the member to cause a unit
rotation of that end.”

By setting θ = 1 rad in Eq. 1, we obtain the expression for the
bending stiffness of the beam of figure to be
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L
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Member Stiffness

when the modulus of elasticity for all the members of a structure is
the same (constant), it is usually convenient to work with the( ), y
relative bending stiffness of members in the analysis.

“The relative bending stiffness, K, of a member is obtained by
dividing its bending stiffness, , by 4E.”K

(3)                                                             
4 L

I
E

KK ==

• Now suppose that the far end B of the beam is hinged as shown.
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Member Stiffness

The relationship between the applied moment M and the rotation
θ of the end A of the beam can now be determined by using they g
modified slope‐deflection equation.

By substituting Mrh = M, θr = θ, and Ψ = FEMrh = FEMhr = 0 into
MSDE, we obtain

(4)                                                                 3 θ





=

L
EIM

θM = applied moment
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Member Stiffness

By setting θ = 1 rad, we obtain the expression for the bending
stiffness of the beam of figure to beg

(5)                                                                  3
L
EIK =

A comparison of Eq. 2 & Eq. 5 indicates that the stiffness of the
beam is reduced by 25% when the fixed support at B is replaced by
a hinged supporta hinged support.

The relative bending stiffness of the beam can now be obtained byg y
dividing its bending stiffness by 4E.

3  IK
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4
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4





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==

L
I
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Member Stiffness

R l ti hi b/ li d d t M d th t ti θRelationship b/w applied end moment M and the rotation θ

fixed ismember  of endfar  if               4











 θ

L
EI

(7)               
hinged ismember  of endfar  if                3

















=

θ
L
EI

L
M

Bending stiffness of a member

fixed ismember  of endfar  if                      4



L
EI

l b d ff f b

(8)                 
hinged ismember  of endfar  if                      3






=

L
EI
LK

Relative bending stiffness of a member

fixed ismember  of endfar  if                          



L
I
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(9)                 
hinged ismember  of endfar  if                       

4
3






=

L
I
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Carryover Moment

Let us consider again the hinged‐fixed beam of Figure.

A B

θM = applied moment

MBA = carryover moment

L
EI = constant

When a moment M is applied at the hinged end A of the beam, a
moment MBA develops at the fixed end B.

The moment MBA is termed the carryover moment.
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Carryover Moment

To establish the relationship b/w the applied moment M and the
carryover moment MBA, we write the slope deflection equation fory BA, p q
MBA by substituting Mnf = MBA, θf = θ, and θn = Ψ = FEMnf = 0 into
SDE

2  EI

By substituting θ = ML/(4EI) from Eq 1 into Eq 10 we obtain

(10)                                                            2 θ





=

L
EIM BA

By substituting θ = ML/(4EI) from Eq. 1 into Eq. 10, we obtain

(11)                                                                   
2
MM BA =

Eq. 11 indicates, when a moment of magnitude M is applied at the
hinged end of the beam, one‐half of the applied moment is carried

t th f d id d th t th f d i fi d Th di ti

2

over to the far end, provided that the far end is fixed. The direction
of MBA and M is same.
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Carryover Moment

When the far end of the beam is hinged as shown, the carryover
moment MBA is zero.BA

θM = applied moment

A B
L

EI = constant

θM  applied moment

(12)
fixedismember  ofendfar if             

2


M
M (12)                 

hinged ismember  of endfar  if                  0
2




=M BA
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Carryover Factor (COF)

“The ratio of the carryover moment to the applied moment
(MBA/M) is called the carryover factor of the member.”( BA/ ) y f f

It represents the fraction of the applied moment M that is carried
over to the far end of the member. By dividing Eq. 12 by M, we can
express the carryover factor (COF) as

(13)                   
fixed ismember  of endfar  if                 

2
1







=COF

hinged ismember  of endfar  if                  0
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Distribution Factors

When analyzing a structure by the moment‐distribution method,
an important question that arises is how to distribute a momentp q
applied at a joint among the various members connected to that
joint.

Consider the three‐member frame shown in figure below.

DBA

E = constant L2, I2

15

C

L1, I1 L3, I3



Suppose that a moment M is applied to the joint B, causing it to
rotate by an angle θ as shown in figure belowrotate by an angle θ as shown in figure below.

M = applied moment

DBA θ
θ

θθ
E = constant L2, I2

C

L1, I1 L3, I3

To determine what fraction of applied moment is resisted by each
of the three members AB, BC, and BD, we draw free‐body diagrams, , , y g
of joint B and of the three members AB, BC, and BD.
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By considering the moment equilibrium of the free body of joint B
(∑M = 0) we write(∑MB = 0), we write

0=+++ BDBCBA MMMM

M

BDBCBA

( ) )14(                                               BDBCBA MMMM ++−=

A
B

B B D

M
MBA MBA

MBC MBD

MBD

B

MBC BD

MBC

B
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Since members AB, BC, and BD are rigidly connected to joint B, the
rotations of the ends B of these members are the same as that ofrotations of the ends B of these members are the same as that of
the joint.

The moments at the ends B of the members can be expressed in
terms of the joint rotation θ by applying Eq. 7.

Noting that the far ends A and C, respectively, of members AB and
BC are fixed, whereas the far end D of member BD is hinged, weBC are fixed, whereas the far end D of member BD is hinged, we
apply Eq. 7 through Eq. 9 to each member to obtain

)15(                              44 1 θθθ BABABA EKK
L
EIM ==








= )(

1
BABABA L 




)16(                                  44

2

2 θθθ BCBCBC EKK
L
EIM ==








=
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)17(                                  43

3

3 θθθ BDBDBD EKK
L
EIM ==








=



Substitution of Eq. 15 through Eq. 17 into the equilibrium equation
Eq 14 yieldsEq. 14 yields

344

3

3

2

2

1

1 θ







++−=

L
EI

L
EI

L
EIM

in which represents the sum of the bending stiffnesses of all

( ) ( ) )18(                                  θθ ∑−=++−= BBDBCBA KKKK

∑ BK
the members connected to joint B.

“Th t ti l tiff f j i t i d fi d th t“The rotational stiffness of a joint is defined as the moment
required to cause a unit rotation of the joint.”

From Eq. 18, we can see that the rotational stiffness of a joint is
equal to the sum of the bending stiffnesses of all the members
i idl t d t th j i trigidly connected to the joint.
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The negative sign in Eq. 18 appears because of the sign convention.

To express member end moments in terms of the applied moment
M, we first rewrite Eq. 18 in terms of the relative bending, q g
stiffnesses of members as

( ) ( )44 ∑−=++−= KEKKKEM θθ( ) ( )

(19)                                                                
4

44

∑

∑
−=

=++=

B

BBDBCBA

KE
M

KEKKKEM

θ

θθ

By substituting Eq. 19 into Eqs. 15 through 17, we obtain

K 
)20(                                                          M

K
KM

B

BA
BA 










−=
∑



20

)21(                                                         M
K

KM
B

BC
BC 










−=
∑



)22(                                                        M
K

KM BD
BD










−=
∑

From Eqs. 20 through 22, we can see that the applied moment M is
distributed to the three members in proportion to their relative

KB 

∑

p p
bending stiffnesses.

“The ratio K/∑KB for a member is termed the distribution factor of
that member for end B, and it represents the fraction of the applied
moment M that is distributed to end B of the member.”moment M that is distributed to end B of the member.

Thus Eqs. 20 through 22 can be expressed as

)24(

)23(                                                        

MDFM

MDFM BABA −=

21
)25(                                                        

)24(                                                   

MDFM

MDFM

BDBD

BCBC

−=

−=



in which DFBA = KBA/∑KB, DFBC = KBC/∑KB, and DFBD = KBD/∑KB, are the
distribution factors for ends B of members AB BC and BDdistribution factors for ends B of members AB, BC, and BD,
respectively.

For example, if joint B of the frame is subjected to a clockwise
moment of 150 k‐ft (M = 150 k‐ft) and if L1 = L2 = 20 ft, L3 = 30 ft,
and I = I = I = I so thatand I1 = I2 = I3 = I, so that

I.IKK BCBA 050
20

===

I.IKBD 0250
304

3
=






=

then the distribution factors for the ends B of members AB, BC,
and BD are given by
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( ) 4.0
025.005.005.0

05.0
=

++
=

++
=

I
I

KKK
KDF

BDBCBA

BA
BA ( )025.005.005.0 ++++ IKKK BDBCBA

4.0
125.0
05.0

==
++

=
I

I
KKK

KDF
BDBCBA

BC
BC

2.0
125.0
025.0

==
++

=
I
I

KKK
KDF

BDBCBA

BD
BD

These distribution factors indicate that 40% of the 150 k‐ft
moment applied to joint B is exerted at end B of member AB, 40%

t d B f b BC d th i i 20% t d B fat end B of member BC, and the remaining 20% at end B of
member BD.

The moments at ends B of the three members are

( )
( ) ftk60orftk6015040

ft-k 60     or                ft        -k 6015040 −=−=−=

MDFM

.MDFM BABA

23

( )
( ) ft-k 30     or                ft        -k 3015020

ft-k60    or                ft        -k6015040

−=−=−=

−=−=−=

.MDFM

.MDFM

BDBD

BCBC



Based on the foregoing discussion, we can state that, in general,
“the distribution factor (DF) for an end of a member that is rigidlythe distribution factor (DF) for an end of a member that is rigidly
connected to the adjacent joint equals the ratio of the relative
bending stiffness of the member to the sum of the relative bending
stiffnesses of all the members framing into the joint”; that is

(26)                                                    
∑

=
KDF

“The moment distributed to (or resisted by) a rigidly connected end

( )
∑K

The moment distributed to (or resisted by) a rigidly connected end
of a member equals the distribution factor for that end times the
negative of the moment applied to the adjacent joint.”
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Fixed‐End Moments

The fixed end moment expressions for some common types of
loading conditions as well as for relative displacements of memberg p
ends are given inside the back cover of book.

In the MDM, the effects of joint translations due to support
settlements and sidesway are also taken into account by means of
fixed‐end moments.fixed end moments.

Consider the fixed beam of Figure.

25
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A small settlement Δ of the left end A of the beam with respect to
the right end B causes the beam’s chord to rotate counterclockwisethe right end B causes the beam s chord to rotate counterclockwise
by an angle Ψ = Δ/L.

A BΨΔ

6EI∆

2

6
L
EI∆

B iti th SDE f th t d t ith Ψ Δ/L d b

L
EI

2

6
L
EI∆

By writing the SDE for the two end moments with Ψ = Δ/L and by
setting θA, θB, and FEMAB and FEMBA due to external loading, equal
to zero, we obtain

2

6
L
EIFEMFEM BAAB
∆

−==

in which FEMAB and FEMBA denote the FEM due to the relative
translation Δ between the two ends of the beam.
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Note that the magnitudes as well as the directions of the two FEM
are the sameare the same.

A BΨΔ

6EI∆

2

6
L
EI∆

L
EI

2

6
L
EI∆

It can be seen from the figure that when a relative displacement
causes a chord rotation in the CCW direction, then the two FEMs
act in the CW (‐ve) direction to maintain zero slopes at the two( ) p
ends of the beam.

Conversely, if the chord rotation due to a relative displacement is
CW, then both FEM act in CCW (+ve) direction.
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Moment‐Distribution Method

• MDM Moment Distribution Method

bl b bl• MD Table Moment Distribution Table

• COM Carryover Moment

• COF Carryover Factor• COF Carryover Factor

• DM Distributed Moment

• UM Unbalanced MomentUM Unbalanced Moment
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Basic Concept of the Moment Distribution Method

DA

1.5 k/ft
30 k

EI = constant
E = 29 000 ksi

B C
20 ft

DA

10 ft 10 ft 15 ft

E = 29,000 ksi
I = 500 in4

Distribution Factors

The first step in the analysis is to calculate the distribution factors
at those joints of the structure that are free to rotate.

h di ib i f f d f b i l hThe distribution factor for an end of a member is equal to the
relative bending stiffness of the member divided by the sum of
relative bending stiffnesses of all the members connected to the
joint.

29
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=
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Basic Concept of the Moment Distribution Method

DA

1.5 k/ft
30 k

EI = constant
E = 29 000 ksi

B C
20 ft

DA

10 ft 10 ft 15 ft

E = 29,000 ksi
I = 500 in4

We can see that only joint B and C of the continuous beam are free
to rotate. The distribution factors at joint B are

5.0
202

20
==

+
=

I
I

KK
KDF

BCBA

BA
BA

5.0
202

20
==

+
=

I
I

KK
KDF

BCBA

BC
BC

BCBA
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Basic Concept of the Moment Distribution Method

DA

1.5 k/ft
30 k

EI = constant
E = 29 000 ksi

B C
20 ft

DA

10 ft 10 ft 15 ft

E = 29,000 ksi
I = 500 in4

Similarly at joint C

( ) ( ) 429.020
===

IKDF CB
CB ( ) ( )

( ) ( ) 571.0
1520

15

1520

=
+

=
+

=

++

II
I

KK
KDF

IIKK

CDCB

CD
CD

CDCB
CB

Note that the sum of distribution factors at each joint must always
equal 1 The DF are recorded in boxes directly beneath the

( ) ( )1520 ++ IIKK CDCB

equal 1. The DF are recorded in boxes directly beneath the
corresponding member ends on top of the MD Table.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571
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1.5 k/ft
30 k

B C

DA

50 50 75 75

Fixed End Moments

Next, by assuming that joints B and C are restrained against, y g j g
rotation by imaginary clamps applied to them, we calculate the
FEM that develop at the ends of each member. (1. line MD Table)

( )2051 2( )

( ) ft-k50-orftk50205.1

ft   -k 50  or           ft        k 50
12
205.1

2

−==

+−==AB

FEM

FEM

( ) ft   -k 57  or             ft        k 75
8
2030

ft -k50-  or          ft        k50
12

+−==

==

BC

BA

FEM

FEM

330

ft-k 75-   or                            ft        k 75

==

−=

DCCD

CB

FEMFEM

FEM



1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75
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1.5 k/ft
30 k

B C

DA

50 50 75 75

Balancing Joint C

Since joints B and C are actually not clamped, we release them,j y p , ,
one at a time. Let us begin at joint C.

From fig. we can see that there is a ‐75 k‐ft (clockwise) FEM at end
C of member BC, whereas no moment exists at end C of member
CD.

As long as joint C is restrained against rotation by the clamp, the
‐75 k‐ft unbalanced moment is absorbed by the clamp.
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1.5 k/ft
30 k

B C

DA

50 50 75 75

When the imaginary clamp is removed to release the joint, the ‐75
k‐ft unbalanced moment acts at the joint, causing it to rotate in the
CCW direction until it is in equilibrium.

C

C C

C
75 75 

Unbalanced joint moment

DA

75 

36
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The rotation of joint C causes the distributed moments, DMCB and
DM to develop at ends C of members BC and CD which can beDMCD, to develop at ends C of members BC and CD, which can be
evaluated by multiplying the negative of the unbalanced moment
(+75 k‐ft) by distribution factors DFCB and DFCD, respectively.

( )
( ) ftk 8.4275571.0

ftk 2.3275429.0

−+=+=

−+=+=

CD

CB

DM

DM

75 

Unbalanced joint moment

B C

DA
32.2

42.8

These distributed moments are recorded in line 2 of the MD Table,

Distributed moments

and a line is drawn beneath them to indicate that joint C is now
balanced.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

2.Balance joint C and carryover +32.2 +42.8
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The DM at end C of member BC induces a COM at the far end B,
which can be determined by multiplying the DM by the COF of thewhich can be determined by multiplying the DM by the COF of the
member.

Since joint B remains clamped, the COF of the member BC is ½
(Eq.13). Thus, COM at the end B of member BC is

1( ) ( ) ftk  16.132.2
2
1

−+=+== CBCBBC DMCOFCOM

( ) ( ) ftk4.128.241
−+=+== CDCDDC DMCOFCOM

Unbalanced joint moment

( ) ( ) ftk 4.128.24
2

++CDCDDC DMCOFCOM

DA

75 

32.2
21.4

Carryover moments

39

B C 42.8

Distributed moments

16.1

Carryover moments



These COM are recorded on the same line of the MD Table as the
DM with a horizontal arrow from each DM to its COMDM, with a horizontal arrow from each DM to its COM.

The total member end moments at this point in this analysis arep y
depicted in Figure.

1.5 k/ft
30 k

21.4

DA

1.5 k/ft

50 50 91.1 42.8 42.8

It can be seen that joint C is now in equilibrium, because it is
subjected to two equal, but opposite moments.j q , pp

Joint B, however, is not in equilibrium, and it needs to be balanced.
Before we release joint B, an imaginary clamp is applied to joint C
in its rotated position.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

2.Balance joint C and carryover +32.2 +42.8+16.1 +24.1
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1.5 k/ft
30 k

21.4

DA

/

50 50 91.1 42.8 42.8

Balancing Joint B

Joint B is now released. The unbalanced moment at this joint isj
obtained by summing all the moments acting at the ends B of
members AB and BC, which are rigidly connected to joint B.

From the MD Table (lines 1 & 2), we can see that there is a ‐50 k‐ft
FEM at end B of member AB, whereas the end B of member BC is,
subjected to a +75 k‐ft FEM and a +16.1 k‐ft COM. The unbalanced
moment at joint B is

42

ftk  .1141.167550 −+=++−=BUM



This UM causes joint B to rotate, as shown, and induces DM at
ends B of member AB and BCends B of member AB and BC.

41.1

Unbalanced joint moment

B C

DA

The DM are evaluated by multiplying the negative of the UM by
the distribution factors:

( )
( ) ftk 6.201.415.0

ftk 6.201.415.0

−−=−=

−−=−=

BC

BA

DM

DM

These DM are recorded on line 3 of the MD Table and a line is
drawn beneath them to indicate that joint B is now balanced.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

2.Balance joint C and carryover +32.2 +42.8+16.1 +24.1

3.Balance joint B and carryover ‐20.6‐20.6‐10.3 ‐10.3
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41.1

Unbalanced joint moment

B C

DA
10.3

20.6 

20.6

10.3

One‐half of the DM are then carried over to the far ends A and C of
members AB and BC, respectively, as indicated by the horizontal
arrows on line 3 of Table.

J i t B i th l d i it t t d itiJoint B is then reclamped in its rotated position.

DA
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Balancing Joint C

With j i t B b l d f th MD T bl (li 3)With joint B now balanced, we can see from the MD Table (line 3)
that, due to the carryover effect, there is a ‐10.3 k‐ft UM at joint C.

Recall that the moments above the horizontal line at joint C were
balanced previously. Thus we release joint C again and distribute
h UM d C f b BC d CDthe UM to ends C of members BC and CD as

10.3

4 4

B C

DA
4.4

5.9

( )
( ) ftk 9.53.10571.0

ftk 4.43.10429.0

−+=+=

−+=+=

CD

CB

DM

DM

46
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The DM are recorded on line 4 of the MD Table, and one‐half of
these moments are carried over to the ends B and D of membersthese moments are carried over to the ends B and D of members
BC and CD, respectively. Joint C is then reclamped.

10.3

B C

DA
4.4

5.92.2

2.9

Balancing Joint B

Th 2 2 k ft UM t j i t B (li 4) i b l d i i il

B C2.2

The +2.2 k‐ft UM at joint B (line 4) is balanced in a similar manner.

The DM and COM thus computed are shown on line 5 of the MDThe DM and COM thus computed are shown on line 5 of the MD
Table (slide 49).

Joint B is then reclamped.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

2.Balance joint C and carryover +32.2 +42.8+16.1 +24.1

3.Balance joint B and carryover ‐20.6‐20.6‐10.3 ‐10.3

4.Balance joint C and carryover +4.4 +5.9+2.2 +2.9
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

2.Balance joint C and carryover +32.2 +42.8+16.1 +24.1

3.Balance joint B and carryover ‐20.6‐20.6‐10.3 ‐10.3

4.Balance joint C and carryover +4.4 +5.9+2.2 +2.9

5.Balance joint B and carryover ‐1.1‐1.1 ‐0.6‐0.6
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It can be seen from line 5 of the MD Table that the UM at joint C
has now been reduced to only 0 6 k fthas now been reduced to only ‐0.6 k‐ft.

Another balancing of joint C produces an even smaller unbalancedg j p
moment of +0.2 k‐ft at joint B, as shown on line 6 of the MD Table.

Since the DM induced by this unbalancing moment are negligibly
small, we end the moment distribution process.

The final member end moments are obtained by algebraically
summing the entries in each column of the MD Table.

The final Moments are recorded on line 8 of The MD Table.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

2.Balance joint C and carryover +32.2 +42.8+16.1 +24.1

3.Balance joint B and carryover ‐20.6‐20.6‐10.3 ‐10.3

4.Balance joint C and carryover +4.4 +5.9+2.2 +2.9

5.Balance joint B and carryover ‐1.1‐1.1 ‐0.6‐0.6

6.Balance joint C and carryover +0.3 +0.3 +0.2+0.2 

7.Balance joint B ‐0.1‐0.1
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8.Final Moments +39.1 ‐71.8 +71.7 ‐49 +49 +24.5



The final moments are shown on the free body diagrams of
members in Figmembers in Fig.

71 8 49
30 k

1.5 k/ft 49 24 5

A B
39.1

71.8

B C
71.7

49
/

C D

49 24.5

With the MEM known, member end shears and support reactions
b d t i d b id i th ilib i fcan now be determined by considering the equilibrium of

members and joints.

SFD and BMD are same to those which are drawn in Slope
Deflection Method for the same beam.
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Practical Application of the MDM

Th f i h id th l i i ht i t th b iThe foregoing approach provides the clearer insight into the basic
concept of the MDM.

From a practical point of view, it is usually more convenient to use
an alternative approach in which all the joints of the structure that

f b l d i l l i hare free to rotate are balanced simultaneously in the same step.

All the COMs that are induced at the far ends of the members areAll the COMs that are induced at the far ends of the members are
then computed simultaneously in the following step.

The process of balancing of joints and COMs is repeated until the
UMs at the joints are negligibly small.
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Practical Application of the MDM

C id i th th ti b h i fiConsider again the three span continuous beam shown in figure.

1.5 k/ft
30 k

B C
20 ft

DA

10 ft 10 ft 15 ft

/
EI = constant
E = 29,000 ksi
I = 500 in4

20 ft 10 ft 10 ft 15 ft

The MD Table used for carrying out the computations is shown in
the next slide.

The previously computed distribution factors and FEMs are
recorded on the top and the first line, respectively of the table.p , p y
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

AB BA BC CB CD DCMember Ends
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The MD process is started by balancing joints B and C.

From line 1 of the MD Table we can see that the UM at joint B is

ftk  257550 −+=+−=BUM

The balancing of joint B induces DMs at ends B of members AB and
BC, which can be evaluated by multiplying the negative of the UM
b th di t ib ti f tby the distribution factor.

( )( )
( ) ftk 5.12255.0

ftk 5.12255.0

−−=−=

−−=−=

BC

BA

DM

DM
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

AB BA BC CB CD DCMember Ends

2.Balance Joints ‐12.5 ‐12.5
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Joint C is then balanced in a similar manner.

From line 1 of the MD Table, we can see that the UM at joint C is

The balancing of joint C induces the following DMs at ends C of

ftk 75 −−=CUM

g j g
members BC and CD, respectively

( ) ftk2.3275429.0 −+=+=CBDM

The four DMs are recorded on line 2 on the MD Table and a line is

( )
( ) ftk 8.4275571.0

ftk 2.3275429.0

−+=+=

++

CD

CB

DM

DM

The four DMs are recorded on line 2 on the MD Table, and a line is
drawn beneath them, across the entire width of the table, to
indicate that all the joints are now balanced.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

AB BA BC CB CD DCMember Ends

2.Balance Joints ‐12.5 ‐12.5 +32.2 +42.8
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In the next step of analysis, the COMs that develops at the far ends
of the members are computed by multiplying the distributedof the members are computed by multiplying the distributed
moments by the COFs.

( ) ( )11 ( ) ( )

( ) ( ) ftk 3.65.12
2
1

2
1

ftk 3.65.12
2
1

2
1

−−=−==

−−=−==

BCCB

BAAB

DMCOM

DMCOM

( ) ( )

( ) ( ) ftk  1.162.32
2
1

2
1

22

−+=+== CBBC

BCCB

DMCOM

( ) ( ) ftk  4.218.42
2
1

2
1

−+=+== CDDC DMCOM

These COMs are recorded on the line 3 of the MD Table, with an
inclined arrow pointing from each DM to its COM in the next slide.

60



1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

AB BA BC CB CD DCMember Ends

2.Balance Joints ‐12.5 ‐12.5 +32.2 +42.8

3.Carryover ‐6.3 +16.1 ‐6.3 +21.4
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We can see from line 3 of MD Table that, due to the carryover
effects there are now +16 1 k ft and 6 3 k ft unbalanced momentseffects, there are now +16.1 k‐ft and ‐6.3 k‐ft unbalanced moments
at joints B and C, respectively.

Thus these joints are balanced again, and the DMs thus obtained
are recorded on the line 4 of the MD Table.

One‐half of the DMs are then carried over to the far ends of the
members (line 5), and the process is continues until the UMs aremembers (line 5), and the process is continues until the UMs are
negligibly small.

The final MEMs, obtained by algebraically summing the entries in
each column of the MD Table, are recorded on line 11 of the table.
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1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

AB BA BC CB CD DCMember Ends

2.Balance Joints ‐12.5 ‐12.5 +32.2 +42.8

3.Carryover ‐6.3 +16.1 ‐6.3 +21.4

4.Balance Joints ‐8.1 ‐8.1 +2.7 +3.6

5 Carr o er 4 1 1 4 4 1 1 85.Carryover ‐4.1 +1.4 ‐4.1 +1.8

6.Balance Joints ‐0.7 ‐0.7 +1.8 +2.3

7.Carryover ‐0.4 +0.9 ‐0.4 +1.2

‐0 5 ‐0 5 +0 2 +0 28 Balance Joints ‐0.5 ‐0.5 +0.2 +0.28.Balance Joints

9.Carryover ‐0.3 +0.1 ‐0.3 +0.1

10.Balance Joints ‐0.05 ‐0.05 +0.1 +0.2
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11.Final Moments +38.9 ‐71.8 +71.7 ‐49.1 +49.1 +24.5



1.5 k/ft
30 k

EI = constant

B C
20 ft

DA

10 ft 10 ft 15 ft

EI  constant
E = 29,000 ksi
I = 500 in4

Distribution Factors 0.5 0.5 0.429 0.571

1.Fixed‐end Moments +50 ‐50 +75 ‐75

AB BA BC CB CD DCMember Ends

2.Balance Joints ‐12.5 ‐12.5 +32.2 +42.8

3.Carryover ‐6.3 +16.1 ‐6.3 +21.4

4.Balance Joints ‐8.1 ‐8.1 +2.7 +3.6

5 Carr o er 4 1 1 4 4 1 1 85.Carryover ‐4.1 +1.4 ‐4.1 +1.8

6.Balance Joints ‐0.7 ‐0.7 +1.8 +2.3

7.Carryover ‐0.4 +0.9 ‐0.4 +1.2

‐0 5 ‐0 5 +0 2 +0 28 Balance Joints ‐0.5 ‐0.5 +0.2 +0.28.Balance Joints

9.Carryover ‐0.3 +0.1 ‐0.3 +0.1

10.Balance Joints ‐0.05 ‐0.05 +0.1 +0.2
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11.Final Moments +38.9 ‐71.8 +71.7 ‐49.1 +49.1 +24.5



Flow Chart for MDM
K

Calculate Distribution Factors,
∑

=
K

KDF

Calculate Fixed End Moments

Balance the Moments at All Joints Free to Rotate

Evaluate UMs and then Find DMs

Find Carryover Moments

Repeat the Above Two Steps Until the UMs are Negligibly Small

Determine the Final End Moments

65
Compute Member End Shears, Determine Support Reactions, and draw SFD & BMD



Example 1

• Determine the reactions and draw the shear and bending moment
diagrams for the two‐span continuous beam shown in Figurediagrams for the two span continuous beam shown in Figure.

2 k/ft
18 k

B CA

10 ft 15 ft 30 ft

EI = constant

10 ft 15 ft 30 ft
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Solution
1.Distribution Factors

Only joint B is free to rotate. The DFs at this joint are
18 k

B CA

2 k/ft

10 ft 15 ft 30 ft

( ) ( )
30

545.0
3025

25
=

+
=

+
=

IK

II
I

KK
KDF

BCBA

BA
BA

( ) ( ) 455.0
3025

30
=

+
=

+
=

II
I

KK
KDF

BCBA

BC
BC

67

Checks                                          1455.0545.0 =+=+ BCBA DFDF



2 k/ft
18 k

B CA

/

EI = constant

Distribution Factors
0.545 0.455
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2.Fixed‐End Moments (FEMs)

A i th t j i t B i l d i t t ti l l t thAssuming that joint B is clamped against rotation, we calculate the
FEMs due to the external loads by using the FEM expressions

18 k

B

CA

2 k/ft

64.8 43.2 150 150B

10 ft 15 ft 30 ft

( )( )151018 2

64.8 43.2 150 150

( )( )
( )
( ) ( ) ft-k243orftk243151018

ft   -k8.46 or          ft        k8.64
25

151018

2

2

−−==

+−==AB

FEM

FEM

( )
( ) ft   -k 150  or                   ft        k 150
12
302

ft-k2.43 or          ft        k2.43
25

2

2

+−==

==

BC

BA

FEM

FEM

69
( ) ft-k 150  or                   ft        k 150
12
302

12
2

−−==CBFEM



2 k/ft
18 k

B CA

/

EI = constant

Distribution Factors
0.545 0.455

1.Fixed‐end Moments +64.8 ‐43.2 +150 ‐150

AB BA BC CB
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3.Moment Distribution

Si J i t B i t ll t l d l th j i t dSince Joint B is actually not clamped, we release the joint and
determine the unbalanced moment (UM) acting on it by summing
the moments at ends B of members AB and BC

CA

2 k/ft
18 k

B

CA
64.8 43.2 150 150

The DMs due to these UMs at end B of member AB and BC are

ftk  8.1061502.43 −+=+−=BUM

The DMs due to these UMs at end B of member AB and BC are
determined by multiplying the negative of the UM by the DF

( ) ( ) ftk25881065450 === UMDFDM
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( ) ( )
( ) ( ) ftk 6.4881064550

ftk25881065450

−−=−=−=

−−=−=−=

 ..UMDFDM

...UMDFDM

BBCBC

BBABA



2 k/ft
18 k

B CA

/

EI = constant

Distribution Factors
0.545 0.455

1.Fixed‐end Moments +64.8 ‐43.2 +150 ‐150

AB BA BC CB

2.Balance Joint B ‐58.2 ‐48.6
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3.Moment Distribution

Th COM t th f d A d C f b AB d BCThe COMs at the far ends A and C of members AB and BC,
respectively, are then computed as

11 ( ) ( )

( ) ( ) ftk32464811

ftk  1.292.58
2
1

2
1

−−=−==

−−=−==

BCCB

BAAB

DMCOM

DMCOM

Joint B is the only joint of the structure that is free to rotate, and
b it h b b l d d th t di t ib ti

( ) ( ) ftk 3.246.48
22 BCCB DMCOM

because it has been balanced, we end the moment distribution
process.
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2 k/ft
18 k

B CA

/

EI = constant

Distribution Factors
0.545 0.455

1.Fixed‐end Moments +64.8 ‐43.2 +150 ‐150

AB BA BC CB

2.Balance Joint B ‐58.2 ‐48.6

3.Carryover ‐29.1 ‐24.3

74

4.Final Moments +35.7 ‐101.4 +101.4 ‐174.3



Member End Shears, Support Reactions, SFD & BMD

See Example 1 in Slope‐Deflection Method
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Example 2

• Determine the reactions and draw the shear and bending moment
diagrams for the two‐span continuous beam shown in Figurediagrams for the two span continuous beam shown in Figure.

80 kN 40 kN

B CA

5 m 5 m 5 m 5 m

1.5 I I

E = constant

5 m 5 m 5 m 5 m
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Solution
1. Distribution Factors

Joints B and C of the continuous beam are free to rotate. The DFs
at joint B areat joint B are

B

80 kN 40 kN

B CA

60105.1 IKDF BA

5 m 5 m 5 m 5 m

( ) ( )

( ) ( ) 4.010

6.0
10105.1

105.1

===

=
+

=
+

=

IKDF

II
I

KK
KDF

BC
BC

BCBA

BA
BA

77

( ) ( )10105.1 ++ IIKK BCBA
BC



Similarly, at joint C,

80 kN 40 kN

B CA

5 m 5 m 5 m 5 m

11.0 IKCB 1
1.0
1.0

===
I
I

K
KDF

CB

CB
CB
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2. Fixed‐End Moments

B CA

80 kN 40 kN

5 5 5 5

( )1080+

5 m 5 m 5 m 5 m

( )

m.kN 100

 m.kN 100
8

1080

−=

+=
+

=

BA

AB

FEM

FEM

( )

m.kN50

 m.kN 50
8

1040

−=

+=
+

=

BA

AB

FEM

FEM

79

m.kN50BAFEM



MD TABLE 80 kN 40 kN

B CAE = constant

Distribution Factors
0.6 0.4

+100 ‐100 +50 ‐50

AB BA BC CB

1.0

1.Fixed‐end Moments
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3. Moment Distribution

Aft di th DF d th FEM i th MD T bl b iAfter recording the DFs and the FEMs in the MD Table, we begin
the MD process by balancing joints B and C.

The UM at joint B is equal to ‐100+50=‐50 kN.m. Thus DMs at the
ends B of members AB and BC are

( ) ( )
( ) ( ) m.kN 205040

kN.m 305060

 .UMDFDM

 .UMDFDM

BBCBC

BBABA

+=+=−=

+=+=−=

Similarly, the UM at joint C is ‐50 kN.m, we determine the DM at
end C of member BC to be

( ) ( )

( ) ( ) kN m50501UMDFDM +=+=−=

81

( ) ( ) kN.m50501UMDFDM CCBCB +=+==



MD TABLE 80 kN 40 kN

B CAE = constant

Distribution Factors
0.6 0.4

+100 ‐100 +50 ‐50

AB BA BC CB

1.0

1.Fixed‐end Moments

2.Balance Joints B and C +30 +20 +50
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3. Moment Distribution

O h lf f th DM th i d t th f d f thOne‐half of these DMs are then carried over to the far ends of the
members.

This process is repeated, until the UMs are negligibly small.

4. Final Moments

The final MEMs, obtained by summing the moments in each
l f th MD T bl d d th l t li f th t blcolumn of the MD Table, are recorded on the last line of the table.
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MD TABLE 80 kN 40 kN

B CAE = constant

Distribution Factors
0.6 0.4

+100 ‐100 +50 ‐50

AB BA BC CB

1.0

1.Fixed‐end Moments

2.Balance Joints B and C +30 +20 +50

3.Carryover +15 +25 +10

4.Balance Joints B and C ‐10‐15 ‐10

5.Carryover ‐7.5 ‐5 ‐5

6.Balance Joints B and C +2+3 +5

7.Carryover +1.5 +2.5 +1

8.Balance Joints B and C ‐1‐1.5 ‐1

9.Carryover ‐0.8 ‐0.5 ‐0.5

10.Balance Joints B and C +0.2+0.3 +0.5

11 Carryover +0.2 +0.3 +0.1
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11.Carryover

12.Balance Joints B and C ‐0.1‐0.2 ‐0.1

13. Final Moments +108.4 ‐83.4 +83.4 0



B

80 kN
37.5 28.34

40 kN

B CBA
83.4108.4 83.4

83.483.4

42.5 37.5 28.34 11.66
B = 65 84By = 65.84

80 kN 40 kN

B CA

108.4 kN.m

88

42.5 kN
65.84 kN 11.66 kN



80 kN 40 kN

B CA

108 4 kN m108.4 kN.m

42.5 kN
65.84 kN 11.66 kN

42.5

28 34

A B C
E

D

28.34

E

37 5

‐11.66

89

‐37.5

Shear Force Diagram (kN)



80 kN 40 kN

B CA

108 4 kN m108.4 kN.m

42.5 kN
65.84 kN 11.66 kN

104.1
58 3

A B
CE

D

58.3

0

‐108 4

CE

‐83.4

90

108.4

Bending Moment Diagram (kN . m)



Example 3

• Determine the member end moments and reactions for the three‐
span continuous beam shown due to the uniformly distributedspan continuous beam shown, due to the uniformly distributed
load and due to the support settlements of 5/8 in. at B, and 1.5 in.
at C, and ¾ in. at D.

2 k/ft

B
DA

20 f f

C

EI = 29,000 ksi

20 ft 20 ft 20 ft

91

I = 7,800 in.4



Solution
1. Distribution Factors

2 k/ft

B
DA

20 ft 20 ft

C

20 ft

At Joint A

At Joint B
1=ABDF

( ) ( ) 429.0
20803

803
=

+
=

II
IDFBA

92
( ) ( ) 571.0

20803
20

=
+

=
II

IDFBC



Solution
1. Distribution Factors

2 k/ft

B
DA

20 ft 20 ft

C

20 ft

At Joint C

( ) ( ) 571.0
20803

20
=

+
=

II
IDFCB

At J i t D

( ) ( ) 429.0
20803

803
=

+
=

II
IDFCD

At Joint D

93

1=DCDF



2. Fixed‐End Moments

B
DA

2 k/ft

CB

20 ft 20 ft

C

20 ft

A
5 in 11 in .3 in

B

C

D

.
8

in .
2

1 in 4

C

.8
5 inAB =∆

.1 8
7

8
5

2
1 inBC =−=∆
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882BC

.1 4
3

4
3

2
1 inBC =−=∆



2. Fixed‐End Moments

A
.

8
5 in .

2
11 in .

4
3 in

B

C

D

5 ( )( )

( ) ( )
ft-k 2.227,1

1220
8
5800,7000,296

6
322 +=









+=
∆

+==
L
EIFEMFEM BAAB

( )( )

( ) ( )
ft-k 1.718,1

1220
8
7800,7000,296

6
322 +=









+=
∆

+==
L
EIFEMFEM CBBC ( ) ( )1220L

( )( )
ftk747214

3800,7000,296
6

−=








+=
∆

−==
EIFEMFEM
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( ) ( )
ft-k7.472,1

1220 322 −=+=−==
L

FEMFEM DCCD



2. Fixed‐End Moments
2 k/ft

B
DA

2 k/ft

C

20 ft 20 ft 20 ft

The FEMs due to the 2 k/ft external load are

( )

( )202

ft-k 7.66
12
202

2

2

+=+=== CDBCAB FEMFEMFEM

Thus the FEMs due to the combined effect of the external load and

( ) ft-k 7.66
12
202

−=−=== DCCBBA FEMFEMFEM

Thus the FEMs due to the combined effect of the external load and
the support settlements are
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2. Fixed‐End Moments
2 k/ft

B
DA

2 k/ft

C

20 ft 20 ft 20 ft

fk45391fk4061

ft-k 4.651,1           ft        -k 8.784,1

ft-k 5.160,1           ft        -k 9.293,1

+=+=

+=+=

CBBC

BAAB

FEMFEM

FEMFEM

FEMFEM

ft-k4.539,1            ft        -k406,1 −=−= DCCD FEMFEM
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3. Moment Distribution

Th MD i i d t i th l h i th MDThe MD is carried out in the usual manner, as shown in the MD
Table.

Note that the joints A and D at the simple end supports are
balanced only once and that no moments are carried over to these
j ijoints.

4 Final Moments4. Final Moments

See the MD Table and Figure on next slides.
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DA

2 k/ft

Distribution Factors 0.429 0.571 0.571 0.429

AB BA BC CB CD DCMember Ends

B
DA

C

1 1

1.Fixed‐end Moments +1293.9 +1160.5 +1784.8 +1651.4

2.Balance Joints ‐1263.5 ‐1681.8 ‐140.1 ‐105.3

3.Carryover ‐70.1 ‐840.9

4 Balance Joints +307.6 +409.5 +40.7 +30.5

‐1293.9
‐647

‐1539.4

+1539.4

‐1406

+769.7

4.Balance Joints +307.6 +409.5 +40.7 +30.5

5.Carryover +20.4 +204.8

6.Balance Joints ‐8.8 ‐11.6 ‐116.9 ‐87.9

7.Carryover ‐58.5 ‐5.8

+25.1 +33.4 +3.3 +2.58.Balance Joints

9.Carryover +1.7 +16.7

10.Balance Joints ‐0.7 ‐1.0 ‐9.5 ‐7.2
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‐4.8

+2.7

+0.2

11.Carryover

12.Balance Joints

13.Carryover

14 B l J i t

‐0.5

+0.3
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+0.2

9911.Final Moments 0 0

‐0.1

+0.2

‐0.1
‐0.4
+0.2

14.Balance Joints
13.Carryover
14.Balance Joints

‐0.8 ‐0.6

‐426.6 +426.6 +804.1 ‐804.1
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