

What is a committee?
A group of the unwilling, picked from the unfit, to do the unnecessary.

MEMPHIS

Moment of Inertia

- When we calculated the centroid of a shape, we took the moment generated by the shape and divided it by the total area of the shape.
- This gave us a distance, which was the distance to the centroid of the shape

MEMPMIS
 Moment of Inertia

o The moment of inertia is actually the second moment of an area or mass about an axis
o Notice that it is not a distance, it is a moment of a moment

- That may sound strange
- It should

MEMPHIS

Moment of Inertia

o There is really nothing that can easily be used to describe the moment of inertia
o For an area, it will have units of length ${ }^{4}$ which is very difficult to map to a physical quantity

MEMPHIS

Moment of Inertia

o The symbol for the moment of inertia is I with a subscript describing about which axis the moment is being calculated
o The moment of inertia about the x-axis would be I_{x}, about the y-axis, I_{y}
o There is also a moment of inertia about the origin, known as the polar moment of inertia designated as J_{O}

Moment of Inertia

- The moment of inertia is a physical property and determines the behavior of a material under certain loading and dynamic conditions
- Remember, we are taking the moment of the moment (the second moment) of an area about an axis
o Keep this in mind and you won't have any trouble here

MEMPHIS

Moment of Inertia

o The first moment of a shape about an axis was calculated by taking the moment arm to the local centroid of the shape and multiplying that by the area of the shape

Moment of Inertia

- The second moment will be generated in a similar manner
- We will take a moment arm from the axis to the centroid of the shape, square that moment arm, and multiply that product by the area

\section*{| MenpHES | Moment of Inertia |
| :--- | :--- |}

o For a moment of inertia about (around) a y-axis, the moment arm will be measured perpendicular to the y-axis, so it will be an x-distance

- So for I_{y} we would have

$$
I_{y}=x^{2} A
$$

MEMPHIS.

 An Example

o We will start with the I_{y}, or the moment of inertia about the y-axis

An Example

o To take a moment about the y-axis, we will need to have a moment arm that has an \underline{x} distance

Point to Note
oYou must be careful that the side of the rectangle describing the differential area that does not have the differential component is parallel to the axis about which you are taking the moment of inertia

Menple Point to Note
 olf you do not set up the problem this way, the calculations are a bit different as you have seen from the example we did in class.

MEMPHIS
 An Example

o In this case, the height is parallel to the y axis

MEMPMIS

o If this isn't so, the method breaks down

MEMMPHIS.
 An Example

- Once we have the differential area, we locate the moment arm from the axis

- Notice that we are calculating I_{y} but the distances are in the x-direction, be careful to remember this

Monday, November 19, 2012

An Example

o Evaluating the integral, we have

$\xrightarrow{\text { MenNHE }}$ An Example

- Using the same method, we can calculate the I_{x}

MEMPHIS
 An Example

- 9

o Draw the moment arm from the x -axis

 o The second moment for this differential area is

MEMPHIS

An Example

- The I_{x} for the composite area is the sum of the I_{x} 's for the individual differential areas

THE UNVESITT OF MEMPHIS

An Aside

o Just for your information, you are not required to know this method, you can use a double integral to find the moment of inertia

 - 0
 Homework

o Problem 10-1
o Problem 10-2
o Problem 10-7

