
Speaker Name

MongoDB Backup & Recovery
Field Guide
Tim Vaillancourt
Percona

{
name: “tim”,
lastname: “vaillancourt”,
employer: “percona”,
techs: [

“mongodb”,
“mysql”,
“cassandra”,
“redis”,
“rabbitmq”,
“solr”,
“mesos”
“kafka”,
“couch*”,
“python”,
“golang”

]
}

`whoami`

Agenda

● Backups
○ Logical
○ Binary
○ Architecture
○ Security

● Consistent Backups
● Percona-Lab/mongodb_consistent_backup
● Recovery

○ Logical
○ Binary

MongoDB Backups
“An admin is only worth the backups they keep” ~ Unknown

Logical Backups

● Storage-engine agnostic
● Logical representation

○ Is not machine bytes
○ Is not architecture specific / dependent

● Simple backup procedure
● Low disk consumption
● Common logical backup tools

○ mongodump - MongoDB
○ mysqldump - MySQL
○ ...

Logical Backups: mongodump

● ‘mongodump’ tool from mongo-tools
project

● Supports
○ Multi-threaded dumping in 3.2+
○ Optional inline gzip compression of data
○ Optional dumping of oplog for single-node

consistency
○ Replica set awareness via

--readPreference= flag
■ Ie: primary, primaryPreferred, secondary,

secondaryPreferred, nearest

Logical Backups: mongodump

● Process
○ Tool issues .find() query with $snapshot

cursor
○ Stores BSON data in a file per collection
○ Stores BSON oplog data in “oplog.bson”

Logical Backups: mongodump

● Useful for...
○ upgrades of very old systems, eg: 2.6 -> 3.4

upgrade
○ protection from

binary-level/storage-engine corruption
○ export/import to different CPU

architecture

Logical Backups: mongodump

● Limitations
○ Index metadata only in backup

■ Indexes are rebuilt entirely, in serial!!
■ Often indexing process takes longer than

restoring the data!
■ Expect hours or days of restore time

○ Not Sharding aware
■ Sharded backups are not Point-in-Time

consistent
■ Must use mongos, very inefficient

Logical Backups: mongodump

● Limitations
○ Fetch from storage-engine, serialization,

networking, etc is very inefficient
○ Oplogs fetched in batch at end / oplog

must be as long as the backup run-time
○ Wire Protocol Compression (added in 3.4+,

default in 3.6) not supported yet:
https://jira.mongodb.org/browse/TOOLS-1
668 (Please vote/watch Issue!)

https://jira.mongodb.org/browse/TOOLS-1668
https://jira.mongodb.org/browse/TOOLS-1668

Binary Backups

● Backup data is the storage-engine files
● Options

○ Cold Backup
○ LVM Snapshot
○ Hot Backup

■ Percona Server for MongoDB (FREE!)
■ MongoDB Enterprise Hot Backup ($$$)
■ NOTE: MMAPv1 not supported

Binary Backups

● Benefits
○ Faster backup time

■ Backups can move at the speed of the
disk/host

○ Faster time to restore
■ Indexes are backed up entirely
■ No time spent rebuilding indexes (!!!)

Binary Backups

● Limitations
○ Increased backup storage requirements
○ CPU Architecture limitations (64-bit vs

32-bit)
○ Cascading corruption
○ Batteries not included

■ Not Sharding aware
■ Not Replica Set aware
■ Oplog is not captured separately

Binary Backups

● Process
○ Cold Backup

■ Stop a mongod SECONDARY, copy/archive
dbPath

○ LVM Snapshot
■ Optionally call ‘db.fsyncLock()’ (not required in

3.2+ with Journaling)
■ Create LVM snapshot of the dbPath
■ Copy/Archive dbPath
■ Remove LVM snapshot (as quickly as possible!)
■ NOTE: LVM snapshots can cause up to 30%*

write latency impact to disk (due to COW)

Binary Backups

● Process
○ Hot Backup (PSMDB or MongoDB Enterprise)

■ Pay $$$ for MongoDB Enterprise or download PSMDB for free(!)
■ db.adminCommand({

createBackup: 1,
backupDir: "/data/mongodb/backup"

})
■ Copy/archive the output path
■ Delete the backup output path
■ NOTE: RocksDB-based createBackup creates filesystem hardlinks whenever possible!
■ NOTE: Delete RocksDB backupDir as soon as possible to reduce bloom filter overhead!

Backup Security

● Authorization
○ “backup” built-in role
○ Client Source IP restriction (new in 3.6!)
○ x509 Client Certificate vs Passwords

● Transport
○ Use SSL/TLS with MongoDB

■ “preferSSL” mode allows secure and plain
○ Upload backups with secure connection

Backup Security

● Storage
○ Who can access the backups?
○ File System access
○ Encryption

Backup Architecture

● Risks
○ Dynamic nature of Replica Set
○ Impact of backup on live nodes

● Example: Cheap Disaster-Recovery
○ Place a ‘hidden: true’ SECONDARY in another

location
○ Optionally use cloud object store (AWS S3,

Google GS, etc)

Backup Architecture

● Example: Replica Set Tags
○ “tags” allow fine-grained server selection with

key/value pairs
○ Use key/value pair to fence various application

workflows
○ Example:

■ { “role”: “backup” } == Backup Node
■ { “role”: “application” } == App Node

Backup Style

● Full
○ Take a full copy of the database data
○ Simple
○ Very costly to store frequent backups

● Incremental
○ Logical (oplog)
○ Binary

● Hybrid
○ Full every N days
○ Incremental every 12-24 hours

Backup Tips

● Store backups in structured paths
○ <name>-YYYYMMDD_HHMM

● Also backup the
○ MongoDB configuration
○ (When secure) MongoDB Internal

Authentication key

Consistent Backups

Shards and Consistency

● Problem
○ Backup tools are replset consistent

but NOT sharding consistent
○ Shards can complete backup at

different times
○ ..but a consistent backup means all

shards are at the same point in time!

Shards and Consistency

● Solution: a process that
■ Understands the sharded cluster topology
■ Is able to watch the oplogs of all shards
■ Handles the backups of all shards
■ Ensures the oplogs are aligned for all

shards for consistency
■ ...

Percona-Lab/mongodb_consistent_backup

MCB: History

● Python project by Percona-Lab for consistent backups
● URL:

https://github.com/Percona-Lab/mongodb_consistent
_backup

● Best-effort support, not a “Percona Product”
● Created to solve limitations in MongoDB backup tools:

○ Replica Set and Sharded Cluster awareness
○ Cluster-wide Point-in-time consistency
○ In-line Oplog backup (vs post-backup)
○ Notifications of success / failure

https://github.com/Percona-Lab/mongodb_consistent_backup
https://github.com/Percona-Lab/mongodb_consistent_backup

MCB: Features

● Features
○ Auto replica-set and sharded-cluster discovery
○ Cluster-consistent live oplog backup
○ Remote Upload (AWS S3, Google Cloud Storage and Rsync)
○ Archiving (Tar or ZBackup deduplication and optional

AES-at-rest)
○ CentOS/RHEL7 RPMs and Docker-based releases (.deb soon!)
○ Single Python PEX binary
○ Multithreaded / Concurrent and auto-scales to available CPUs

MCB: Features

● Low-Impact
○ Uses Secondary nodes only
○ Considers (Scoring)

■ Replication Lag
■ Replication Priority
■ Replication Health / State
■ Hidden-Secondary State (preferred by tool)
■ Fails if chosen Secondary becomes Primary (on purpose)

MCB: Future

● Future
○ End of life of Python-based tool
○ Productization
○ Incremental Backups
○ Binary-level Backups (Hot Backup, Cold Backup, LVM,

Cloud-based, etc)
○ Restore Functionality
○ Instrumentation / Metrics

Restore
“An admin is only worth the backups they keep” ~ Unknown

Logical-Backup Restore

● mongorestore required with mongodump
backups

● By default all databases/collections are
restored

● Add --drop flag for full restore
○ Mongorestore uses inserts that can collide on

Primary Key
○ Replaces the data during restore

Logical-Backup Restore

● Parallel collections possible
○ Default 4
○ --numParallelCollections=N

● --oplogReplay flag for consistency
○ Always use if possible!

Binary-Backup Restore

● Process
○ Stop MongoDB process
○ Move the current dbPath to a safe place, if

required
○ Move the backup binary files to the correct

storage.dbPath
○ Ensure the MongoDB configuration file

matches the backup node
○ Start MongoDB

■ MongoDB replication will sync using oplog or (full
sync if it can’t)

Sharded Cluster Restore Process

1. Stop all Mongos routers
2. Restore Config Servers from backup

a. Update “config.shards” if shard hostnames
changed

3. Restore all Shards from backup
4. Start a Mongos and Stop the Balancer

a. sh.stopBalancer()
5. Test the cluster and data

Sharded Cluster Restore Process

6. Start all Mongos processes and Start the
Balancer
a. sh.startBalancer()

DATABASE PERFORMANCE
MATTERS

Questions?

