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Photonics Next to The Fastest Transistors
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= f./f,..x have not improved since 32nm node
= f_/f__ affect speed, energy-efficiency, ... of electronic-photonic systems

= 32/45nm: Fastest Transistors + Thick-enough Si bodies to guide the light
= Si body in SOl nodes below 32nm (FDSOI) cannot guide the light!
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IBMIGF SOI CMOS

300mm wafer, commercial process
= MOSIS and TAPO MPW access
=  Advanced processes used in microprocessors
" Photonic enhancement enables photonic SoC

IBM Cell AMD Llano APU IBM Power 7+
32nm |

45nm




Photonic System-on-Chips in 45nm SOI

Millions of transistors + Hundreds of photonic devices!
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“Zero-Change” Platforms
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" Photonics for free! (No modification to the process)
" Closest proximity of electronics and photonics
= Single substrate removal post-processing step

Monolithic photonics platform with the fastest transistors
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GF 32nm SOl CMOS

= First node with High-k/Metal gate (HKMG)
" 33% faster logic than 45nm node

" High-performance SoCs: AMD Lliano APU, Power 7+, ...
" Extra epitaxial SiGe layer to improve photonics

Gate-first .
MG / HK POly-SI

Interfacial layer WavegUIdeS
2 = /Grating Couplers

Si -
PMOS Cross-section [A. Kerber, SEMATECH AGST 2010]
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GF 32nm SOl CMOS
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GF 32nm SOl CMOS

= First node with High-k/Metal gate (HKMG)
" 33% faster logic than 45nm node

" High-performance SoCs: AMD Lliano APU, Power 7+, ...
" Extra epitaxial SiGe layer to improve photonics

Gate-first

MG / HK N Unidirectional

Grating Couplers

. Waveguides
erfacial layer
NS D /Gratmg Couplers
Si -
PMOS Cross-section [A. Kerber, SEMATECH AGST 2010]
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Post-Processing with Electrical Packaging

silicon BOX % '
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" Thin BOX causes optical leakage into substrate
=" Removing Si substrate to lower optical loss

" Enables electrical flip-chip packaging




Post-Processing for Probing

Silicon BOX
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BEOL Layers )E(eFl-i
@— Epoxy tc
[ ClassSubstrate (1) | - [ ClassSubstrate () |

@ 2

Glass Substrate (2

Removing
Epoxy

[ GlassSubstrate () | - Glass Substrate (2) Die Back Side View
e e (After Substrate Removal)
*NOA: None Optical Adhesive
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= Substrate transfer to access the pads for probing

" Bidirectional vertical grating couplers

Die Top View
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Waveguides

= Built in crystalline silicon (cSi) cSi. Oxide
layer by blocking dopings ). v
= 3db/cm loss achieved in 45nm | Nitrides = ® | <100nm
node [J.S. Orcutt, Opt. Express 2012] BOX < 200nm §
= Measured loss in 32nm: v
Silicon Substrate Removed

= 25dB/cm @1310nm (O-band) —
= 20dB/cm @1550nm (C-band) e "ner.\‘ |

— < 100NM

= Extra loss due to un-intentional BOX !
dopings si  Waveguide SEM
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Bidirectional Grating Couplers
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= Backside Coupling: 4.9dB loss with 84nm 1dB bandwidth
" Topside Coupling: 7.5dB loss (excess loss due to inter-layer dielectrics)

" Sub-2dB coupling can be achieved by adding polysilicon grating to break
directionality symmetry [M. T. Wade, Ol 2015]

o
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Ring-resonators

e Lorentzian
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" Resonance wavelength: A, =n_¢L/m, m=1,2,3,...
= Q-factor: Q =A,/ AA

" Free spectral range (FSR) = )\Z/ngL
" Total available optical bandwidth in multi-wavelength communication

= S5um-radius high-Q rings in 32nm due to high lithography precision



Ring-resonator based Optical Transceivers

0101101...

Rx-lé E

=" Based on carrier plasma effect in silicon [Courtesy of C. Sun]

0101101...

" Modulation Scheme:
1. Deplete/Inject carriers using PN junctions
2. Afree carriers =2 Aindex of refraction
3. On-Off Keying (OOK) modulation in frequency domain
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Spoked-ring Modulators

Cathode Contact Heater Contacts Anode Contact

Waveguide

" Interleaved planar PN junctions
" Enabled by advanced lithography of this process

= Spoked-shape contacts to avoid metallic optical loss
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Spoked-ring Modulators
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* 5um radius (FSR of 18.9nm)
" | oaded Q-factor of 6k (intrinsic Q >12k)

= 20pm/V resonance shift efficiency in the depletion mode
(reverse bias PN junctions)
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Embedded Heater in Microrings
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= Resistive heater in ¢Si layer with 500Q) resistance

= Used in tuning the ring for thermal and process variations
" Essential for multi-wavelength systems [C. Sun, JSSC 2016]

" Heater tuning efficiency: 0.8nm/mW (14uW/GHz)
= Flip-chip packaged chip has higher tuning efficiency (3.7uW/GHz)



O-band Light Detection

Si. Ge, =< Si,_Ge,

Compression k I . Krishnan, IEDM 2011]

= SiGe layers originally used to improve PMOS performance
" Larger Ge% in cSiGe than eSiGe
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Resonant Photo-detectors (PD)

Contacts SiGe Light g 10° . : : . .
., ADSOrption Region = Characteristics
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Bias-; Voltage, VD (V)
" Both types implemented with responsivities of:

= eSiGe-based: 0.06 A/W

= cSiGe-based: 0.13 A/W

= 150nA dark current
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Resonant PD Characteristics
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= Loaded Q-factors of 6.5k (intrinsic Q >15k)
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Transmitter Block-diagram
* QD

Tunable Laser
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" High-swing (2.4V) thick-oxide drivers
" Depletion mode: OV or -2.4V applied on PN junctions
= Electrical speed (>25Gb/s) with 30fF capacitance to drive

Level

Shifter

\CML-to-CMOS/

Modulated Light
Intensity

Pads
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Receiver Block-diagram

>

Output CML | ==
Buffers TIA + Driver

o] Ext ModulatedTIA
—,_I—r Lig.ht Intensity

" Two-segmented resonant PD (Split PD)

= Mitigates common-mode noise

" 13kQ with 5GHz electrical bandwidth (TIA gain: 4.5kQ)
" Tested by externally modulated light
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Transceivers Results

13.

'ER: 3.7dB
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Transmitter éye-diagram
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Receiver eye-diagram

* Transmitter: 13.5Gb/s with extinction ratio (ER) of 3.7dB and
insertion loss (IL) of 2.8dB

= Receiver: 12Gb/s (limited by TIA bandwidth)
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Platform Summary

Waveguides  Grating Couplers Ring Modulators Resonant PDs

10pum
Taper —— Heater

10pm  Grating
. Loss: 4.9db Q-factor: 6k Res: 0.13A/W
39nm SOl Loss: 20db/em | g1 m 1-db BW) | BW < 10GHz BW: 12.5GHz
f _:390/350GHz Blocking all Adding Optimizing PN Optimizing PN
One of the fastést doping layers polysilicon junction RC /lower | junction RC &
i';/;?z:r‘::ieﬁsc"‘égg grating (3dB waveguide loss SiGe width
i — improvement)
devices Q-factor > 10k
Loss: 3db/cm | Loss: Sub-2dB BW > 20GHz Res: 0.5A/W
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Platform Applications
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Conclusion

" Monolithic silicon photonics with fastest transistors
=" Demonstration of 12Gb/s O-band transceivers

® Continuation of “zero-change” approach to more advanced
and complex (e.g. HKMG) SOl CMOS technologies

= Potentially revolutionize many applications despite
slowdown in CMOS scaling
" VLSI compute and network infrastructure just a start ...
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