

Monolithic Integration of O-band Photonic Transceivers in a "Zero-change" 32nm SOI CMOS

S. Moazeni¹, A. Atabaki², D. Cheian², S. Lin¹, R. J. Ram², and V. Stojanović¹

¹Department of EECS, University of California, Berkeley ²Research Laboratory of Electronics, MIT

Monolithic Silicon Photonics

Enhanced CMOS enables new applications!

CMOS Radios Rudell & Gray (1997)

mmWave CMOS Amplifier Niknejad & Brodersen (2004)

SiPh Transmitter in 45nm CMOS Stojanovic, Popovic, Ram (2012)

Photonics Next to The Fastest Transistors

- f_T/f_{max} have not improved since 32nm node
- f_T/f_{max} affect speed, energy-efficiency, ... of electronic-photonic systems
- 32/45nm: Fastest Transistors + Thick-enough Si bodies to guide the light
 - Si body in SOI nodes below 32nm (FDSOI) cannot guide the light!

IBM/GF SOI CMOS

- 300mm wafer, commercial process
- MOSIS and TAPO MPW access
- Advanced processes used in microprocessors
- Photonic enhancement enables photonic SoC

Photonic System-on-Chips in 45nm SOI

Millions of transistors + Hundreds of photonic devices!

"Zero-Change" Platforms

- Photonics for free! (No modification to the process)
- Closest proximity of electronics and photonics
- Single substrate removal post-processing step
 Monolithic photonics platform with the fastest transistors

GF 32nm SOI CMOS

- First node with High-k/Metal gate (HKMG)
- 33% faster logic than 45nm node
- High-performance SoCs: AMD Lliano APU, Power 7+, ...
- Extra epitaxial SiGe layer to improve photonics

GF 32nm SOI CMOS

- First node with High-k/Metal gate (HKMG)
- 33% faster logic than 45nm node
- High-performance SoCs: AMD Lliano APU, Power 7+, ...
- Extra epitaxial SiGe layer to improve photonics

GF 32nm SOI CMOS

- First node with High-k/Metal gate (HKMG)
- 33% faster logic than 45nm node
- High-performance SoCs: AMD Lliano APU, Power 7+, ...
- Extra epitaxial SiGe layer to improve photonics

Post-Processing with Electrical Packaging

- Thin BOX causes optical leakage into substrate
- Removing Si substrate to lower optical loss
- Enables electrical flip-chip packaging

(After Substrate Removal)

-3mm[.]

Die Top View 10

Post-Processing for Probing

Bidirectional vertical grating couplers

Die Top View

Waveguides

- Built in crystalline silicon (cSi) layer by blocking dopings
- 3db/cm loss achieved in 45nm node [J.S. Orcutt, Opt. Express 2012]
- Measured loss in 32nm:
 - 25dB/cm @1310nm (O-band)
 - 20dB/cm @1550nm (C-band)
- Extra loss due to un-intentional dopings

Bidirectional Grating Couplers

- Backside Coupling: 4.9dB loss with 84nm 1dB bandwidth
- Topside Coupling: 7.5dB loss (excess loss due to inter-layer dielectrics)
- Sub-2dB coupling can be achieved by adding polysilicon grating to break directionality symmetry [M. T. Wade, OI 2015]

Ring-resonators

- Resonance wavelength: λ₀ = n_{eff}L/m, m = 1,2,3,...
 Q-factor: Q = λ₀ / Δλ
- Free spectral range (FSR) = λ^2/n_gL
 - Total available optical bandwidth in multi-wavelength communication
- 5µm-radius high-Q rings in 32nm due to high lithography precision

Ring-resonator based Optical Transceivers

- Based on carrier plasma effect in silicon
- Modulation Scheme:
 - 1. Deplete/Inject carriers using PN junctions
 - 2. Δ free carriers $\rightarrow \Delta$ index of refraction
 - 3. On-Off Keying (OOK) modulation in frequency domain

- Interleaved planar PN junctions
 - Enabled by advanced lithography of this process
- Spoked-shape contacts to avoid metallic optical loss

Spoked-ring Modulators

- 5µm radius (FSR of 18.9nm)
- Loaded Q-factor of 6k (intrinsic Q >12k)
- 20pm/V resonance shift efficiency in the depletion mode (reverse bias PN junctions)

Embedded Heater in Microrings

- Resistive heater in cSi layer with 500Ω resistance
- Used in tuning the ring for thermal and process variations
 - Essential for multi-wavelength systems [C. Sun, JSSC 2016]
- Heater tuning efficiency: 0.8nm/mW (14µW/GHz)
 - Flip-chip packaged chip has higher tuning efficiency (3.7µW/GHz)

O-band Light Detection

SiGe layers originally used to improve PMOS performance

Larger Ge% in cSiGe than eSiGe

Resonant Photo-detectors (PD)

- Both types implemented with responsivities of:
 - eSiGe-based: 0.06 A/W
 - cSiGe-based: 0.13 A/W
- 150nA dark current

Resonant PD Characteristics

- Loaded Q-factors of 6.5k (intrinsic Q >15k)
- 12.5GHz electro-optical bandwidth

Transmitter Block-diagram

- High-swing (2.4V) thick-oxide drivers
- Depletion mode: 0V or -2.4V applied on PN junctions
- Electrical speed (>25Gb/s) with 30fF capacitance to drive

Receiver Block-diagram

- Two-segmented resonant PD (Split PD)
 - Mitigates common-mode noise
- 13kΩ with 5GHz electrical bandwidth (TIA gain: 4.5kΩ)
- Tested by externally modulated light

Transceivers Results

Transmitter: 13.5Gb/s with extinction ratio (ER) of 3.7dB and insertion loss (IL) of 2.8dB

Receiver: 12Gb/s (limited by TIA bandwidth)

Platform Summary

TransistorsImage: start of the start	Waveguides	Grating Couplers	Ring Modulators	Resonant PDs
32nm SOI f _{max} : 390/350GHz One of the fastest CMOS nodes with <5fF parasitic cap to photonic devices	Loss: 20db/cm	Loss: 4.9db (84nm 1-db BW)	Q-factor: 6k BW < 10GHz	Res: 0.13A/W BW: 12.5GHz
	Blocking all doping layers	Adding polysilicon grating (3dB improvement)	Optimizing PN junction RC / lower waveguide loss	Optimizing PN junction RC & SiGe width
	Loss: 3db/cm	Loss: Sub-2dB	Q-factor > 10k BW > 20GHz	Res: 0.5A/W

Platform Applications

Computation

Imaging

Conclusion

- Monolithic silicon photonics with fastest transistors
 - Demonstration of 12Gb/s O-band transceivers
- Continuation of "zero-change" approach to more advanced and complex (e.g. HKMG) SOI CMOS technologies

- Potentially revolutionize many applications despite slowdown in CMOS scaling
 - VLSI compute and network infrastructure just a start ...

Acknowledgment

This work was supported in part by DARPA (POEM Program) and the Berkeley Wireless Research Center (BWRC).

