
A
Monte Carlo Integration

THE techniques developed in this dissertation are all Monte Carlo methods. Monte Carlo

methods are numerical techniques which rely on random sampling to approximate their

results. Monte Carlo integration applies this process to the numerical estimation of integrals. In

this appendix we review the fundamental concepts of Monte Carlo integration upon which our

methods are based. From this discussion we will see why Monte Carlo methods are a particularly

attractive choice for the multidimensional integration problems common in computer graphics.

Good references for Monte Carlo integration in the context of computer graphics include Pharr

and Humphreys [2004], Dutré et al. [2006], and Veach [1997].

The term “Monte Carlo methods” originated at the Los Alamos National Laboratory in

the late 1940s during the development of the atomic bomb [Metropolis and Ulam, 1949]. Not

surprisingly, the development of these methods also corresponds with the invention of the first

electronic computers, which greatly accelerated the computation of repetitive numerical tasks.

Metropolis [1987] provides a detailed account of the origins of the Monte Carlo method.

Las Vegas algorithms are another class of method which rely on randomization to compute

their results. However, in contrast to Las Vegas algorithms, which always produce the exact or

correct solution, the accuracy of Monte Carlo methods can only be analyzed from a statistical

viewpoint. Because of this, we first review some basic principles from probability theory before

formally describing Monte Carlo integration.
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A.1 Probability Background

In order to define Monte Carlo integration, we start by reviewing some basic ideas from

probability.

A.1.1 Random Variables

A random variable X is a function that maps outcomes of a random process to numbers. A

random variable can be either discrete (e.g., the roll of a six-sided die where a fixed set of outcomes

is possible, X = {1,2,3,4,5,6}), or continuous (e.g., a person’s height, which can take on real values

R). In computer graphics we more commonly deal with continuous random variables which take

on values over ranges of continuous domains (e.g., the real numbers R or the sphere of directions

Ω).

A.1.2 Cumulative Distributions and Density Functions

The cumulative distribution function, or CDF, of a random variable X is the probability

that a value chosen from the variable’s distribution is less than or equal to some thresold x:

cdf (x) = Pr {X ≤ x} . (A.1)

The corresponding probability density function, or PDF, is the derivative of the CDF:

pdf (x) = d

d x
cdf (x). (A.2)

CDFs are always monotonically increasing, which means that the PDF is always non-negative.

An important relationship arises from the above two equations, which allows us to compute the

probability that a random variable lies within an interval:

Pr {a ≤ X ≤ b} =
∫ b

a
pdf (x) dx. (A.3)
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From this expression it is clear that the PDF must always integrate to one over the full extent of its

domain.

A.1.3 Expected Values and Variance

The expected value or expectation of a random variable Y = f (X ) over a domain µ(x) is

defined as

E [Y ] =
∫
µ(x)

f (x)pdf (x) dµ(x), (A.4)

while its variance is

σ2[Y ] = E
[
(Y −E [Y ])2] , (A.5)

where σ, the standard deviation, is the square root of the variance. From these definitions it is

easy to show that for any constant a,

E [a Y ] = a E [Y ], (A.6)

σ2[a Y ] = a2σ2[Y ]. (A.7)

Furthermore, the expected value of a sum of random variables Yi is the sum of their expected

values:

E

[∑
i

Yi

]
=∑

i
E [Yi ]. (A.8)

From these properties it is possible to derive a simpler expression for the variance:

σ2[Y ] = E
[
Y 2]−E [Y ]2 . (A.9)
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Additionally, if the random variables are uncorrelated, a summation property also holds for the

variance1:

σ2

[∑
i

Yi

]
=∑

i
σ2[Yi ]. (A.10)

A.2 The Monte Carlo Estimator

The Basic Estimator. Monte Carlo integration uses random sampling of a function to numeri-

cally compute an estimate of its integral. Suppose that we want to integrate the one-dimensional

function f (x) from a to b:

F =
∫ b

a
f (x) dx. (A.11)

We can approximate this integral by averaging samples of the function f at uniform random points

within the interval. Given a set of N uniform random variables Xi ∈ [a,b) with a corresponding

PDF of 1/(b −a), the Monte Carlo estimator for computing F is

〈
F N 〉= (b −a)

1

N −1

N∑
i=0

f (Xi ), (A.12)

The random variable Xi ∈ [a,b) can be constructed by warping a canonical random number

uniformly distributed between zero and one, ξi ∈ [0,1):

Xi = a +ξi (b −a). (A.13)

Using this construction, we can expand the estimator to:

〈
F N 〉= (b −a)

1

N

N−1∑
i=0

f (a +ξi (b −a)) . (A.14)

1This property is often made with the stronger condition that the variables are independent; however, it suffices for
them to be uncorrelated.
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Since
〈

F N
〉

is a function of Xi , it is itself a random variable. We use this notation to clarify that〈
F N

〉
is an approximation of F using N samples.

Intuitively, the Monte Carlo estimator in Equation A.12 computes the mean value of the

function f (x) over the interval a to b, and then multiplies this mean by the length of the interval

(b − a). By moving (b − a) into the summation, the estimator can be thought of as choosing a

height at a random evaluation of the function and averaging a set of rectangular areas computed

by multiplying this height by the interval length (b −a). These two interpretations are illustrated

in Figure A.1.

A.2.1 Expected Value and Convergence

It is easy to show that the expected value of
〈

F N
〉

is in fact F :

E
[〈

F N 〉]= E

[
(b −a)

1

N

N−1∑
i=0

f (Xi )

]
,

= (b −a)
1

N

N−1∑
i=0

E
[

f (Xi )
]

, from Equations A.8 and A.6

= (b −a)
1

N

N−1∑
i=0

∫ b

a
f (x)pdf (x) dx, from Equation A.4

= 1

N

N−1∑
i=0

∫ b

a
f (x) dx, since pdf (x) = 1/(b −a)

=
∫ b

a
f (x) dx,

= F. (A.15)

Furthermore, as we increase the number of samples N , the estimator
〈

F N
〉

becomes a closer and

closer approximation of F . Due to the Strong Law of Large Numbers, in the limit we can guarantee

that we have the exact solution:

Pr

{
lim

N→∞
〈

F N 〉= F

}
= 1. (A.16)

In practice we are interested in knowing just how quickly this estimate converges to a
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Figure A.1: An illustration of the two interpretations of the basic Monte Carlo estimator in Equation A.12
using four samples: computing the mean value, or height, of the function and multiplying by the interval
length (top), or computing the average of several rectangular areas (bottom).

sufficiently accurate solution. This can be analyzed by determining the convergence rate of the

estimators variance. In the next section we will show that the standard deviation is proportional

to:

σ
[〈

F N 〉]∝ 1p
N

. (A.17)

Unfortunately, this means that we must quadruple the number of samples in order to reduce the

error by half!

Standard integration techniques exist which converge much faster in one dimension;

however, these techniques suffer from the curse of dimensionality, where the convergence rate

becomes exponentially worse with increased dimensions. The basic Monte Carlo estimator above

can easily be extended to multiple dimensions, and, in contrast to deterministic quadrature

techniques, the convergence rate for Monte Carlo is independent of the number of dimensions

in the integral. This makes Monte Carlo integration the only practical technique for many high

dimensional integration problems, such as those encountered when computing global illumina-

tion.
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A.2.2 Multidimensional Integration

Monte Carlo integration can be generalized to use random variables drawn from arbitrary

PDFs and to compute multidimensional integrals, such as

F =
∫
µ(x)

f (x) dµ(x), (A.18)

with the following modification to Equation A.12:

〈
F N 〉= 1

N

N−1∑
i=0

f (Xi )

pdf (Xi )
. (A.19)

It is similarly easy to show that this generalized estimator also has the correct expected value:

E
[〈

F N 〉]= E

[
1

N

N−1∑
i=0

f (Xi )

pdf (Xi )

]
,

= 1

N

N−1∑
i=0

E

[
f (Xi )

pdf (Xi )

]
,

= 1

N

N−1∑
i=0

∫
Ω

f (x)

pdf (x)
pdf (x) dx,

= 1

N

N−1∑
i=0

∫
Ω

f (x) dx,

=
∫
Ω

f (x) dx,

= F. (A.20)

In addition to the convergence rate, a secondary benefit of Monte Carlo integration over

traditional numerical integration techniques is the ease of extending it to multiple dimensions.

Deterministic quadrature techniques require using N d samples for a d-dimensional integral.

In contrast, Monte Carlo techniques provide the freedom of choosing any arbitrary number of

samples.

As mentioned previously, the Monte Carlo estimator has a constant O(
p

N ) convergence

rate in any dimension. However, in many situations it is possible to do much better. The efficiency

of Monte Carlo integration can be significantly improved using a variety of techniques, which we
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discuss in the next section.

A.3 Variance Reduction

Sources of Variance. In order to improve the quality of Monte Carlo integration we need to

reduce variance. Since the samples in Monte Carlo integration are independent, using Equa-

tion A.10, the variance of
〈

F N
〉

can be simplified to:

σ2 [〈
F N 〉]=σ2

[
1

N

N−1∑
i=0

f (Xi )

pdf (Xi )

]

= 1

N 2

N−1∑
i=0

σ2
[

f (Xi )

pdf (Xi )

]

= 1

N 2

N−1∑
i=0

σ2 [Yi ]

= 1

N
σ2 [Y ] , (A.21)

and hence,

σ
[〈

F N 〉]= 1p
N
σ [Y ] , (A.22)

where Yi = f (Xi )/pdf (Xi ) and Y represents the evaluation of any specific Yi , e.g., Y = Y1.

This derivation proves our earlier statement that the standard deviation converges with

O(
p

N ). Moreover, this expression shows that by reducing the variance of each Yi we can reduce

the overall variance of
〈

F N
〉

.

Variance-reduction techniques try to make each Yi as constant as possible in order to

reduce the overall error of the estimator. A significant amount of research has been put into this

area, leading to a number of complementary techniques. Most of these methods rely on exploiting

some previous knowledge of the function being integrated.
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A.3.1 Importance Sampling

Importance sampling reduces variance by observing that we have the freedom to choose

the PDF used during integration. By choosing samples from a distribution pdf (x), which has a

similar shape as the function f (x) being integrated, variance is reduced. Intuitively, importance

sampling attempts to place more samples where the contribution of the integrand is high, or

“important.” If we can properly guess the important regions during integration, the variance of

the standard Monte Carlo estimator can be significantly reduced.

The Perfect Estimator

To demonstrate the effect of importance sampling, consider a PDF which is exactly

proportional to the function being integrated, pdf (x) = c f (x) for some normalization constant c .

Since c is a constant, if we apply this PDF to the Monte Carlo estimator in Equation A.19, each

sample Xi would have the same value,

Yi = f (Xi )

pdf (Xi )
= ���f (Xi )

c���f (Xi )
= 1

c
. (A.23)

By using this PDF we have succeeded at reducing the variance of each Yi . In fact, since each Yi

returns the same value, the overall variance is zero!

Since the PDF must integrate to one, it is easy to derive the value of c:

c = 1∫
f (x) d x

. (A.24)

This unfortunately shows us that determining the normalization constant c in the PDF involves

solving the integral we are interested in estimating in the first place. This best case is therefore

not a realistic situation. In practice, all validly constructed PDFs will still produce a convergence

rate of σ∝p
N ; however, by choosing a PDF that is similar to f (x), we can make the variance

arbitrarily low.

The only restriction on the PDF, in order to maintain the correct expected value from

Equation A.20, is that it must be non-zero everywhere where the function f (x) is non-zero.
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Figure A.2: Comparison of three probability density functions. The PDF on the right provides variance
reduction over the uniform PDF in the center. However, using the PDF on the left would significantly
increase variance over simple uniform sampling.

Importance sampling should not be used carelessly however. Though we can decrease the

variance by using a “good” importance function, we can also make the variance arbitrarily large

by choosing an importance function that increases the variance of Y . Figure A.2 shows a uniform

PDF, as well as examples of PDFs which reduce and increase the overall variance.

Importance Sampling Complex Functions

Most of the time, the integrand f (x) is very complicated, and we cannot guess its full

behavior ahead of time. However, we may know something about its general structure. For

instance, the integrand function f (x) may in fact be the combination of more than one function,

e.g., f (x) = g (x)h(x). In these situations, it may not be possible to create a PDF exactly propor-

tional to f (x), but, if we know one of the functions in advance, we may be able to construct a

PDF proportional to a portion of f (x), e.g., pdfg (x) ∝ g (x). In this situation, the Monte Carlo

estimator simplifies to:

〈
F N 〉= 1

N

N−1∑
i=0

f (Xi )

pdfg (Xi )
,

= 1

N

N−1∑
i=0

g (Xi )h(Xi )

c g (Xi )
,

= 1

c N

N−1∑
i=0

h(Xi ). (A.25)

Since h(x) will in general be smoother than the full g (x)h(x), the variance of the Monte Carlo

estimator is reduced.
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Multiple Importance Sampling

What if we could also create a PDF which is proportional to h(x), pdfh ∝ h(x)? Should we

sample according to pdfh or pdfg ? As it turns out, we don’t have to choose. We can benefit from

distributing samples independently from each PDF and combining the results using multiple

importance sampling [Veach and Guibas, 1995; Veach, 1997].

A.3.2 Control Variates

Control variates is another variance-reduction technique which relies on some prior

knowledge of the behavior of f . The idea behind control variates is to find a function g which can

be analytically integrated and subtract it from the integral of f :

F =
∫ b

a
f (x) dx,

=
∫ b

a
f (x)− g (x) dx +

∫ b

a
g (x) dx,

=
∫ b

a
f (x)− g (x) dx +G . (A.26)

We can then apply Monte Carlo integration to the modified integrand f (x)− g (x):

〈
F N

c

〉= (
1

N

N−1∑
i=0

f (Xi )− g (Xi )

pdf (Xi )

)
+G , (A.27)

where the value of the integral G is known exactly.

If f (Xi ) and g (Xi ) are correlated, then the variance of
〈

F N
〉

is reduced. For control

variates, g should be chosen so that f − g is nearly constant. In contrast, with importance

sampling we tried to choose a PDF, pdf = g , so that f /g was nearly constant.

As with importance sampling, we can obtain optimal results by choosing a g such that

Yi = f (Xi )− g (Xi )

pdf (Xi )
(A.28)

is a constant. Unfortunately, this again requires knowledge of the true integral F .
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Another way to think about control variates is by rewriting Equation A.27 as

〈
F N

c

〉= (
1

N

N−1∑
i=0

f (Xi )

pdf (Xi )

)
+

(
G − 1

N

N−1∑
i=0

g (Xi )

pdf (Xi )

)
,

= 〈
F N 〉+G −〈

GN 〉
, (A.29)

where the same set of random samples Xi are used in both summations. Using this formulation,

control variates can be interpreted as computing the difference between the exact integral G

and its Monte Carlo approximation
〈
GN

〉
, and then adding this difference to our original Monte

Carlo estimator
〈

F N
〉

. The idea is to detect what type of errors are introduced during Monte Carlo

sampling of a known integral. If g and f are correlated, then we can expect the same errors to be

present in the integral of f , so we can remove them.

A.3.3 Uniform Sample Placement

Importance sampling probabilistically places more samples where the function is deemed

more important. The problem with this is that it does not eliminate sample “clumping,” as the

PDF only dictates the expected number, not the actual number, of samples in any given region.

Intuitively, sample clumping is wasteful, since a sample that is very close to another does not

provide much new information about the function being integrated. In order to obtain the best

solution, we want to maximize the amount of information we gain from each sample.

Stratified Sampling

One powerful variance-reduction technique that addresses this problem is called stratified

sampling. Stratified sampling works by splitting up the original integral into a sum of integrals

over sub-domains. In its simplest form, stratified sampling divides the domain [a,b] into N

sub-domains (or strata) and places a random sample within each of these intervals. If using a
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uniform PDF, with ξi ∈ [0,1), this can be expressed as

〈
F N

s

〉= (b −a)

N

N−1∑
i=0

f (Xi ) ,

= (b −a)

N

N−1∑
i=0

f
(
a + i+ξi

N (b −a)
)

= (b −a)

N

N−1∑
i=0

f
(
a +ξN

i (b −a)
)

. (A.30)

Compare this estimator to the expanded basic estimator in Equation A.14. Most of the time,

stratification can be added by simply replacing a canonical random number ξi ∈ [0,1) with a

sequence of stratified random numbers in the same range ξN
i = i+ξi

N .

It can be shown that stratified sampling can never result in higher variance than pure

random sampling. In fact, stratified sampling is asymptotically better, since the error reduces

linearly with the number of samples, σ∝ 1/N . Therefore, whenever possible, stratified sampling

should be used.

Stratified sampling does place more restrictions on the sampling process. This can

become problematic when, for instance, the number of samples is not known in advance. Fur-

thermore, though it is possible to extend stratified sampling to higher dimensions, in general, N d

strata would need to be created for a d dimensional domain. This explosion of samples can make

fine-grained control of simulation times difficult.

Comparison to Deterministic Quadrature. Stratified sampling incorporates ideas from deter-

ministic quadrature, while still retaining the statistical properties of Monte Carlo integration. It is

informative to compare Equation A.30 to a simple Riemann summation of the integral:

F =
∫ b

a
f (x) dx ≈

N−1∑
i=0

f (xi )∆x, (A.31)

≈
N−1∑
i=0

f
(
a + i

N (b −a)
) (b −a)

N
, (A.32)

≈ (b −a)

N

N−1∑
i=0

f
(
a + i

N (b −a)
)

. (A.33)
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Figure A.3: Deterministic quadrature techniques such as a Riemann summation (left) sample the func-
tion at regular intervals. Conceptually, stratified Monte Carlo integration (right) performs a very similar
summation, but instead evaluates the function at a random location within each of the strata.

In effect, the only difference between the Riemann sum and the stratified estimator in Equa-

tion A.30 is that Riemann summation evaluates the function at deterministic locations within the

domain (the start of each stratum in the above example) whereas stratified Monte Carlo places

the samples randomly within each stratum. This distinction is illustrated in Figure A.3.

Other Approaches

There is a wide range of other methods to more uniformly distribute samples. We illustrate

some of these approaches in Figure A.4. Other stratification approaches developed include N-

Rooks [Shirley, 1990] or Latin hypercube sampling [McKay et al., 1979], multi-jittered [Chiu et al.,

1994] and orthogonal array sampling [Owen, 1992], and multi-stage N-Rooks sampling [Wang

and Sung, 1999]. Veach [1997] provides a good overview of these approaches.

Several advanced techniques go beyond analyzing just the variance of the Monte Carlo

estimator. One approach is to measure the quality of the sample distribution based on frequency

analysis of the variance. This analysis shows that, to minimize variance while avoiding aliasing

artifacts beyond the Nyquist limit, a sample distribution conforming to a blue-noise frequency

spectrum is desirable [Cook, 1986; Mitchell, 1991]. In fact, this distribution of samples has been

observed in the placement of photoreceptors in the eye of the rhesus monkey [Yellott, 1983].

Another technique is to compute the discrepancy [Shirley, 1991] of the points, which
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Random Stratified N-Rooks

Multi-Jittered Quasi-Random Poisson-Disc
Figure A.4: An illustration comparing several 2D sampling approaches each using 16 samples. Purely
random sampling (top left) can suffer from clumping, which increases variance by undersampling other
regions of the integrand. All of the other approaches illustrated try to minimize this clumping to reduce
variance.

measures how much the density of the points varies from one location to the next. Quasi-Monte

Carlo techniques take this a step further and completely replace the use of pseudo-random

numbers with judiciously tailored deterministic sequences. These quasi-random numbers are

constructed explicitly to minimize clumping by reducing the discrepancy of the point set. Quasi-

Monte Carlo sampling is therefore also referred to as low-discrepency sampling. Niederreiter

[1992] provides an excellent theoretical introduction to Quasi-Monte Carlo techniques. Quasi-

Monte Carlo techniques were introduced to computer graphics by Keller. See his dissertation and

recent technical report for a thorough introduction [1998; 2003].
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A.3.4 Adaptive Sampling

Like importance sampling, adaptive sampling is another technique which tries to in-

telligently place more samples where they will provide the most benefit. However, importance

sampling requires some a priori knowledge of the function being integrated, whereas adaptive

sampling relaxes this requirement by inferring this information on the fly during the sampling

process.

Adaptive sampling tries to reduce variance by making adaptive decisions based on the

samples taken so far and placing future samples in areas of high variance. The motivation for this

approach is that regions of the integrand which are smooth can be well approximated using only

a few samples, whereas regions with rapid variation require more samples to faithfully capture

the behavior of the integrand.

A number of adaptive sampling techniques have been developed in computer graphics,

most of which deal exclusively with adaptively sampling the image plane. In addition to intro-

ducting ray tracing, Whitted [1980] also proposed the use of a hierarchical adaptive sampling

technique to increase the sample density around image discontinuities. Several other researchers

have proposed stochastic adaptive sampling of the image plane [Dippé and Wold, 1985; Mitchell,

1987; Painter and Sloan, 1989; Mitchell, 1991].

Though adaptive sampling can be a very effective optimization technique, a number of

issues complicate its use in practice. Firstly, choosing a robust adaptive refinement criterion can

be very difficult and application specific. This can be particularly challenging in the context of

Monte Carlo ray tracing since each Monte Carlo sample contains significant variance, making

features and noise indistinguishable during adaptive sample refinement. Nevertheless, successful

applications of Monte Carlo adaptive sampling in computer graphics do exist. For instance,

the irradiance caching algorithm described in Chapter 3 and our volumetric radiance caching

scheme developed in Chapter 6 are in essence approaches for adaptively sampling the indirect

illumination on surfaces and within media, respectively. Another consideration with adaptive

sampling is that, unlike importance sampling, it can introduce unbounded systematic errors

unless special precautions are taken [Kirk and Arvo, 1991]. This systematic error, called bias, is
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discussed in the next section.

A.3.5 Biased Monte Carlo

Estimators that always produce the correct expected value (like the ones we have consid-

ered so far) are called unbiased estimators. By using unbiased estimators, due to Equation A.15,

we can be confident that the expected value of the estimator, using any number of samples, will

always be correct. The only error in unbiased estimators is variance.

However, it is also possible to construct estimators which do not satisfy Equation A.15.

These estimators are called biased, since, in addition to variance, they also contain a systematic

bias:

β
[〈

F N 〉]= E
[〈

F N 〉]−F, (A.34)

which is the difference in the expected value of the estimator and the actual value of the integral.

A biased estimator is called consistent if it converges to the correct result with more

samples. Hence, consistent biased estimators satisfy Equation A.16 but not Equation A.15. A

simple example of a consistent but biased estimator for I would be

F ≈ (b −a)
1

N +1

N−1∑
i=0

f (Xi ). (A.35)

It is easy to see that this estimator does not have the correct expected value, but as we increase

the number of samples it does converge to the solution.

Sometimes it is useful to use biased estimators if they result in significantly reduced

variance. All the techniques developed in this dissertation are consistent biased Monte Carlo

methods, which introduce bias for exactly this purpose.

Sometimes, a more informative way to think about biased estimators is that they compute

unbiased estimates of the wrong answer! In effect, biased estimators replace the integral I with

a different integral Ī , which has some desirable properties. For instance, it could be easier to

integrate, or it could have lower variance. In a consistent estimator, as we increase the number of

samples, the properties of Ī start to resemble the true function I more closely.
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This alternative interpretation can be useful because it provides higher level knowledge

about the exact form of the bias introduced. For instance, in Chapter 8 we proved that photon

mapping actually computes an unbiased estimate of the blurred radiance. The amount of blur is

directly controlled by the size and number of photons in the radiance estimate. This also makes it

clear that photon mapping is consistent, since as we decrease the amount of blur to zero, the bias

disappears.


