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Monolithic	Silicon	Photonics	

2	

mmWave		
CMOS	Amplifier	

Niknejad	&	Brodersen	(2004)	
CMOS	Radios	

Rudell	&	Gray	(1997)	

SiPh	TransmiSer	in	45nm	CMOS	
Stojanovic,	Popovic,	Ram	(2012)	Enhanced	CMOS		

enables	new	applica/ons!		

Inductors	in	IC		
process	
Nguyen	&	Meyer	
1990	



Photonics	Next	to	The	Fastest	Transistors	

§ fT/fmax	have	not	improved	since	32nm	node	
§ fT/fmax	affect	speed,	energy-efficiency,	…	of	electronic-photonic	systems	
§ 32/45nm:	Fastest	Transistors	+	Thick-enough	Si	bodies	to	guide	the	light	

§  	Si	body	in	SOI	nodes	below	32nm	(FDSOI)	cannot	guide	the	light!	
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IBM/GF SOI CMOS 

IBM	Cell	
45nm	

IBM	Power	7+	
32nm	

AMD	Llano	APU	
32nm	

§  300mm	wafer,	commercial	process	
§  MOSIS	and	TAPO	MPW	access	
§  Advanced	processes	used	in	microprocessors	
§  Photonic	enhancement	enables	photonic	SoC	



Photonic	System-on-Chips	in	45nm	SOI	
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Millions	of	transistors	+	Hundreds	of	photonic	devices!		
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“Zero-Change”	PlaWorms	
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Monolithic	photonics	plaWorm	with	the	fastest	transistors	

§  Photonics	for	free!	(No	modificafon	to	the	process)	
§  Closest	proximity	of	electronics	and	photonics	
§  Single	substrate	removal	post-processing	step		

GF	32nm	SOI	CMOS	



GF	32nm	SOI	CMOS	
§ First	node	with	High-k/Metal	gate	(HKMG)	
§ 33%	faster	logic	than	45nm	node	
§ High-performance	SoCs:	AMD	Lliano	APU,	Power	7+,	…	
§ Extra	epitaxial	SiGe	layer	to	improve	photonics	
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Acfve	Devices	
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Post-Processing	with	Electrical	Packaging	

§ Thin	BOX	causes	opfcal	leakage	into	substrate	
§ Removing	Si	substrate	to	lower	opfcal	loss		
§ Enables	electrical	flip-chip	packaging	
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Post-Processing	for	Probing	

§ Substrate	transfer	to	access	the	pads	for	probing	
§ Bidirecfonal	verfcal	grafng	couplers	
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Waveguides	

§  Built	in	crystalline	silicon	(cSi)	
layer	by	blocking	dopings	

§  3db/cm	loss	achieved	in	45nm	
node	[J.S.	OrcuS,	Opt.	Express	2012]	

§  Measured	loss	in	32nm:	
§  25dB/cm	@1310nm	(O-band)		
§  20dB/cm	@1550nm	(C-band)	

§  Extra	loss	due	to	un-intenfonal		
					dopings	

12	

Waveguide	SEM	



Bidirec/onal	Gra/ng	Couplers	

§ Backside	Coupling:	4.9dB	loss	with	84nm	1dB	bandwidth	
§ Topside	Coupling:	7.5dB	loss	(excess	loss	due	to	inter-layer	dielectrics)	
§ Sub-2dB	coupling	can	be	achieved	by	adding	polysilicon	grafng	to	break	
direcfonality	symmetry	[M.	T.	Wade,	OI	2015]	
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Ring-resonators	

§ Resonance	wavelength:	λ0	=	neffL/m,	m	=	1,2,3,...	
§ Q-factor:	Q	=	λ0	/	Δλ	

§ Free	spectral	range	(FSR)	=	λ2/ngL	
§ Total	available	opfcal	bandwidth	in	mulf-wavelength	communicafon	

§ 5μm-radius	high-Q	rings	in	32nm	due	to	high	lithography	precision	
14	



Ring-resonator	based	Op/cal	Transceivers	

§ Based	on	carrier	plasma	effect	in	silicon	
§ Modulafon	Scheme:	

1.  Deplete/Inject	carriers	using	PN	juncfons	
2.  Δfree	carriers	à	Δindex	of	refracfon	
3.  On-Off	Keying	(OOK)	modulafon	in	frequency	domain	
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Spoked-ring	Modulators	

§ Interleaved	planar	PN	juncfons	
§ Enabled	by	advanced	lithography	of	this	process	

§ Spoked-shape	contacts	to	avoid	metallic	opfcal	loss	
16	



Spoked-ring	Modulators	

17	

§ 5μm	radius	(FSR	of	18.9nm)	
§ Loaded	Q-factor	of	6k	(intrinsic	Q	>12k)		
§ 20pm/V	resonance	shiy	efficiency	in	the	deplefon	mode	
(reverse	bias	PN	juncfons)	



Embedded	Heater	in	Microrings	

§ Resisfve	heater	in	cSi	layer	with	500Ω	resistance	
§ Used	in	tuning	the	ring	for	thermal	and	process	variafons	

§ Essenfal	for	mulf-wavelength	systems	[C.	Sun,	JSSC	2016]	
§ Heater	tuning	efficiency:	0.8nm/mW	(14μW/GHz)		

§ Flip-chip	packaged	chip	has	higher	tuning	efficiency	(3.7μW/GHz)	
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O-band	Light	Detec/on	

§ SiGe	layers	originally	used	to	improve	PMOS	performance	
§ Larger	Ge%	in	cSiGe	than	eSiGe	

19	

[S.	Thompson,	T-ED	2004]	

[S.	Krishnan,	IEDM	2011]	



20	

Resonant	Photo-detectors	(PD)	
Characterisfcs		

of	a	cSiGe-based	PD	

§ Both	types	implemented	with	responsivifes	of:	
§ eSiGe-based:	0.06	A/W	
§ cSiGe-based:	0.13	A/W		

§ 150nA	dark	current	



Resonant	PD	Characteris/cs	

§ Loaded	Q-factors	of	6.5k	(intrinsic	Q	>15k)		
§ 12.5GHz	electro-opfcal	bandwidth	
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Transmi]er	Block-diagram	

§ High-swing	(2.4V)	thick-oxide	drivers	
§ Deplefon	mode:	0V	or	-2.4V	applied	on	PN	juncfons	
§ Electrical	speed	(>25Gb/s)	with	30fF	capacitance	to	drive	
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Receiver	Block-diagram	

§ Two-segmented	resonant	PD	(Split	PD)	
§ Mifgates	common-mode	noise	

§ 13kΩ	with	5GHz	electrical	bandwidth	(TIA	gain:	4.5kΩ)	
§ Tested	by	externally	modulated	light	
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Transceivers	Results	

§ Transmi]er:	13.5Gb/s	with	exfncfon	rafo	(ER)	of	3.7dB	and	
inserfon	loss	(IL)	of	2.8dB	

§ Receiver:	12Gb/s	(limited	by	TIA	bandwidth)	
24	
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PlaWorm	Summary	
Transistors	 Waveguides	 Gra/ng	Couplers	 Ring	Modulators	 Resonant	PDs	

32nm	SOI	
fmax:	390/350GHz	
One	of	the	fastest	
CMOS	nodes	with	
<5fF	parasifc	cap	

to	photonic	
devices	

Loss:	20db/cm	 Loss:	4.9db	
(84nm	1-db	BW)	

Q-factor:	6k	
BW	<	10GHz	

Res:	0.13A/W	
BW:	12.5GHz	

Blocking	all	
doping	layers	

	
	
	

Loss:	3db/cm	

Adding	
polysilicon	
grafng	(3dB	
improvement)	

	
Loss:	Sub-2dB	

Opfmizing	PN	
juncfon	RC	/	lower	
waveguide	loss	

	
Q-factor	>	10k	
BW	>	20GHz			

Opfmizing	PN	
juncfon	RC	&	
SiGe	width	

	
	

Res:	0.5A/W		
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PlaWorm	Applica/ons	
Transistors	 Waveguides	 Gra/ng	Couplers	 Ring	Modulators	 Resonant	PDs	

									Computa/on																													Imaging																														Sensing	&	Bio	
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Conclusion	
§ Monolithic	silicon	photonics	with	fastest	transistors	

§ Demonstrafon	of	12Gb/s	O-band	transceivers	

§ Confnuafon	of	“zero-change”	approach	to	more	advanced	
and	complex	(e.g.	HKMG)	SOI	CMOS	technologies	

	
§ Potenfally	revolufonize	many	applicafons	despite	
slowdown	in	CMOS	scaling	
§ VLSI	compute	and	network	infrastructure	just	a	start	…	
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