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Abstract. We consider a setting with numerous location-aware mov-
ing objects that communicate with a central server. Assuming a set of
focal points of interest, we aim at continuously monitoring object orien-
tations and hence detect situations where many objects get closer to or
move away from any such site. Towards this goal, we propose a streaming
approach that delegates part of the processing to objects, which relay po-
sitional updates upon significant deviations at their course. The central
processor maintains the changing distribution of current object headings
around each focal point and may issue alerts once it observes many ob-
jects moving along a direction (e.g., increased northbound traffic near
the stadium). To efficiently answer such navigational queries, we intro-
duce a novel access method that indexes object headings influencing a
specific site. Furthermore, we extent this scheme to examine trajectory
movements around sites over the recent past. Experimental results verify
that this framework is able to cope with scalable numbers of objects at
reduced communication cost, while offering instant notification of impor-
tant trends along diverse directions for multiple focal points.

1 Introduction

Proliferation of location-based applications has led into efficient algorithms for
processing typical continuous queries, such as range or k-nearest neighbor search
[2, 5, 11], dealing with current coordinates of monitored objects (e.g., humans, ve-
hicles, devices etc.). Still, less attention is given to observing evolving trajectories
or mutable motion patterns, such as abrupt velocity variations or unexpectedly
increasing concentration of objects in particular regions across time.

In this work, we turn our focus on studying movement from a navigational
perspective, by examining significant changes in object headings. In navigation,
the heading (a.k.a. bearing) of a moving object is its orientation, expressed as an
angle from a known direction, usually north. By collecting heading information
from streaming positional updates of numerous objects, it could be feasible to
observe their mode of progression. But objects usually move at diverse directions
amenable to sudden changes (e.g., turns), so perhaps no safe conclusion on move-
ment patterns can be drawn from such a volatile variety of orientations. Even
a fact like ”40% of objects currently move eastbound” scarcely offers a valuable
knowledge, as relevant objects may be located anywhere in the monitored area.



In our view, it seems much more useful to maintain the distribution of object
orientations with respect to selected focal points or sites of interest, like terminal
stations, sporting venues, traffic junctions etc. For each such site (say, a stadium),
we would like to detect orientation trends online and also distinguish influencing
objects that converge to or diverge from that site; e.g., whether a large number
of vehicles are currently moving westbound and may be approaching the stadium
soon. Typically for vehicles, ships, aircrafts etc., we implicitly assume that each
object follows a consistent movement, hence is not arbitrarily displaced, but is
moving towards –more or less– the same direction over a time interval.

In effect, we suggest a framework that acts like a constellation of radars (one
per site), offering better insight along frequently-followed directions at progres-
sively finer resolution. This mechanism can answer continuous orientation-based

queries like ”identify trucks bound for the port from the west at a distance less
than 2km” or ”issue an alert once a squadron of aircrafts are heading towards
Athens from southeast over the past 10 minutes”. To assist efficient evaluation
of such requests, we propose a novel index structure that organizes the detection
range of a specific site as a hierarchical tree. Influencing objects are assigned to
tree nodes that represent sectors at gradually refined angles and extents. This in-
dex supports multiple orientation-based queries associated with a common focal
point, each inspecting a diverse range and direction around it.

Since the entire mechanism must work in a streaming fashion to keep in pace
with the bulk of incoming geospatial data, we adopt a collaborative scheme,
where objects are capable of communicating with a central server and also have
minimal processing capabilities to retain their recent positions and update their
heading. A set of fixed focal points are allocated in the monitoring area; for each
observation site, the server maintains the current distribution of headings based
on the most recent status of objects detected within its area of interest. Reduc-
ing communication overhead is a major concern, so frequent positional updates
referring to slight changes in objects’ movement should better be avoided.

To the best of our knowledge, this is the first work on monitoring streaming
orientations of moving objects. Our contribution can be summarized as follows:

– We introduce a novel spatiotemporal access method, namely PolarTree, which
can effectively maintain object headings of interest to a given focal point.

– We propose a stream-based processing scheme that can provide real-time re-
sponse to an important –yet largely neglected– class of navigational queries.

– We further extent this mechanism by employing sliding windows, practically
examining the general heading for evolving portions of objects’ trajectories.

– We evaluate empirically the robustness and efficiency of the framework with
scalable numbers of moving objects and various settings for focal sites.

The remainder of this paper is organized as follows: Section 2 discusses fun-
damental concepts concerning focal points and object headings. Section 3 intro-
duces the structure of PolarTree and presents its properties and operations. The
processing framework for monitoring object headings is described in Section 4.
Experimental results are reported in Section 5. Section 6 briefly reviews related
work. Finally, Section 7 offers conclusions and future research directions.



2 Preliminaries

2.1 Scope of Focal Points

We assume a finite set F = {f1, f2, . . . , fn} of stationary focal points (sites),
which can monitor a large number of location-aware objects continuously moving
on the 2-d Euclidean space E. Each site fi ∈ F has a focal scope that represents
its maximum range for detecting objects moving in its vicinity. In this setting,
we assume that the scope of each focal point fi practically translates into a circle
O(fi, Ri) of a given radius Ri centered at the fixed location of fi. In fact, every
focal point specifies an advanced range search, aiming not just to observe objects
inside its circular scope, but also to distinguish their orientations.

We do not assume any particular allocation of sites on plane E, so they
can be distributed randomly, evenly, but typically depending on the application.
For instance, a traffic monitoring system may configure focal sites at major
junctions along arterial roads and highways, while an environmental application
may opt for observation points near wildlife habitats. Hence, the scopes of any
two focal points fi, fj ∈ F may intersect, signifying a common interest on area
O(fi, Ri)∩O(fj , Rj) 6= ∅. Each focal point may also designate a different radius,
as depicted in Fig. 1. It may occur that E is not covered in its entirety, i.e.,
E 6=

⋃n

i=1
O(fi, Ri), meaning that some areas of E may not be monitored at all.

Finally, we make no assumption on the total count n of sites, although we expect
that a few hundred focal points of adequate scopes are more than sufficient to
monitor a large geographical area (e.g., a city or a national park).

2.2 Object Headings and Focal Distances

Each moving object o is aware of its current timestamped location 〈x, y, t〉, where
x, y are the coordinates (on plane E) of a point position measured at time instant
t. An object also knows its heading with reference to a previously recorded posi-
tion 〈x0, y0, t0〉. That previous position of object o can be either its last recorded
location or an anchor point representing its origin, a designated position or even
a shifting location somewhere along its route (Section 4.3). Anyway, the heading
signifies the direction of movement and can be represented as an angle θ with
respect to a fixed direction; if this angle is measured from north it is commonly
known as azimuth. For facilitating geometric calculations, in our model we mea-
sure headings counterclockwise with respect to the positive x-axis. This reflects
the slope of the line segment that connects these two locations, expressed as an
angle θ ∈ [0, 2π) on the trigonometric circle (as indicated for object i in Fig. 1).
Formally:

θ =

{

atan2(y − y0, x − x0), if y ≥ y0

atan2(y − y0, x − x0) + 2π, if y < y0

In fact, we use the variant function atan2 instead of arctan( y−y0

x−x0
), such that

the calculated slope θ is also mapped to the correct quadrant of the trigonometric
circle, thus signifying the direction of the vector from previous position to the
current one. Since function atan2 takes values strictly in (−π, π], we add the term
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Fig. 1. Focal sites & scopes.
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2π for negative slopes, hence always θ ∈ [0, 2π). Figure 1 illustrates the current
locations and headings of several objects moving in the vicinity of three focal
points. Note that the heading of an object depends solely on its own movement
from a previously recorded position and has nothing to do either with the focal
point or the movement pattern of its neighboring objects.

Objects are moving freely, but we assume that their heading does not change
abruptly at each positional update. Otherwise, had they been allowed to move
towards random directions at each timestamp, there would be no reason in mon-
itoring their incoherent orientations. Hence, objects are expected to follow a con-
sistent course for a while, before heading towards another direction (e.g., making
a turn). This motion pattern is frequently observed in several occasions of inter-
est to location-aware applications, including vehicles, aircrafts, ships, migratory
birds, etc.; so by no means is it limited to objects moving in fixed networks.

For an object o within the scope of a site f , its focal distance d is its Euclidean
distance from f . Obviously, an object that influences multiple focal points, has
different focal distances with respect to each one of them. For instance, object
y in Fig. 1 is within the scope of both f1 and f2, but is currently closer to f2.

2.3 Polar Mapping of Objects

To get better insight on the distribution of object headings around a given site f ,
we perform a mapping based on focal distance d and heading θ for every object
o within the scope of f . As illustrated in Fig. 2 for the case of site f ≡ f1, every
qualifying object is mapped into a polar circle with center f (pole) and radius R
(scope). Each object o is abstracted into a point at distance d from f and at an
angle equal to its heading θ with respect to the positive x-axis. Locations beyond
scope of f are ignored, as it happens for objects i, l, j, r in Fig. 1. Thus, each
site f gets a clearer view of influencing objects and their distribution around f
in terms of their focal distance and heading. We stress that this is not the usual
mapping from Cartesian into polar coordinates, as our main concern is not just
object positioning in relation to a specific point f , but their orientations around
f instead. For example, the mapping of object t in Fig. 2 does not convey that
t is at the northwest of nearby site f , but that t moves towards northwest.



Consequently, orientation-based queries related to focal sites can be expressed
more easily. Formally, a query q related to a focal site f will search for objects:

{o | o.heading ∈ [θ1, θ2) ∧ distance(o, f) ∈ (d1, d2]}

i.e., all objects within the specified ranges for headings (0 ≤ θ1 ≤ θ2 < 2π) and
focal distances (0 < d1 < d2 ≤ R) from f . Intuitively, such a navigational query
is transformed into a slice of a ring around site f (the shaded area in Fig. 2).

3 The PolarTree Index

In this section, we introduce a main-memory access method that can be used
to index frequently updated object orientations observed around a single site f .
A PolarTree partitions the focal scope of f into non-overlapping polar sectors,
each denoting a specific range of object headings, since these are measured as
angles. Then, movement directions (towards east, north, northwest, etc.) can
be identified using suitable angular ranges. Recursive subdivision of the circular
scope into smaller convex sectors, serves as the guiding principle for assigning
objects at the nodes of this hierarchical tree, as exemplified in Fig. 4.

3.1 Index Structure

More specifically, the PolarTree is a binary tree with the following properties:

– The root node represents the entire scope R of focal site f and has no entries.
– Every node corresponds to a polar sector of a circle centered at f . Each polar

sector is uniquely characterized by a radius r and its bisector, expressed as
an angle φ on the trigonometric circle (Fig. 3). For instance, G is the only
sector in Fig. 4a with radius r = R

2
and bisector at φ = π

8
.

– An internal node (i.e., not a leaf) with radius r has exactly two children,
denoted as leftChild and rightChild, each with radius r√

2
. The root (at level

l = 0) has always two children, each with a radius equal to focal scope R.
– At an internal node, the central angle ω of its sector is bisected into two

equal parts that characterize its children (Fig. 3). The size of angle ω is
determined by the level of that node in the tree. For instance, nodes at level
l = 1 are the children of the root and have ω = π, nodes at level l = 2 have
ω = π

2
and so on. Therefore, the angular range [θmin, θmax) of each sector is

unique, where θmin = φ − ω
2

and θmax = φ + ω
2
. Consequently, the angular

range1 of its left child is [φ − ω
2
, φ) and that of its right child is [φ, φ + ω

2
).

– Every node (excluding the root) maintains a catalogue of entries. Each entry
denotes an object o with heading θ falling within the angular range of the
respective sector and whose distance d from f is less than sector radius r.
Object o is uniquely assigned to a single sector s, such that θ ∈ [s.θmin, s.θmax)

∧ d ≤ s.radius and 6 ∃ s′ 6= s, θ ∈ [s′.θmin, s′.θmax) ∧ d ≤ s′.radius < s.radius.

1 The angular range is not actually an attribute of a node, as it can be easily calculated
from its bisector φ and its level l in the tree (i.e., the size of angle ω). However, this
notion is used in the sequel for better exposition of the algorithms.
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Fig. 4. (a) Headings assigned to polar sectors. (b) Polar tree with M = 3.

– Let M be the maximum number of entries allowed in a leaf node. A bisection
occurs when a leaf has more than M entries (overflow), so it becomes an
internal node itself with two new children. Entries of the original node may
be assigned to its children, if their headings and distances from f qualify to
the specifications of the new leaf nodes, as explained later on.

– Collapsing is applicable to leaf nodes only. If both descendants of an internal
node are leaves and the total count of entries in these three nodes is less than
a limit m (underflow), then the leaves are eliminated and their entries get
merged with the entries of their parent, which now becomes a leaf itself.

Figure 4a illustrates the partition of the scope of focal point f for the example
given in Fig. 2, assuming that at most M = 3 objects may be assigned at a leaf
node. The shape of the corresponding PolarTree is shown in Fig. 4b, with the
angles below each node signifying their distinctive bisectors φ.

Data is associated with both internal nodes and leaves (terminal nodes) of
the PolarTree. Leaves stand for sectors originating from the focal point, while
internal nodes practically represent truncated sectors. Indeed, an internal node
with radius r represents a portion bounded by two ”rings” at radii r and r√

2

around the focal point (shaded area in Fig. 3); in short, the area covered by its
subtrees is cut off. Therefore, the focal scope is subdivided into non-overlapping
portions, which are either truncated sectors assigned to internal nodes (e.g.,
sector F in Fig. 4) or circular sectors assigned to leaf nodes (e.g., sectors M, N).

By design, an internal node is responsible to monitor orientations occurring
in the outer (truncated) part, while its descendants inspect the inner subsectors
in more detail. Indeed, under a uniform distribution of headings, an object has
equal probability to be monitored from a parent node or one of its descendants.
So, a node and the unified set of its subdivisions purposely have equal shares of
the focal scope, as illustrated in Fig. 3. Trivially, we can verify that:

Lemma 1. For an internal node e in PolarTree, the circular area covered by

both subtrees of e has size equal to the truncated sector assigned to node e.



Leaf nodes may appear at any level l ≥ 1, so the tree never collapses into
a single leaf. In case that no object headings are currently found within the
scope of f , its respective tree degenerates into a root node with two empty
leaves corresponding to the two semicircles. A circular sector having no entries,
remains as an empty leaf in the tree if its sibling is an internal node. For example,
in Fig. 4, sector D exists as an empty leaf, since its sibling C is not a leaf.

Each entry is a tuple 〈oid, addrH, fDistance, sign〉, essentially pointing to
the memory address addrH where both the heading and location of object oid are
actually maintained. Attribute fDistance keeps track of the current focal dis-
tance of that object from site f , while sign denotes whether the object converges
to (+) or diverges (–) from f with respect to its previously known location. We
stress that object headings and locations are maintained as items in a separate
structure (e.g., an array H in our implementation), whereas entries of tree nodes
just point to them. An object may possibly be found within the scope of multiple
focal points, but its current location and heading are the same for each one of
them. Hence, apart from simplifying the tree structure and reducing its space
requirements, such a design decision makes a clear distinction between data con-
cerning each individual object (all stored in array H) and information referring
to its influence on several focal points (maintained in separate PolarTrees).

3.2 Index Operations

The PolarTree index is inherently dynamic. Insertions and deletions may occur
arbitrarily, while the tree always remains adjusted to assist searching for ranges
of headings. Specifically, a PolarTree supports the following operations:

SearchSector. This search operation descends the PolarTree T of a focal point
f in order to identify a sector s that corresponds to the given heading θ and focal
distance d. Obviously, this sector s is unique among the contents of T and it is the
strictest one that satisfies both θ ∈ [s.θmin, s.θmax) and d ≤ s.radius. Searching
starts from the root and follows a single path, checking with the bisector and
radius of each node to determine whether it should continue at one of its subtrees
(Algorithm 1). Note that search may end up at an internal node, in case the
specified heading and focal distance fall inside a truncated sector.

Insert. Insertions index object headings at suitable internal nodes or leaves of
the PolarTree T built for a focal point f . First, SearchSector is invoked to identify
sector s corresponding to the specified heading θ and focal distance d. Provided
that such a sector exists (i.e. object o is not beyond the focal scope of f), a new
entry for o is inserted into the catalogue of s. In case that s refers to a leaf and
the new entry causes an overflow, procedure Bisect is invoked to split that leaf.

Delete. A deletion removes a given object o from the tree of site f . Again,
SearchSector is called with the known heading θ and focal distance d of o to find
its corresponding sector s. If s is a leaf, after removing o from its entries, a check
for underflows is made by invoking operation Merge for the parent of s.

Bisect. Overflows are checked for leaves only, so a bisection does not affect upper
tree levels. As already mentioned, it effectively partitions an existing sector s



Algorithm 1 PolarTree Operations

1: Function SearchSector (focal site f , angle θ, distance d)
2: Input: PolarTree T maintained for focal site f ;
3: Output: the strictest sector s of T, s.t. θ ∈ [s.θmin, s.θmax) and d ≤ s.radius;
4: s← T.root ; //Initialize sector and start descending T following a single path

5: if s.radius < d then

6: return nil; //Beyond the scope of site f
7: end if

8: while s ! = nil do

9: if s is leaf then

10: return s ;
11: else if θ < s.bisector and d ≤ s.radius/

√
2 then

12: s← s.leftChild ; //Search left subtree

13: else if θ ≥ s.bisector and d ≤ s.radius/
√

2 then

14: s← s.rightChild ; //Search right subtree

15: else

16: return s; //Search may end up at an internal node

17: end if

18: end while

19: End Function

into three parts: a truncated sector that becomes an internal node and two new
circular sectors as its children (leaves). Original entries of s are also partitioned,
checking their focal distance and heading against the bounds of the three nodes.

Merge. This operation collapses two sibling leaves and appends their entries
to their parent node, which becomes a leaf itself. As a precondition, the parent
should not be the root, while the total count of entries at the three original nodes
must be less than threshold m. In our setting, we have chosen m = 3

4
M so as

to avoid a possible bisection soon after a few subsequent insertions, but other
values m < M are also acceptable. Collapsing of leaves may propagate further
up in the tree, as long as an underflow is discovered with respect to the new leaf
node, its sibling (if also a leaf) and their parent node.

Update. To update the PolarTree T of site f with the current heading θ and
focal distance d of an object o, we must first identify the sector s where o has
been assigned before. As shown in Algorithm 2, an invocation to SearchSector is
made with the previous heading θ′ and distance d′ of o (retrieved from array H).
In case that current values of θ and d fall beyond the bounds of sector s, then
o must be removed from the catalogue of that node and should be inserted into
a suitable node of T by invoking an Insert operation (Lines 10-12). Note that if
this insertion fails, object o is surely beyond the scope of f . But if o remains in
the same sector, then only its focal distance should be updated in the catalogue
of s. During an update, it is also determined whether o gets closer or farther
from f (attribute sign), by comparing its focal distances d′ and d (Lines 5-9).

RangeSearch. This method offers response to orientation-based queries asso-
ciated to site f that specify a range [θ1, θ2) for headings and another (d1, d2] on



Algorithm 2 PolarTree Operations (continued)

1: Function Update (focal site f , object o, angle θ, distance d, angle θ′, distance d′)
2: Input: PolarTree T maintained for focal site f ;
3: Output: sector s of T where object o is assigned to;
4: s← SearchSector(f , θ′, d′); //Sector where o resides due to previous assignment

5: if d′ ≤ d then

6: o.sign ← − ; //o is moving away from f
7: else

8: o.sign ← + ; //o is approaching f
9: end if

10: if θ 6∈ [s.θmin, s.θmax) and d 6∈ ( s.radius√
2

, s.radius] then

11: Remove o from the catalogue maintained at s; //o has moved into another sector

12: s← Insert(f, o, θ, d); //Insert o into a suitable sector

13: else

14: o.fDistance← d; //o remains in the same sector, but update its focal distance

15: end if

16: return s;
17: End Function

18: Procedure RangeSearch (sector s, angle θ1, angle θ2, distance d1, distance d2)
19: if s! = nil then

20: if θ1 < s.bisector and d1 ≤ s.radius/
√

2 then

21: RangeSearch (s.leftChild, θ1, θ2, d1, d2); //Search left subtree of s
22: end if

23: for each object entry o in the catalogue of s do

24: if θ1 ≤ o.heading < θ2 and d1 < o.fDistance ≤ d2 then

25: Report o; //o is a qualifying object at sector s
26: end if

27: end for

28: if θ1 ≥ s.bisector and d1 ≤ s.radius/
√

2 then

29: RangeSearch (s.rightChild, θ1, θ2, d1, d2); //Search right subtree of s
30: end if

31: end if

32: End Procedure

focal distances, as mentioned in Section 2.3. Since many paths of the tree may
be probably visited, this procedure (pseudo-code given in Algorithm 2) is called
for the root node and recursively performs a depth-first search. When visiting
an internal node that represents a sector s, the algorithm must decide whether
to further descend to a subtree by comparing the bisector of s with the given
angle range and also checking if d1 is less than the radius of its children (Lines
20-22 and 28-30). When backtracking, any qualifying entries of a visited node
s with headings and focal distances falling within the given ranges are reported
as results (Lines 23-27). For the query specified with the shaded area in Fig. 4,
nodes A, D, B, E, K, L will be visited (in that order). With a small variation,
this method can also distinguish between objects approaching site f and those
moving away from it, by simply checking their respective sign values.



3.3 Discussion

A PolarTree arranges all headings of interest to a focal point f into compact
sectors, which can get recursively refined for better monitoring of movements
closer to f . The initial subdivision of focal scope may not necessarily be carried
out with the x-axis as prime bisector (at the root), but across any arbitrary
direction. For instance, if headings were measured as azimuths or a focal point
was mainly concerned with east- or west-bound orientations, then the y-axis
should be used as prime bisector. We opted for a scheme with its prime bisector
at angle φ = π, because all derived subsectors are mapped to well-known portions
of the trigonometric circle with obvious advantages on geometric calculations.

Bisection adheres to a repetitive pattern applied to all tree levels. This strat-
egy decomposes the initial scope into finer partitions for progressively obtaining
higher resolution of movements that occur closer to the focal point. The less
the radius of a sector, the more segmented the scope across that direction, thus
offering more detailed tracking of orientation trends. Besides, overflow threshold
M represents the maximum capacity of leaves and reflects the level of detail
prescribed for orientations close to the focal point. In effect, M specifies the
resolution at which a focal point wishes to observe movements in its vicinity.

The tree is usually unbalanced, since a uniform distribution of headings and
focal distances could be observed only rarely. For a skewed distribution, where
most objects head towards certain directions, the respective sectors would be
gradually subdivided at very tiny angles. Nodes may be unevenly filled, and even
internal ones may occasionally be left empty. Even under a uniform distribution,
larger-area sectors expectedly contain many more entries (far from site f) than
a tiny sector monitoring a small range of headings in the close vicinity of f .

The height of the tree for a focal point f depends on threshold M , the number
N of objects currently within scope, but also on their distribution around f . But:

Lemma 2. A PolarTree has height at least 1

2
(1 + log2⌈

N
M
⌉).

Proof. Apparently, the more uniform the distribution of headings around f , the
lower the tree height. According to Lemma 1 and assuming a uniform distribu-
tion, the count of entries assigned to a subtree at level l is 1/4 of those assigned
to a subtree at l − 1, i.e., proportional to their respective area. So, it turns out
that a leaf at level l > 0 has N

22l−1 entries. Due to uniformity, all leaves are at
the same level, since branching factor is 2 and applies to all nodes. In order for a
leaf not to be split, it suffices that N

22l−1 ≤ M , which yields the lower bound. ⊓⊔

4 Processing Streaming Orientations of Moving Objects

4.1 System Model

System infrastructure for processing orientations consists of a central server that
communicates with numerous moving objects via a cellular network. A number
of base stations are merely used for relaying messages between the server and
objects located in their cell, so we shall ignore their role on data processing.



Each object o is identified by its oid and has enough resources to retain
its current position 〈x, y, t〉 and to calculate its velocity, i.e., its speed v and
heading θ. Normally, each object notifies the server about its status by sending a
tuple 〈oid, x, y, t, v, θ〉 at a specified frequency, i.e., every τ0 time units. Duplicate,
delayed or out-of-order status updates are not considered, so all messages stream
synchronously into the server at a sequential pattern for each object.

But a status update should be sent instantly, once the heading or speed de-
viate significantly (e.g., a sudden slow down or a turn) from the values conveyed
to the server with the latest message. We employ a simple detection method that
utilizes two system-wide parameters λ and dθ specifying thresholds for accept-
able deviations in speed and heading, respectively. In particular, if an object o
changes its speed from v to v′, an update should be sent if |v−v′| > λv, denoting
that the object accelerated or decelerated more than λ% compared to its previ-
ous speed. Similarly, the server must be notified if the heading of o changes from
θ to θ′ and it occurs that |θ− θ′| > dθ. Such lightweight calculations can be per-
formed by every object with negligible overhead, although a more sophisticated
dead-reckoning [12] or threshold-guided strategy [7] could also be applied.

The server registers a set F of focal points and at each time instant t in-
spects movements in their scope according to streaming object statuses. Status
information is retained in an array H for all objects, but not all statuses get up-
dated concurrently, since some objects may report more frequently than others,
depending on their motion pattern. At any rate, no object status can be more
than τ0 time units older compared to timestamp t of a newly received message.

A focal point fi with scope at fixed radius Ri may be dynamically registered
with the server and remains active for a duration of δi time units, until it gets
eventually suspended and possibly resumed after some time. For instance, ob-
servation points at highways may be turned on at rush hours or switched off
at night. A server-resident PolarTree is dedicated to retain the distribution of
object orientations related strictly with a single fi, so the server keeps track of
|F | separate trees. In effect, each pole fi maintains at its own PolarTree a ”polar

chart” (Fig. 4a) that always reflects objects’ movement as observed from the
perspective of that particular fi. At any given timestamp, the shape of this tree
is independent of the order that headings were inserted or deleted.

Several continuous orientation-based queries may be specified at each focal
point (Section 2.3). Without loss of generality, we assume that queries get ac-
tivated when their corresponding pole f is registered. At any instant t, query
evaluation (with RangeSearch) is based on current entries at the PolarTree of f .

4.2 Continuous Monitoring of Object Headings

In order to successfully maintain current object orientations around focal sites,
the server operates at each execution cycle (i.e., distinct timestamp t) in two
phases: (i) processing all status updates currently received from objects, and (ii)
refreshing status for the remaining objects that did not send updates.

i) Update phase. Incoming statuses get processed one by one, in strict arrival
order. Once the server receives such a message, it attempts to identify affected



Algorithm 3 Server Operations

1: Function UpdateStatus (object o)
2: Input: Server-resident array H of most recent status for all monitored objects;
3: Output: the next time instant τe that o should send a status update;
4: τe ← τ0; //Initialize refresh time to default value

5: q ← H[o].location; p← o.location; //Previous and current location of o
6: c′ ← gridHash(q); c← gridHash(p); //Grid cells of last and current location

7: candSites← focal points with scopes overlapping cells c and c′;
8: for each focal point f ∈ candSites do

9: R← f .radius; //Focal scope of site f
10: h← distance(f .location, q); d← distance(f .location, p); //Focal distances for o
11: if d ≤ R then

12: if h ≤ R then

13: Update(f , o, o.heading, d, H[o].heading, h); //o already monitored by f
14: else

15: Insert(f , o, o.heading, d); //Object o has just become of interest to site f
16: end if

17: τ ← Estimate time that o will fall beyond the scope of f ; τe ← min(τ, τe);
18: else

19: if h ≤ R then

20: Delete(f , o, o.heading, d); //Object o just gone outside the scope of f
21: else if d < h then

22: τ ← Estimate time that o could reach the scope of f ; τe ← min(τ, τe);
23: end if

24: end if

25: end for

26: Update H[o] with current heading and location of o;
27: if τe < τ0 then

28: return τe; //Earliest time for renewal, as estimated from all sites affected by o
29: else

30: return nil; //No need to change default object settings

31: end if

32: End Function

focal points and update their PolarTree (Algorithm 3). But a single status update
may influence multiple focal points, if that object is currently located within their
intersecting scopes (e.g., object g in Fig. 1). To quickly identify affected sites,
focal scopes are indexed with a regular grid partitioning of the entire area E into
c × c square cells (Fig. 5). Each grid cell ci maintains a list of pointers to every
site with a circular scope intersecting cell ci. As soon as an update arrives from
object o, its location is hashed against the grid to identify the corresponding cell
ci, thus determining that only the subset S ⊂ F of candidate focal points indexed
at ci need be probed. In Fig. 5, when object k sends update, sites S = {f1, f3}
should be examined, since their scopes overlap its (dark-shaded) cell.

However, a status update may also signify that object o has just fallen beyond
the scope of a site f , so any reference to o in its respective PolarTree must be
eliminated. Thus, any focal sites influenced by the previous status of o should be
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probed as well. By identifying the grid cell c′ corresponding to the last known
location of o, we get an additional set S′ of candidate sites indexed at c′ that also
need examination. Figure 5 reveals that object k has just become of no interest
to f2, by only checking focal points S′ = {f1, f2} indexed at the light-shaded
cell of the old location of k. Note that a site may appear in both S and S′, in
case that its scope overlaps with cells c and c′ (which may be a single cell).

So it suffices that the status of object o is only checked against each candidate
f ∈ S∪S′ to detect changes in affected sites (Lines 8-25). There are four possible
situations: (i) if o has just entered the scope of f , it must be inserted into its
respective PolarTree, (ii) in case that o remains within scope of f , the PolarTree

might need updating when o changes sector or its focal distance is modified, (iii)
if o has just passed out of scope for f , then it must be removed from its tree,
and (iv) if o stays beyond the scope of f , no further action is needed.

Besides, upon message receipt from an object at time t, the server also esti-
mates the next time instant t + τe this object should relay its status again, so
as to maintain a consistent distribution in relevant PolarTrees. We distinguish
two cases that an object status should be renewed (Fig. 6), depending either on
focal site(s) currently influenced or those that might soon be affected:

Departure Forecast. Let an object q be within the focal scope R of site f , and
the server has just been informed for its current speed v and heading θ. Assuming
that q continues the same course until further notice, the server is able to forecast
when this object will fall out of scope R. Figure 6 depicts the expected course α of
object q until it crosses the scope of f at location E1. With simple trigonometric
manipulations, it can be easily verified that R2 = α2 + β2 + 2αβ cos(θ − φ),
where β is the focal distance of q and φ is the slope of segment β. This equation
is always valid for all possible configurations of the heading and location of q
at any quadrant inside the scope of f . It can be proven that the positive root
α+ corresponds to the distance from q to E1, while the negative root α− to E′

1

(i.e., towards the opposite direction). Hence, after at most τ = ⌈α+

v
⌉ time units,

object q is expected to be found beyond the scope of f (Line 17).

Arrival Forecast. As shown in Fig. 6 for l, an object may not currently affect
a site f , but it seems approaching; if l continues moving along ξ, it might soon



fall within scope at E2. Yet, to safely predict the earliest time τe that l could
cross the scope of any focal site, is not an easy task. Indeed, it could also involve
inspection of sites f 6∈ S∪S′, with scopes perhaps closer to object l, but indexed
in cells neighboring to that of its current location. Sooner or later, l should send
a status update (at most after τ0 time units), so we opt for a simplified strategy
that only examines candidate sites f ∈ S ∪ S′ with negligible overhead. Given
current focal distance γ and speed v of an object l, this approximation makes an
eager forecast τ = ⌊γ−R

v
⌋ of the time it takes to reach the scope of site f at E′

2,
by ignoring actual heading as if l were directed straight towards f (Line 22).

Similar forecasts τ are made for all sites influenced by the currently examined
object o. Among them, the smallest τe anticipates the earliest time that o may
cause a change to current orientations (at time t) of any focal site. In case the
interval τe is less than the prescribed renewal period τ0, a message is sent to that
object, specifying the time t + τe of its expected next update (Lines 27-31).

ii) Refresh phase. To maintain reliable object distributions around each site,
the server approximately adjusts entries in PolarTrees for objects that have not
currently relayed their status. Although velocity v of each such object o is deemed
unchanged until further notice, its location p is not; hence, its focal distance
from influenced sites changes. Assuming the known status of o is ∆t units old,
its expected position is p + ∆t · v; accordingly, the server rearranges entries in
respective tree(s), in a fashion similar to the update phase. But, at this stage, no
forecasting of status renewal times is made, so no messages are sent to objects.

4.3 Examining Trajectory Headings

Up to this point, processing only examines current object headings. However,
it would be more insightful to monitor orientations referring to the most recent
portion of every trajectory. With a sliding window of w time units that considers
locations recorded during this evolving period, we can repetitively calculate for
each object o its trajectory heading from the two extreme positions of o within
that window, as indicated in Fig. 7 for w = 5 units and location updates every
time unit. Such a setting does not actually change server-side processing, but it
only modifies computation of headings separately at each object, provided they
have enough memory to retain a finite portion of their own recent positions.

But for a realistic application, it seems more suitable to consider that sliding
windows are specified along with focal points and their orientation-based queries.
Hence, we assume that a sliding window wi refers to a site fi and is applied to
all queries associated to fi, thus affecting objects found within the scope of fi

with their headings computed from readings received during the past wi time
units (e.g., 10 min). Queries may specify various ranges for headings and focal
distances, whereas an object may become of interest to multiple sites with diverse
window extents. Thus, computation of trajectory headings has to be performed
at the server, which should now retain a series of recent statuses for each object;
still, objects send their status regularly, but also when a deviation is detected or
in due time upon server request (displayed as black spots in Fig. 7).



A single status update from object o may cause changes to multiple trajectory
headings maintained for o at diverse sites, because each fi can specify a different
window wi, thus potentially returning a different anchor point. Each trajectory
heading shall be derived from available object statuses received over the past wi

time units. Although not completely accurate, such an orientation still conveys
the movement trend of every object, provided that wi > τ0 to guarantee frequent
renewal of all indexed headings. In Fig. 7, the trajectory heading at p10 will be
correct due to availability of p6, while the heading at p7 will be slightly tilted by
using p4 as anchor point instead of non-relayed p3. Obsolete statuses are purged
from the server, when they cease to fall inside the window extent of any site.

5 Experimental Evaluation

Next, we report indicative results from an empirical validation of our framework
for monitoring orientations. Due to space constraints, we refrain from discussing
index performance and threshold calibration, and focus on server-side operations.

Experimental Setup. We generated synthetic datasets for varying numbers P
of objects moving at diverse speeds along the road network of Athens (area ∼250
km2). After calculating shortest paths between randomly chosen network nodes
(i.e., origin and destination of objects), we took point samples at 200 concurrent
timestamps along each such route. We also randomly selected diverse sets of n
focal points at various radii R, which remain active all the time (δ = 200 units).

All processing takes place in main memory. Algorithms were implemented in
C++ and experiments with diverse parameter settings were simulated on an Intel
Core 2 Duo 3GHz CPU running GNU/Linux with 2GB of main memory. Results
are averages of actual measurements over 200 timestamps. Table 1 summarizes
experimentation parameters and their ranges; default values are in bold.

System Configuration. For specifying granularity c of grid index for focal
scopes, we measured the per cycle execution cost (sum of update and refresh
times) for the most demanding case with 100k objects and diverse scope sizes
for n = 500 sites (Fig. 8). As expected, grid partitioning proves more useful for
larger scopes with higher degree of overlaps. We fix c = 100 in the sequel, as
such a reasonably fine grid seems to offer better performance at all scope sizes.

Object-side parameters only control frequency of status updates. Next, we
stipulate that objects should relay new status at most every τ0 = 30 timestamps,
while we set thresholds λ = 0.2 and dθ = 30o, typically for moving vehicles.

Table 1. Experiment parameters.

Parameter Values Parameter Values

Number P of objects 10k, 20k, 50k, 100k Grid granularity (c) 50, 100, 500, 1000

Number n of sites 100, 200, 500, 1000 Heading deviation (dθ) 10o, 20o, 30o

Focal radius (R) 0.5, 1, 2, 3, 4 km Speed deviation (λ) 0.05, 0.1, 0.2

Leaf capacity (M) 100, 200, 500 Window extent (w) 40, 50, 100 units
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Experimental Results. The main part of experiments refer to the efficiency
and scalability of our approach. As shown in Fig. 9, the per cycle cost at the
server depends on object count and is linear in the number of sites (their scopes
fixed at 2km), since each PolarTree is maintained separately. But execution time
escalates for larger scopes, as depicted in Fig. 10 for n = 200 sites, because
the probability that an object influences multiple sites with intersecting scopes
increases as well. This incurs additional overhead on forecasting and causes trans-
mission of extra status updates from relevant objects, due to frequent crossing
of scope boundaries. This is also verified from Fig. 11 that plots a breakdown of
execution times per phase: handling incoming updates and forecasting arrivals
and departures from focal scopes is often more costly than refreshing existing ob-
ject statuses, especially for wider areas of interest. As it turns out, performance
is sensitive to the size of scopes, but chiefly depends on their mutual overlaps.
Nonetheless, for realistic radii (less than 3km) this scheme can always provide
quick notification about observed orientations in less than 30 seconds.

Regarding communication cost, Fig. 12 illustrates the percentage of message
savings for several scope sizes, i.e., the fraction of positional readings that did not
cause any status change and hence were not relayed to the server. For small radii,
the reduction in message transmission is considerable and may exceed 70%. But
for larger scopes, the advantage of threshold-guided detection of motion changes
is gradually annihilated, as an object becomes of interest to many sites and must
report its status over and over due to their alternating demands.

In practice, focal scopes should be leveraged with appropriate choice of leaf
capacity M . After all, it is improbable that a long-range site wishes to monitor
movement trends at the finest resolution. As suggested in Lemma 2 and verified
in Fig. 13, by increasing M the tree becomes shorter with wider sectors; a tree
with 6 levels corresponds to central angles of 5.625o at its bottommost leaves.

Concerning trajectory headings, they are handled exactly like current object
orientations, but in addition require maintenance of sliding windows (Section
4.3). Figure 14 reveals that this maintenance overhead is proportional to scope
size, but almost independent of the window extent. Anyway, such cost is negli-
gible and can be compensated with valuable knowledge of recent orientations.

Finally, our processing scheme was designed to provide an approximate, yet
consistent view of movements close to focal points. To assess the quality of such
monitoring, we issued orientation queries based on polar sector boundaries (i.e.,
one query per polar sector). We then compared their approximate answers with



0.5 1 2 3 4

20 

40 

60 

80 

100

Focal radius (km)

C
om

m
un

ic
at

io
n 

ga
in

 (
%

)

100
200
500

0

Sites

Fig. 12.

100 200 500

5 

10

15

Leaf capacity (M)

# 
le

ve
ls

0.5 1 2 3 4

0

Radius :

Fig. 13.

40 50 100

1  

2  

Window extent (w)

M
ai

nt
en

an
ce

 ti
m

e 
(s

ec
)

0.5 1 2 3 4

0

Radius:

Fig. 14.

0.5 1 2 3 4
0

20

40

60

80

100

Focal radius (km)

%
 o

bj
ec

ts
 in

 s
co

pe

correct misplaced non−assigned

Fig. 15.

those returned from an exhaustive evaluation where all objects relay their status
at each timestamp, and thus always get mapped to correct sectors. In Fig. 15 the
accuracy of answers is displayed for a single PolarTree (similar results obtained
at multiple sites). At any time instant, less than 5% of qualifying objects are not
reported within scope, but the majority of them (more than 70% at the worst
case) are correctly assigned. Although monitored, another 15% of objects are
misallocated to a neighboring sector due to small variations (that rarely exceed
8o) in their assumed heading. Indeed, smaller circles are subdivided in very tiny
sectors, so it is more likely that an object be misplaced; yet, the wider the focal
scope, the greater the accuracy of answers. Overall, polar charts prove able to
offer a reliable insight into the actual distribution of object orientations.

6 Related Work

A taxonomy of spatiotemporal queries has been proposed in [8], distinguishing
between coordinate-based queries, such as range or k-nearest neighbor search, and
trajectory-based queries. This latter class includes navigational queries involving
derived information of trajectories, like speed, heading, traveled distance etc. In-
dex structures introduced in [8] aim at trajectory preservation, but no technique
is suggested for maintaining object headings. Another type of spatial requests
inspects object-based directional relationships [4, 10], e.g., identifying objects to
the north of a given landmark. But such directional queries deal with relative
positions of static features, and not with their movement and orientation.

In spatiotemporal databases, dead-reckoning policy suggests that an object
should send a positional update when it deviates from its known motion vector,
thus reducing communication cost. Two such schemes were introduced in [12]
and adjust the uncertainty threshold at each update according to the current mo-
tion pattern. From a streaming perspective, in [7] we employed threshold-guided
policies for online detection of movement changes in order to maintain concise
trajectory synopses. All these approaches are orthogonal and can be easily inte-
grated into our framework, as they only control object update frequency. Velocity
vectors were also used in [3] to construct motion-sensitive bounding boxes for
indexing moving objects. Although such structures can make predictions about
future object positions, they are tailored for coordinate-based queries only.

Centralized or distributed techniques for managing streaming locations offer
scalable techniques mostly for range [2, 6] or k-NN search [5, 11], by examining



only current object positions. We are not aware of other research work on pro-
cessing object orientations in a streaming fashion. The proposed PolarTree is a
hierarchical structure reminiscent of space-driven access methods for indexing
multidimensional features [1]. Similarly to a quadtree [9], which is based on suc-
cessive subdivision of areas into four equal-sized quadrants, a PolarTree utilizes
angle bisection as its underlying design principle. Of course, our objective is not
indexing locations of spatial features, but their changing orientations instead.

7 Concluding Remarks

In this paper, we have introduced a novel, simple, yet versatile, access method
that can greatly assist continuous monitoring of movement orientations in suit-
ably divided sectors around selected focal points of interest. We have also empir-
ically evaluated the robustness and scalability of a processing scheme that offers
real-time response to multiple requests with reduced communication cost.

In the future, we plan to study a variant tree structure with dynamic divi-
sion in dissimilar sectors according to the observed density of object headings.
Besides, distributed processing of orientations at designated base stations may
further exhibit the powerfulness of the proposed spatiotemporal index.
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