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Abstract

In order to choose correctly the dimension of calibration model in chemistry, a new simple and effective method named
Ž .Monte Carlo cross validation MCCV is introduced in the present work. Unlike leave-one-out procedure commonly used in

Ž .chemometrics for cross validation CV , the Monte Carlo cross validation developed in this paper is an asymptotically con-
sistent method in determining the number of components in calibration model. It can avoid an unnecessary large model and
therefore decreases the risk of over-fitting for the calibration model. The results obtained from simulation study showed that
MCCV has an obviously larger probability than leave-one-out CV in choosing the correct number of components that the
model should contain. The results from real data sets demonstrated that MCCV could successfully choose the appropriate
model, but leave-one-out CV could not. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multivariate partial least squares regression
Ž . Ž .PLSR and principle components regression PCR
modeling are very useful tools for the analysis of
high-dimensional data. In multivariate calibration,
chemical samples of a compound are depicted by

Ž .spectra such as ultraviolet and near infrared spectra
that are recorded to give more than several hundred

Ž .variables. PLSR or PCR provides adapted access to
model these kinds of high dimensional data. How-
ever, it is difficult to determine the adapted number

Ž .of PLS components or PCs that should be used in
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the model and, at the same time, to make the deter-
mined model to have the best predictive ability for
future samples.

Many methods, such as Akaike information crite-
w x w xrion 1 , the C statistics 2 , the jackknife and thep

w x Ž . w xbootstrap 3,4 and cross validation CV 5–8 , can
be used to ascertain the number of components in-
cluded into model. Among these methods, CV is of
most applications in chemometrics. It is a method of
evaluating given models according to the predictive
ability and to determine appreciate components in-
cluded into the model. In the literature, CV is gener-
ally referred to as the simplest leave-one-out cross
validation unless announced specially. However,
there is a compelling problem for leave-one-out CV.

w xAs pointed in Ref. 9 , leave-one-out CV often cause
over-fitting, and on average, it gave an under-estima-
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tion of the true predictive error. Many other chemo-
metricians also perceived this shortage of leave-one-

w xout CV 10,11 . They were very careful when using
CV and making some improvements over the leave-

w xone-out CV criterion 12,13 . The reason for leave-
one-out CV having such a deficiency is that it is an

w x Žasymptotically inconsistent method 4,14,15 the
other methods mentioned above share the same defi-

.ciency . The consequence of this method is that it
tends to include unnecessary components into the
model and make the model larger than it should be.
Therefore, the model with the number of components
determined by leave-one-out CV often performs good
in calibration, but poor in prediction.

On the other hand, much attention was paid to CV
with more than one sample left out at a time in vali-

w xdation. Multifold CV has appeared in Ref. 16 . The
leave-two-out CV performed better than leave-one-

w xout CV 17 . The theoretic results about multifold CV
w xcan be found in Refs. 18–20 .

Ž .Monte Carlo cross validation MCCV was first
w xconsidered in Ref. 21 . This method has been shown

w xasymptotically consistent 14 , but it is rarely used in
chemometrics. In the presented paper, we introduce
MCCV method in a multivariate calibration problem.
Although MCCV is a consistent method for linear
model in the large data cases, it is a mystery when
used in a small data set for calibration. We try to gain
some insight as to see how the scale of the samples
in the calibration data set ought to be left out at a time
in validation and whether MCCV is an effective
method for determining the number of components in
the calibration model. To accomplish this goal, simu-
lated experiments are performed. Not only the level
of random error, but also the degree of collinearity in
the spectra of compounds is taken into consideration.
Finally, two real examples are discussed in detail.

2. Theory and method

The following linear calibration model is consid-
ered:

ysXbqe ;
1Ž .2½ E e s0, Cov e ss IŽ . Ž .

where b is regression coefficient vector, and X ob-
servation matrix, e random error vector, y response
vector, respectively. I is the identity matrix. Suppose
that X is an n=m matrix; y and e are n=1 vectors

v vŽ . Ž .and b is an m=1 vector. E and Cov denote
the expectation and covariance, respectively. Estima-
tor of regression coefficient vector is obtained by least

Ž .squares LS :

y1t tb̂ s X X X y 2Ž . Ž .L

Typical chemical data, such as the spectroscopic
data, tend to be characterized by many independent

Ž .variables on relatively fewer observations m)n , or
Ž . Ž .more generally, rank X -min n,m . There is high

collinearity among the independent variables. It is
well known that under this situation, the estimator of
regression coefficient vector by LS is unstable, lead-

w xing to poor prediction accuracy 22 . In this situation,
because of the unavoidable deficiencies of the data,

Ž . w xit is better to choose the PLS or PCR model 23 . In
this paper, we only consider the PLS regression
model.

2.1. PLS regression

Ž .The linear model 1 is considered. Taking the no-
w xtation of Refs. 24,25 , the observation matrix can be

decomposed as follows:

Xs t p t q t p t q . . .qt p t qR 3Ž .1 1 2 2 k k

where t , p are the PLS scores and loadings; R is thei i

residual matrix. The number k denotes the number of
Ž .PLS components that are introduced into model 1 .

If there is no measurement errors in the data matrix,
then

q
t tXs t p sTP 4Ž .Ý i i

is1

w x w xwhere Ts t , t , . . . , t , Ps p , p , . . . , p . The1 2 q 1 2 q

subscript q denotes the rank of matrix X. Each PLS
score t is a combination of the column vector of ob-i

servation matrix X, that is

TsXH 5Ž .
Ž .The model 1 can be rewritten as follows:

ysTP tbqesTaqe 6Ž .
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The matrices T, P and H can be partitioned as fol-
lows:

. .. .Ts t , t . . . , t , t ,t , . . . , t s T T1 2 k kq1 kq2 q k Žkq1.. .
..Ps p , p , . . . , p , p , p , . . . , p1 2 k kq1 kq2 q.

..s P Pk Žkq1..
..Hs h , h , . . . , h , h , h , . . . h1 2 k kq1 kq2 q.

..s H H 7Ž .k Žkq1..

Ž . Ž .Inserting Eq. 7 into Eq. 6 , we get

ysT P t bqT P t bqek k Žkq1. Žkq1.

t w t t x wŽ t . t Ž t . t xLet a s a , a s P b , P b , thenk Žkq1. k Žkq1.

ysT a qT a qe 8Ž .k k Žkq1. Žkq1.

When the number of PLS components that are in-
troduced into model is k, the latter q–k PLS compo-
nents have very small variance and are considered as
representatives of noises or the cause of collinearity
in the data set. Therefore, the latter q–k elements of
a are regarded as zeros, and only the former k com-
ponents remain in the model.

ysT a qe 9Ž .k k

The number of components k is also called the di-
mension of the model. The least square solution of

Ž .Eq. 9 is

y1t ta s T T T y 10Ž .ˆ Ž .k k k k

The fitted value of y is

y1t t tysT a sXH T T H X y 11Ž .ˆ ˆ Ž .k k k k k k

ˆThe PLS estimator b of b with the former k com-k

ponents remaining in the model can be acquainted
Ž .from Eq. 11 .

y1t t tb̂ sH T T H X y 12Ž .Ž .k k k k k

2.2. Cross Õalidation and Monte Carlo cross Õalida-
tion

The fundamental step after the data are available
Žis to determine the number of components dimen-

. Ž .sion for the derived model 9 . There are total q
Ž .possible different models taking the pattern of Eq. 9

corresponding to ks1, 2, . . . , q. How to determine
Žk is the problem. For general CV, the n samples the

.rows of X are split into two parts. The first part
Ž .calibration set , denoted as S , contains n samplesc c

Žfor fitting the models. The second part validation
.set , denoted as S , contains n snyn samples forv v c

nvalidating the model. There are total differentnž /v

forms of sample splits. For each sample split, the
model is fitted by the n samples of the first part S .c c

y1t t tb̂ sH T T H X yŽ .S k S k S k S k S k S Sc c c c c c c

ks1, 2, . . . ,q 13Ž . Ž .

where rows of X and y are corresponding to theS Sc c

samples in the calibration set; H and T are de-S k S kc c

Ž . Ž .termined by Eqs. 4 and 5 based on X . The sam-Sc

ples in the validation set X are treated as if theyS v

were future ones. The fitted model then predicts re-
sponse vector y .S v

ˆy sX b ks1, 2, . . . ,q 14Ž . Ž .ˆS k S S kc v c

Ž .The average squared prediction error ASPE over all
samples in validation set is

1
25 5ASPE S , k s y yy 15Ž . Ž .ˆv S S kv vnv

v5 5where stands for Euclidean norm of a vector. Let
S be the set whose elements are all from the valida-

ntion sets corresponding to different forms ofnž /v

sample splits. The cross validation criterion with nv

left out of the model is defined as

1
CV k s ASPE S , k 16Ž . Ž . Ž .Ýn vv n S gSvnž /v

Ž .CV k is calculated for every k th component as itn v

is added to the model. The optimal k) , which gives
Ž .a minimum value of CV ks1, 2, . . . , q , is then v

number of components that should be contained into
the model.

Ž .The simplest CV, with n s1 leave-one-out , isv

largely used in chemometrics. However, it was
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Ž .proven that the model chosen by CV n s1 is1 v
w xasymptotically incorrect 14,15 . It tends to include

unnecessary excessive components into the model
and consequently bring about over-fitting. The rea-
son CV inclines to choose a larger model is that it1

emphasizes calibration but not validation. For every
split of n samples, ny1 samples are used for cali-
bration, whereas only one sample is used for valida-
tion. The larger the n , the lesser the influence ofc

Ž .validation on CV k . As for calibration, the moren v

components are included in the model, the better the
model is fitted. Therefore, it is not difficult to under-
stand that leave-one-out CV has such a deficiency.

Under the conditions that n ™` and n rn™1,c v
w xit has been proven by Shao 14 that the probability

for cross validation with n left out for validation tov

choose the correct model tends to 1. In this sense, the
Ž . Ž .CV k criterion Eq. 16 is asymptotically consis-n v

tent. For the data sets of finite size, with the increas-
ing of samples that are left out for validation, the

probability of selecting the model with the correct
w xnumber of components also increases 20 . However,

the computation of CV with large n is not applica-n vv

Žble the computation complexity of CV is exponen-n v

. Ž . w xtial . Monte Carlo cross validation MCCV 14 is a
simple and effective method: randomly split the sam-

Ž . Ž . Ž . Žples into two parts S i of size n and S i of sizec c v
. Ž .n ; repeat the procedure N times is1, 2, . . . , N .v

The repeated MCCV criterion is defined:

N1
25 5MCCV k s y yy 17Ž . Ž .ˆÝn S Ž i. S Ž i.v v vNnv is1

By means of the Monte Carlo method, the amount of
computation complexity can be reduced substan-
tially. Theoretically, the fewer samples used in model
calibration, the more repeat times are needed and N
sn2, in general, is enough in order to make MCCVn v

w xperform as well as CV 20 .n v

Ž . Ž . Ž .Fig. 1. The spectra for the four pure compounds. a Low collinearity; b middle collinearity; c high collinearity.
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2.3. Confirmation of the correct model

For calibration problems, prediction, not calibra-
tion, is the main purpose. Thus, in this paper, the
correct number of components in the model is con-
firmed based on the performance in prediction. After
the number of components that should be included
into the model is settled down by CV. The model with
the determined number of components is then con-
structed by the full data set. Whether this model is
correct depends on its performance on a new predic-
tion set. Let the rows of matrix X be the samples inp

the prediction set and y be their response vector. Thep
Ž .mean squared error of prediction MSEP is as fol-

lows.
np1

25 5MSEP k s y yy 18Ž . Ž .ˆÝ p pknp is1

where y is the predicted response vector by theˆpk

model including k PLS components in it, and n isp

the size of prediction set. If k) , determined by CV,
Ž ) . Ž . Žmakes MSEP k the minimum among MSEP k k
.s1, 2, . . . , q , then it is said that the determined

model is the correct one.

3. Data

Although MCCV can asymptotically select the
model with the correct number of components, its
performance on the data set with finite number of
samples needs further investigation. In this section,
the simulated data, near infrared data and ultraviolet
data are used for exploring the method. All the data
sets are centered before computation.

3.1. Simulated data

In order to investigate the possessions of MCCV
under the different situations, a set of simulated data
has been created for the four chemical component
calibration models.

ysXbqe 19Ž .
where every row of X is a combination of spectra of
four pure compounds; y is a concentration vector of
one of the compounds. The normalized spectra of

t Ž5 5 .pure compounds s s s1, is1, 2, 3, 4 are showni i

in Fig. 1. In favor of exploring the influences of
collinearity in data on MCCV method, we only

Table 1
The concentration combination of four compounds

No. x x x x No. x x x x1 2 3 4 1 2 3 4

1 0.1000 0.8000 0.4000 0.0667 21 0.1000 1.0000 0.1333 0.7333
2 0.3000 0.5000 0.8000 0.0667 22 0.2000 0.7000 0.5333 0.7333
3 0.5000 0.2000 0.2000 0.1333 23 0.3000 0.4000 0.9333 0.8000
4 0.7000 0.9000 0.6000 0.1333 24 0.4000 0.1000 0.3333 0.8000
5 0.9000 0.6000 1.0000 0.2000 25 0.5000 0.8000 0.7333 0.8667
6 0.2000 0.3000 0.3333 0.2000 26 0.6000 0.5000 0.0667 0.8667
7 0.4000 1.0000 0.7333 0.2667 27 0.7000 0.2000 0.4667 0.9333
8 0.6000 0.7000 0.1333 0.2667 28 0.8000 0.9000 0.8667 0.9333
9 0.8000 0.4000 0.5333 0.3333 29 0.9000 0.6000 0.2667 1.0000

10 1.0000 0.1000 0.9333 0.3333 30 1.0000 0.3000 0.6667 1.0000
11 1.0000 0.9000 0.2667 0.4000 31 0.1000 0.3000 0.2000 0.3000
12 0.8000 0.6000 0.6667 0.4000 32 0.2000 0.6000 0.4000 0.5000
13 0.6000 0.3000 0.0667 0.4667 33 0.3000 0.9000 0.1000 0.2000
14 0.4000 1.0000 0.4667 0.4667 34 0.4000 0.1000 0.3000 0.5000
15 0.2000 0.7000 0.8667 0.5333 35 0.5000 0.4000 0.5000 0.2000
16 0.1000 0.4000 0.2000 0.5333 36 0.6000 0.7000 0.1000 0.4000
17 0.3000 0.1000 0.6000 0.6000 37 0.7000 1.0000 0.1000 0.3000
18 0.5000 0.8000 1.0000 0.6000 38 0.8000 0.2000 0.5000 0.4000
19 0.7000 0.5000 0.4000 0.6667 39 0.9000 0.5000 0.2000 0.1000
20 0.9000 0.2000 0.8000 0.6667 40 1.0000 0.8000 0.4000 0.3000
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Ž . Ž . Ž .Fig. 2. The spectra of mixtures with ss0.004. a Low collinearity; b middle collinearity; c high collinearity.

Ž . Ž . Ž .change the fourth spectra s in a , b and c . The4

correlation coefficients of s and s are 0.8124,2 4

0.9050 and 0.9760, respectively, corresponding to
low, middle and high degree of collinearity in data.
The levels of random errors are also taken into con-
sideration. The random errors obey normal distribu-
tion. The standard deviations of them, say s , are

Ž . Ž .0.002 low level and 0.004 high level , respec-
tively. A total of 40 samples are collected. The con-
centration compositions of these samples are listed in

Ž .Table 1. The spectra of these mixtures samples are
shown in Fig. 2. These samples serve as the data set
for MCCV to determine the number of PLS compo-
nents and then to construct the model. The concen-
tration vector of third compound is used as response
vector y.

3.2. Near infrared data

This near infrared data came from Næs published
w xin Ref. 10 . It was also used as an example in Ref.

w x11 . It consists of measurements on 28 samples. The
NIR spectra are collected at 19 different NIR wave-
lengths and the percentage of protein is used as re-
sponse. There are three outlier samples among 28
samples. The other remaining 25 samples are used for

the data set in this paper. More explicit explanation
w xfor the data is referred to Ref. 10 .

3.3. UltraÕiolet data

This data consists of ultraviolet measurements of
mixtures of naphthalene, anthracene, fluorene and
phenanthrene. The ultraviolet spectra are collected at
intervals of 1 nm between the wavelengths 200 and

Ž280 nm. The response y is the concentration 0.1 mg

Fig. 3. Ultraviolet spectra.
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Table 2
Ž .The values of AMSPE k for prediction set

s Component number

1 2 3 4 5 6 7 8 9 10

Ž .0.002 a 0.2395 0.1083 0.0164 0.0044 0.0048 0.0051 0.0053 0.0054 0.0055 0.0055
Ž .b 0.2443 0.1074 0.0171 0.0044 0.0048 0.0052 0.0053 0.0054 0.0055 0.0055
Ž .c 0.2443 0.0953 0.0289 0.0043 0.0047 0.0051 0.0052 0.0053 0.0054 0.0054
Ž .0.004 a 0.2419 0.1103 0.0178 0.0087 0.0096 0.0103 0.0107 0.0109 0.0109 0.0110
Ž .b 0.2424 0.1062 0.0185 0.0088 0.0096 0.0103 0.0107 0.0109 0.0110 0.0110
Ž .c 0.2399 0.0942 0.0294 0.0088 0.0096 0.0103 0.0107 0.0110 0.0110 0.0111

y1 .ml of phenanthrene. Thirty five samples are col-
lected. Their spectra are shown in Fig. 3.

4. Results and discussion

4.1. Simulated data

The mixture spectra for 40 samples with high lever
of random errors are shown in Fig. 2. For the MCCV,

Ž .each simulation is calculated for 80 times Ns80
and 500 simulations are computed for every situa-
tion. In order to confirm the correct model, another
100 samples for each simulation, used as a prediction
set, are generated with the concentrations of four
compounds chosen randomly from the uniform dis-

w xtribution in 0,1 . The average of mean squared error
Ž .AMSEP of prediction for 500 simulations is de-
fined as follows.

5001
AMSEP k s MSEP k 20Ž . Ž . Ž .Ý i500 is1

where i denotes the ith simulation. The number, say
) Ž ) .k , which makes AMSEP k the minimum among

Ž . Ž .all AMSEP k ks1, 2, . . . , q is taken as the cor-
rect number of components that should be contained
into the model.

Ž .The value of AMSEP k on prediction set in all
cases is shown in Table 2. It is seen from the table

Ž .that the value of AMSEP k goes down quickly as
the number of component increases. But after they
reach the minima at ks4, it increases slightly as the
number of component increases. Therefore, the cor-
rect number of components of the model is always
four, being equal to the number of chemical com-
pounds.

The frequencies for the MCCV to choose the
number of components are collected in Tables 3 and
4 for the model with low and high lever random er-
rors, respectively. It is interesting to see from Table
3 that whether there is high collinearity or not in the
data, the MCCV with n s1 always gives the poor-v

est performances. The very important thing that
should be noticed is the frequencies for MCCV to
choose the correct number of components have a
maximum at n s20 or n s25. This implies thatv v

the probability for MCCV to choose the correct

Table 3
The frequencies for the MCCV to choose the number of components contained in the model when ss0.002

Ž . Ž . Ž .n a b cv

3 4 5 G6 3 4 5 G6 3 4 5 G6

1 0 0.750 0.135 0.115 0 0.717 0.175 0.108 0 0.710 0.138 0.152
5 0 0.770 0.140 0.090 0 0.747 0.145 0.108 0 0.797 0.110 0.093

10 0 0.832 0.115 0.053 0 0.810 0.102 0.088 0 0.837 0.125 0.038
15 0 0.857 0.098 0.045 0 0.790 0.140 0.070 0 0.812 0.130 0.058
20 0 0.865 0.093 0.042 0 0.858 0.112 0.030 0 0.848 0.112 0.040
25 0 0.855 0.093 0.052 0 0.843 0.115 0.042 0 0.875 0.090 0.035
30 0 0.775 0.138 0.087 0 0.795 0.113 0.092 0 0.765 0.130 0.105
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Table 4
The frequencies for the MCCV to choose the number of components contained in the model when ss0.004

Ž . Ž . Ž .n a b cv

3 4 5 G6 3 4 5 G6 3 4 5 G6

1 0 0.700 0.168 0.132 0 0.712 0.158 0.130 0 0.732 0.150 0.118
5 0 0.765 0.135 0.100 0 0.807 0.125 0.068 0 0.777 0.135 0.088

10 0 0.810 0.110 0.080 0 0.797 0.130 0.073 0 0.800 0.138 0.062
15 0 0.820 0.132 0.048 0 0.840 0.095 0.065 0 0.785 0.140 0.075
20 0 0.795 0.133 0.072 0 0.840 0.120 0.040 0 0.820 0.105 0.075
25 0 0.793 0.130 0.077 0 0.813 0.120 0.067 0 0.783 0.150 0.067
30 0 0.550 0.255 0.195 0 0.573 0.222 0.205 0 0.695 0.160 0.145

number of components is the largest if 50% or 60%
samples are left out for validation for this model. It
is also worth noticing that the frequencies for MCCV
to choose three components for the model are zero in
all the cases. This indicates that it is almost impossi-
ble for the MCCV method to choose the under-
fitting model. In addition, one could see that colli-
nearity seems to have no adverse influence upon
choosing correct number of components for MCCV
methods, when random errors are not very big.

Table 4 shows some differences. The frequencies
go down quickly at n s30, after they reach maxi-v

mum at n s15 or n s20 and have become appar-v v

ently smaller than they are at n s1. This fact indi-v

cates that it needs more samples in the calibration set
in order to obtain the correct model with the largest
probability, when there are large random errors in the
data. As shown in Table 2, the maxima of frequen-
cies in all the cases in Table 4 for MCCV to choose
correct model are slightly smaller than that in Table
3. These results indicate that the larger random errors
decrease the possibility to choose the correct model.
In general, in order to obtain good performances for
MCCV method in the cases in Table 4, 40–50% of
samples in the data should be left out for validation.

4.2. Near infrared data

w xAs pointed out in Ref. 10 , high degree of
collinearity among the spectral variables makes the
analysis of this data difficult. For cross validation
with n s1, the result is shown in Fig. 4. The valuev

of CV reaches its minimum at ks7. It was noticed
w x10 that there was clear over-fitting at ks7 for the

data. The number of components that ought to be in-
cluded in the model, thus, is difficult to determine by
CV . Based on the principal component analysis and1

w xmuch of his prolific experiences, Næs 10 suggested
using the model with three principal components for

w xprediction. Hoskudsson 11 used many methods,¨
such as Akaike information criterion, the C statis-p

tics and H-error criterion, as well as CV with n s1v

and n s 0.1; 0.2n, to determine the number ofv

components for this data. But it was hard to obtain a
convincing conclusion.

Ž .The MCCV given by Eq. 16 in Section 2.2 is
used in the different cases with n s1, 4, 7, 10, 13,v

Fig. 4. Leave-one-out CV plot for NIR data.
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Fig. 5. The CV plot based on MCCV method in various cases for NIR data.

16 and Ns2.5n. The results are shown in Fig. 5.
One can see from the figure that for n s1, 4, 7, 10,v

Ž .CV k reach their local minima at ks3, and the
global minima, for n s13, 16 at ks3. If the firstv

Ž .local minimum of CV k is used as criterion for de-

termining the number of the components contained
into the model, then the CV with any number of
samples left out for validation could choose the ex-
pected model. But this kind of criterion seems to be
a little arbitrary. For MCCV with no other than 50%

Ž . Ž .Fig. 6. a Leave-one-out CV plot for ultraviolet data. b The mean squared error of prediction for ultraviolet data.
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Fig. 7. The CV plot based on MCCV method in various cases for ultraviolet data.

Ž .or more of samples left out for validation, one can
obtain the adapted model for this data set.

4.3. UltraÕiolet data

In order to investigate the performance of MCCV
for this data set, the samples are split into two parts.
One consists of the first 25 samples and is used for
the data set for MCCV. The other samples are used
for confirming the correct number of components that
should be contained into the model. Based on the
leave-one-out CV, the model should contain five
components. The results are shown in Fig. 6a. How-

Ž . Ž Ž ..ever, the values of MSEP k Eq. 17 shown in Fig.
6b, reach minimum at ks4. Thus, the adapted model
should be the one that contains only four compo-
nents. The model determined by leave-one-out CV
includes more components by one.

The MCCV are fulfilled with Ns80 and n s1,v

4, 7, 11, 14, 17. It is seen from Fig. 7 that the CV
values for MCCV are very close to each other at ks

4, 5 in the cases n s1, 4, 7, 11. But they differ ob-v

viously in the cases n s14, 17. Thus, the MCCVv

with more than 50% of samples left out can deter-
mine the number of components in the model with-
out suspicion. These results manifest once again that
the MCCV with only several or 10–30% of samples
left out for validation also tends to involve more
components into model in truth and are in concert
with the simulation results nicely.

5. Conclusions

Since leave-one-out cross validation is an asymp-
totically inconsistent method in determining the
number of components in multivariate calibration
model, it prefers to choose an unnecessary large
model and possibly cause over-fitting for prediction.
There is a need for a consistent method by which less
risk of over-fitting could be taken for small data sets.
Monte Carlo cross validation is just the one to be
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wanted. For the simulated data set and the two real
data sets studied here, the following can be con-
cluded.

Ž .1 MCCV has an obviously larger probability than
leave-one-out CV in choosing the correct number of
components that the model should contain. The prob-
ability has a maximum for a small data set as the
number of the samples left out for validation in-
creases. For the examples in this paper, 40–60% of
all samples is recommended to be left out for valida-
tion for MCCV. It should be pointed out, however,
that the recommended percentage of the samples that
is left out for validation may be even higher for larger
data sets.

Ž .2 It is hard for MCCV or CV to choose the model
of under-fitting. The number of components deter-

Ž .mined by MCCV or CV is always not less than the
model should contain.

Ž .3 The high levels of random errors defy MCCV
to determine the correct number of components for
the model. The probabilities decrease as random er-
rors in the data set increase. And lesser number of
samples is needed for validation if one wants to ob-
tain the largest probability.

Ž .4 The collinearity in the data set has little influ-
ence on the probability for MCCV to choose the ac-
curate model, when random errors are not big in data
set.
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