

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Monitoring & Diagnostics of Power Plant Equipment

Aaron Hussey Project Manager Stanford University EE392n May 31, 2011

Contents

- Industry Challenges
- Recent Equipment Failure
- Fleet-Wide Monitoring Centers
- Online Monitoring Basics
- Diagnostic Approaches
- Conclusion

Industry Overview

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Existing Generation Plants Value Soaring ...

- Plant Capacity
 - 20GW cancelled or withdrawn
 - 27GW proceeding
- Reliability may be at risk by middecade (NERC)
- Natural gas is it the answer?
- Wind capacity
 - Difficult to launch new coal
 - Coal plants to cycle?

Availability of existing fossil plants is a top industry strategic priority

Aging of Generation Assets

Source: Platts, Bernstein analysis

BernsteinResearch, U.S. Utilities: Which utilities are most at risk from pending plant retirements? April 23, 2008

Recent Equipment Failure

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Forced Draft (FD) Fan Bearing Failure

An oil sample was taken, but never submitted (too many visible pieces).

A quick vibration analysis was done and indicated a wiped bearing.

Parts were gathered, manpower scheduled, and the fan was scheduled out over for the weekend.

The bearing was replaced.

Bearing Damage

If not for the Condition-Based Maintenance (CBM) Vibration technologist, this would not have been acted on.

He believed there was a potential for a problem based on what was presented, and then confirmed the problem.

Fleet-Wide Monitoring Centers

Centralized Monitoring and Diagnostics (M&D) Strategy

- Main thrust is leveraging staff expertise, using technology for efficiency of monitoring, to detect and mitigate potential equipment failures
- Multi-disciplinary staffing with experienced operators, maintenance technicians, and engineers
- Information integration, including connection of plant data historians and enterprise asset management tools to central facility
- Brick-and-mortar facilities in a location central to monitored units
- Executive support for establishing an implementation plan and for communicating the need and benefit across the fleet

Progress Energy M&D Centers

Carolina's

Fleet Wide Pattern recognition monitoring for Fossil, Combustion Turbine (CT), & Combined-Cycle (CC)

Nuclear & Transmission interested

<u>Florida</u>

Fleet Wide Thermal Performance monitoring for Fossil, CT, & CC

Online Monitoring Basics

Limit Checking

• Normal behavior has normal range

• Abnormal behavior **not** in normal range

 Limits might not be sensitive enough for many applications

Prediction Models

• Predictors provide a dynamic reference

 Predictors use observed values to infer expected values for normal behavior

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Using Predictors

• Train predictors using normal data

 Pass corrupted data to predictor to get estimate of un-corrupted values

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Using Predictors

• Predictor estimates follow the expected trend

• The **difference** between actual and estimated values identifies the fault

Prediction Model Examples

- Univariate Methods
 - -Auto Regression (AR)
- Multivariate Methods
 - Multivariate State Estimation Technique (MSET)
 - Inductive Monitoring System (IMS)
 - Principal Component Analysis (PCA)
- Redundant Sensor Methods
 - Instrument Calibration Monitoring Program (ICMP)

Principal Component Analysis

- Transforms data into a new coordinate system
- The principal components provide the new axes
- Good data will fall within a statistically determined distance from the principal component axes

Instrument Calibration Monitoring Program

- Estimate is the consistency weighted average of three or more redundant signals
- Consistency parameters are derived from training data
- Inconsistent signals are **removed** from the average

Fault Detection Examples

- Threshold Methods
 - Residual Value Limit
- Hypothesis Test Methods
 - Sequential Probability Ratio Test (SPRT)
- Statistical Process Control (SPC) Methods
 - Mean Test
 - Standard Deviation Test
 - Range Test

Statistical Process Control

- Used to maintain processes within specific control limits
- Compares **sample** mean, standard deviation and range to the control limits to determine abnormal behavior

Diagnostic Approaches

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Example Use Case Scenario

- Online Monitoring/Fleet-Wide Monitoring (OLM/FWM) system alert pattern is ● observed
- Related data for asset are retrieved and a fault feature pattern is created
- Possible matching signatures are retrieved from the Asset Fault Signature (AFS) database and the best match is determined
- Diagnosis is presented, with optional troubleshooting and corrective action information

© 2011 Electric Power Research Institute. Inc. All rights reserved.

Diagnostic Advisor Function

Conclusion

- Aging power plant infrastructure must continue to supply reliable electricity
- Equipment must be monitored more closely to prevent failures from disrupting plant availability
- Online monitoring technology can be cost-effectively deployed using a fleet-wide approach
- Troubleshooting equipment faults requires practical diagnostic strategies that can reason with partial information

Questions

© 2011 Electric Power Research Institute, Inc. All rights reserved.

Contact Information

Aaron J. Hussey EPRI: Electric Power Research Institute Instrumentation, Controls, and Automation Phone: 704-595-2509 Mobile: 704-458-7060 Fax: 704-595-2867

Together...Shaping the Future of Electricity

Backup Slides...

Generator Rotor Crack

- A few year's ago Entergy Fossil's Performance Monitoring & Diagnostic Center (PMDC) working with the Plant Staff averted a catastrophic failure of their unit generator
- The unit was repaired for a fraction of the \$10's of millions the failure would have cost and in a few weeks versus 18-24 months or longer

- Routine Monitoring of unit was performed
- Included in the routine monitoring was an evaluation of the Turbine/Generator Assets utilizing the Smart Signal / EPI*Center tool and a review of PI data /OIS Displays
- The next slide is representative of the fact that no abnormalities were noted at that time

SmartSignal Vibration Trend

© 2011 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

Vibration During Coastdown

Crack Location

Rough Indication of Crack Depth

Reasoner Tradeoff Study

Technology	When to Use	When Not to Use
Rule-based Model-based	Unambiguous, stable, and narrow problem area, and justification by rule trace is acceptable	Ambiguous problem area that changes with time or has many operating modes
Case-based	Ambiguous problem area with complex structured data changing slowly with time, and justification is required	When case data are not available or if an exact optimal answer is required
Neural networks	Noisy numerical data for pattern recognition or signal processing	Categorical data or when justification is required
Database lookup	Well-structured, standardized data, and simple, precise queries possible	Complex, poorly structured data, and <i>ambiguous queries</i> required

Medical Diagnosis www.myelectronicmd.com

ELECTRIC POWER RESEARCH INSTITUTE