
U.U.D.M. Project Report 2011:4

Examensarbete i matematik, 30 hp
Handledare och examinator: Erik Ekström

Mars 2011

Monte Carlo Methods in American Put 
Option Pricing

Hady Ahmady Phoulady

Department of Mathematics
Uppsala University



 



I would like to dedicate this thesis to my loving parents who

encouraged and supported me through my studies by any means.



Acknowledgements

And I would like to thank my supervisor Erik Ekström who suggested

me a subject of my interest, guided and helped me kindly through

my thesis. Also my teachers and amongst them, especially professor

Maciej Klimek, who gave a good view to me of what Financial Math-

ematics is about and made me interested in it by his great way of

teaching!



Abstract

An American put option gives its owner the right to sell an underlying

asset at a predetermined price anytime in a time interval, from the

beginning of the contract to the maturity time. There is no explicit

formula for the value of an American put option but there are several

methods to approximate it (rather than Finite Difference methods,

there exist Monte Carlo methods which are more easily implemented

and also usually faster). In this thesis three of well-known Monte

Carlo methods are explained and also a couple of more intuitive meth-

ods are suggested. They are implemented and the results and com-

putational time of them are checked and compared for 20 different

American put options.
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Chapter 1

Introduction

1.1 Overview

This thesis is discusses three recent Monte Carlo methods [2;4;6] for pricing Amer-

ican options with most basic definitions and formulations from a book [3].

Paul Glasserman’s book [3], Monte Carlo Methods in Financial Engineering,

is used for basic definitions, formulations and some tips for approximations of

values and stopping rules.

Then three different Monte Carlo methods are discussed: Broadie and Glasser-

man’s paper [2], Francis A. Longstaff and Eduardo S. Schwartz’s paper [4] and L.

C. G. Rogers’ paper [6]. We discuss them briefly, implement and compare them

together and also suggest a couple of new ideas (Chapters 5 and 6).

1.2 A Simple Example

Amongst all the methods to value American options (and of course many other

arising problems), Monte Carlo methods are some of the most important, easiest

to implement and to some extent fastest methods. Monte Carlo methods are

based on trying to estimate a random variable by generating several random

trajectories which lead to different value for the variable. Then by the different

values you can have an estimation of that random variable.

Consider that you want to have an estimation of the temperature of a certain
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day in year. One intuitive way is to get an average on the temperature of the same

day in last years. Then without having any information about the temperature of

other days, you can give an estimation of the temperature in that day. Although

the temperature in that day can be different from what you estimated, you can

still be hopeful that you have some kind of reliable estimation.

Another easy and famous example of Monte Carlo methods in mathematics is

the integral value of a function f on an interval, say the unit interval [3]. Suppose

that f is integrable on the unit interval and we want to compute

α =

∫ 1

0

f(x)dx.

It can be considered as an expectation E[f(U)] where U is uniformly dis-

tributed over the unit interval. A Monte Carlo method suggests that we draw

n random points from the unit interval uniformly, called Ui’s, and calculate the

average:

α̂n =
1

n

n∑
i=1

f(Ui).

α̂n is an estimation of E[f(U)] and therefore of α. The strong law of large

numbers tells us that also

α̂n → α

with probability 1 as n→∞.

Coming back to option valuation, Monte Carlo methods helps us in a similar

way.

A simple example of using Monte Carlo methods is valuing regular European

options. Phelim Boyle did it for the first time in 1977. The approach is easy and

intuitive: We simulate n random trajectories using time discretization. Then we

compute the value of the option in each trajectory and get an average on all of

them, leading to an estimated value of the European option.

Monte Carlo methods are also very efficient for pricing many path dependent

options in comparison to other different methods like Finite Difference methods.

But using Monte Carlo methods for pricing some options like American options

is not as one word as the approach explained above. An early attempt for us-

ing Monte Carlo methods for pricing American options was done by Longstaff
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and Schwartz [4]. Their method, called Least-Squares Method (LSM), is compa-

rable with other Finite Difference Methods in pricing American options. Apart

from Longstaff and Schwartz Least-Squares approach, Rogers suggested another

method in his paper in 2002. [6] We will discuss these methods later.

In the non-dividend case, we only consider American put options. The reason

for not studying American Call options is that they are actually equivalent to

European call options when no dividend is being paid. Several reasons exist for

this: If sometime (before the maturity) the option is in the money and we may

decide to exercise the option, instead of exercising it we can keep the option and

by doing so we still get the benefit of stock price fluctuations upwards and also

a protection against downwards stock price. Even by keeping the option and

investing the strike price, K, with a risk free interest rate, we also get the profit

of its interest. So we have at least two advantages by keeping the option rather

than exercising: Protection and Interest profit.

1.3 Problem Formulation

In this thesis, we focus on non-dividend paying option. We start by formulating

the problem [3]. Our pricing problem can be formulated by specifying a process

U(t), 0 ≤ t ≤ T . We can consider it as discounted payoff from exercising the

option at time t. Now our problem is to find

sup
τ∈T ∗

E[U(τ)].

Here T ∗ is the set of stopping times before the maturity time, T , that we can

exercise the option.

We denote the stock price process by S(t). We also denote the payoff of

exercising at time t by h̃(S(t)). Of course it is non-negative and for example in

the put options case, it is equal to (K−S(t))+. So if we consider the general case

for risk free interest rate: r(t) = {r(t), 0 ≤ t ≤ T}, we actually want to calculate

sup
τ∈T ∗

[
e−

∫ τ
0 r(u)duh̃(S(τ))

]
.
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If the risk free interest rate is constant, then the problem changes to calculate

sup
τ∈T ∗

[
e−rτ h̃(S(τ))

]
,

and in the case of a constant risk free interest rate and an American put option,

we are to find

sup
τ∈T ∗

[
e−rτ (K − S(τ))+

]
. (1.1)

If we are able to predict an optimal exercise boundary like b∗(t) (see figure

1.1), 0 ≤ t ≤ T , then

τ ∗ = inf {t ≥ 0 : S(t) ≤ b∗(t)} , (1.2)

can give the supremum we are looking for, in (1.1).

Figure 1.1: The optimal exercise boundary and a stock price trajectory and its
corresponding τ ∗, the first time it goes below b∗

The way of writing (1.1) and (1.2) and the fact that we used (K − S(t))+ as

payoff instead of simply using (K − S(t)) gives us the idea that if τ ∗ be equal to

T , the option expires worthless.
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1.3.1 Recursive Based Methods

Monte Carlo methods use time discretization for pricing American put options.

So in fact they consider that exercising the option is possible only on a finite

number of times. These kind of options are called Bermudan. So we actually are

discussing Monte Carlo methods for Bermudan put options.

We divide the whole time interval (from 0 to T ) into n equal intervals, resulting

in different time values t0 = 0, t1, · · · , tn = T . We denote the discount factor from

time ti−1 to time ti, by Di−1,i
[3]. As we already considered two different cases,

this value is equal to exp (−r∆t) in constant interest rate case where ∆t = T
n

and

is equal to exp
(
−
∫ ti
ti−1

r(u)du
)

when the interest rate is variable.

Instead of writing S(ti) we simply write Si. If we did not exercise the option

by time ti, denote the value of option at time ti by Ṽi(s), given Si = s. So we are

actually interested in Ṽ0(S0).

Ṽi’s are determined recursively by [3]

Ṽn(s) = h̃n(s) (1.3)

Ṽi−1(s) = max
{
h̃i−1(s),E

[
Di−1,iṼi(Si) | Si−1 = s

]}
(1.4)

We can simplify (1.3) and (1.4) by removing the discount factor and get the

following equations

Vn(s) = hn(s) (1.5)

Vi−1(s) = max {hi−1(s),E [Vi(Si) | Si−1 = s]} (1.6)

It also contains the problem defined by (1.3) and (1.4) as a special case. The

problem defined by (1.5) and (1.6) is actually the general form of the problem

defined by (1.3) and (1.4).

Indeed if we put

hi(s) = D0,ih̃i(s) for i = 1, 2, ..., n

and

Vi(s) = D0,iṼi(s) for i = 0, 1, ..., n,
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equation (1.5) will change to

D0,nṼn(s) = D0,nh̃n(s), (1.7)

and equation (1.6) will change to

D0,i−1Ṽi−1(s) = max
{
D0,i−1h̃i−1(x),E

[
D0,iṼi(Si) | Si−1 = s

]}
(1.8)

where with dividing (1.7) sides by D0,n and (1.8) sides by D0,i−1 we will get (1.3)

and (1.4).

In theory, using (1.5) and (1.6) is slightly simpler than using (1.3) and (1.4)

because it does not have a discount factor to worry about. But in practice it

is usually easier to use (1.3) and (1.4) because we only have to multiply the

expectation by discount factor and there is no need to define new hi’s as below.

In implementations in Appendices, (1.3) and (1.4) are used.

Most of Monte Carlo methods, including Least Squares Methods (which will

be discussed later), try to price the American options based on dynamics defined

in (1.5) and (1.6).

An exact method (no exact method exists by now!) will solve the dynamic

programming problem defined by (1.3) and (1.4) or by (1.5) and (1.6) and get

the true value of option, V0(S). But as it is not easy to determine the true value

of expectation in (1.4) or (1.6), Monte Carlo methods just try to approximate it

and thus estimate the true value which we will denote by V̂i(s).

1.4 Continuation and Stopping Regions

Still there exists no algorithm to compute the optimal stopping time. If we were

able to have the exact optimal stopping time, one good Monte Carlo Method for

pricing a Bermudan option would be as below.

We simulate stock price trajectories n times. For each of them we simulate

it until it hits the optimal stopping curve, and then we discount the payoff to

the starting time, 0. If a trajectory had not been exercised until the maturity

time, T , then the option expires worthless (cause the optimal stopping time at
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maturity is equal to K).

By getting an average of all of the values that we got, we will have an esti-

mation of the price of the option.

But unfortunately this is not possible as we do not have access to the exact

optimal stopping time (except in a few special cases of some option, but not for

the American put option which is our main interest)! At this point, one can use

different algorithms for pricing the option in two ways. One way is just to focus

the on option value, according to (1.5) and (1.6). Another way is to solve the

problem using an estimated optimal stopping time, which gives the stopping rules

and exercising regions.

1.4.1 Stopping Rules

Any stopping time τ results in a value

V
(τ)
0 (S0) = E[hτ (Sτ )]

[3].

On the other hands, if we assign any arbitrary values, V̂i(s), to the option

on each of the time states (with the condition that V̂n = hn), for a new price

trajectory, we can make a stopping rule τ̂ as

τ̂ = min
{
i ∈ {1, · · · , n} : hi(Si) ≥ V̂i(Si)

}
. (1.9)

So according to above, stopping regions, for every i, 1 ≤ i ≤ n, is{
s : hi(s) ≥ V̂i(s)

}
.

This means that for every exercise date, ti, we exercise the option if the stock

has a value s, which satisfies the above equation. The continuation region is the

completion of above region, namely{
s : hi(s) < V̂i(s)

}
.

Literally saying, we exercise the option when the payoff from exercising, hi(s)

is higher than what we expect to gain if we continue (stopping region) and vice
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versa (continuation region).

1.4.2 Continuation Values

The continuation values are the values of holding the option rather than exercising

it [3]. We denote these values by Ci(s)s. Because of the Markov property of price

trajectory, it can be understood that

Ci(s) = E [Vi+1(Si+1) | Si = s] ,

for i = 0, · · · , n− 1.

We know that if we do not exercise the option, it expires worthless, so indeed

we have Cn(Sn) = 0.

On the other hand if we put Cn = 0, we then will be able to define Ci’s for

i’s less than n recursively as below

Ci(s) = E [max {hi+1(Si+1), Ci+1(Si+1) | Si = s}] .

Like stopping rules, that they could be determined by any values for V̂i’s

and also conversely it was possible to compute V̂i’s by any arbitrary stopping

rules; here we can also compute Vi’s at any time ti, i = 1, · · · , n, by having the

continuation values, Ci’s,

Vi(s) = max {hi(s), Ci(s)} . (1.10)

There is a close relation with continuation values and stopping rules too. If

we have approximations for Ci’s, namely Ĉi’s, then we can get approximations

for stopping rules, τ̂ ,

τ̂ = min
{
i ∈ {1, · · · , n} : hi(Si) ≥ Ĉi(Si)

}
. (1.11)

(1.9) and (1.11) are the same if we approximate for Vi’s by approximations

of Ci’s according to the formula (1.10). More precisely we approximate Vi’s by

V̂i(s) = max
{
hi(s), Ĉi(s)

}
.
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1.5 Approximations

A perfect pricing of American options needs solving the problem determined by

(1.5) and (1.6). But we can also try to solve it in a parametric class which reduces

it to a finite dimensional optimization problem [3]. This parametric class can be

defined on either the exercise region or stopping rules, as we have already seen

that they are actually equivalent.

Even a rough (and not so much close to exact) approximation of the exercise

boundary results in a good approximation of the value of the option [3]. The

reason for this is that the option value is continuously differentiable across the

boundary and therefore is not much sensitive to exact estimation of exercising

boundary.

The idea suggests that first we specify a parametric class for example stopping

rules. The expectation of value approximated with any stopping rule from the

parametric class, V θ
0 , is biased low, meaning that V θ

0 is less than or equal to the

true value, V0, where usually strict inequality happens (because intuitively, the

perfect stopping rule is not in our parametric class of stopping rules).

Now, we replicate the portfolio price trajectory n1 times. We choose the

stopping rule in the parametric class that produces the highest average value of

all of these n1 portfolios. This new average value, V̂ θ̂
0 , is biased high relative to

V θ
0 . The high bias in V̂ θ̂

0 relative to V θ
0 , may offset the low bias in V θ

0 relative

to V0; but we can not be sure of it. For solving this issue, one way is doing as

follows.

We replicate the portfolio price trajectory n2 times. For these new n2 price

trajectories, we get the average value obtained by the stopping rule θ̂. Since these

new trajectories are independent of those that determined the stopping rule θ̂,

then it is actually biased low relation to the true value, V0.

A more general strategy of this instance has been used by Broadie and Glasser-

man for separating sources of high and low bias [2].
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1.6 Different Kind of Methods

Before describing different kinds of methods, we discuss more about how can

we properly use high and low biased estimations to get an interval containing

the true value. If these two estimations converge to the true value then we can

actually have a interval containing the true value with some certain probability

and also as small as wanted.

Suppose that we have two respectively high and low biased estimators, V̂n

and v̂n
1, relative to true value, V0, based on n true independent replications [3],

meaning that

E[V̂n] ≥ V0 ≥ E[v̂n].

Then suppose that for a specific n, we have Hn where(
V̂n −Hn, V̂n +Hn

)
is a 95% confidence interval for E[V̂n]2. Also suppose that for this n and some

Ln,

(v̂n − Ln, v̂n + Ln) ,

is the confidence interval for E[v̂n].

Now (
v̂n − Ln, V̂n +Hn

)
,

is a very interesting interval. In the sense that the true value that we are seeking

for, V0, is in this interval with probability at least 90% (and even if the estimators,

V̂n and v̂n, be symmetric around their mean, then this probability is at least 95%).

It shows that how we can make a confidence interval for the true value by

having two biased (one high and one low) estimators. Also if the estimators

converge to the true value as n→∞, then the length of the last interval shrinks

to zero as n → ∞ (because we can have as small Hn and Ln as we want by

increasing n).

Using this idea, we can make desirable confidence intervals by using different

1Parameter n can consist of several different independent parameters, but for simplicity we
wrote only a single parameter here.

2The value is in the interval with 95% probability.
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(high and low) biased estimators. It means that by using them we can almost

have the advantages of having an unbiased estimator!

The following sections we discuss briefly different kinds of methods and then

we give an example of each of random tree, regression-based and stochastic mesh

methods respectively in Chapters 2, 3 and 5.

1.6.1 Random Tree Methods

These methods try to estimate the value based on some generated random trees

(in which the tree has the height equal to for example n and each internal nodes

have b ≥ 2 children) as shown in 1.2.

Figure 1.2: A sample of a random tree with height n where each node has either
0 (leaf) or b children

Note that the word random refers to random numbers (labels) that each node

has, and not the structure on the tree.
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Regularly for simulating a random trajectory of strike price from time 0 to

maturity time, first we divide the time interval and by starting from the stock

price at time 0, we randomly (according to the dynamics of the underlying asset’s

price) determine the stock price at next time step and we continue in this manner

until maturity time (we describe it in more details later1) but here, we start from

the root of the tree, labeling it with the initial stock price, S0. Then we simulate

the next stock price according to initial price independently b times, calling them

S1
1 , S

2
1 , ..., S

b
1, and we use them to label children of the root. From each of Si1’s we

simulate new stock price according to their parent’s stock price. So for example

Si11 , S
i2
1 , ..., S

ib
1 will be simulated based on Si1 independently and they will be used

to label children of the node with label Si1. We continue until we reach leaves in

the tree (after n steps). So labels of leaves will be like Si1i2···inn (1 ≤ ij ≤ b for all

1 ≤ j ≤ n).

The result of this process will be a random tree in which each of the paths

from the root to any arbitrary leaves will be a Markov Chain of stock price

from time 0 to time of maturity (the equivalent simulated random price trajec-

tories in other methods). Each of these paths are consisting of nodes with labels

S0, S
i1
1 , S

i1i2
2 , ..., Si1i2···inn .

This tree will be the data we use to estimate the true value of the option. The

sample method [2] that we will explain in Chapter 2, works backward from leaves

to root trying to estimate the desired value. In that method they (authors) start

from maturity time. For each of the leaves the value of the option will be the

(discounted) value of payoff by exercising (according to 1.5). Moving backwards,

with the values computed in those leaves that have the same parent the value

of the option at the parent nod according to (1.6) will be approximated. So the

value of each leaf with label Si1i2···inn will be equal to (K − Si1i2···inn )+. Then for

computing the value of option in nod with label Si1i2···in−1
n we use the values of

option at nodes Si1i2···in−11
n , Si1i2···in−12

n , · · · and Si1i2···in−1b
n . These values will be

used to compute the (discounted) continuation value of option at nod Si1i2···in−1
n .

Then we simply make the comparison in (1.6) and decide whether to exercise

or continue. The process on using those children nod values to approximate the

continuation value for the parent nod is essential. By different processes we can

1In fact in this way we will have a Markov Chain of the stock price at different time steps.
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get different estimators.

Broadie and Glasserman after describing the algorithm of generating the ran-

dom tree, have suggested two slightly different processes for the part of approx-

imating the continuation values which use the same generated random tree and

result in a high and a low biased estimator of the option value (they also prove

that those estimators are converging to the true option value as n→∞.

The disadvantage of this method is that the computational time of generating

the random tree is increasing exponentially by increasing n so it is good and prac-

tically possible to use when n is relatively small. About the memory requirement,

although at first it may seem that the required size of memory for this method

is exponentially growing relative to n, but it can be easily proved that we only

need to save at most nb+ 1 stock price at each time of running the algorithm to

estimate the value (though we would not have the whole tree in the end for sure).

1.6.2 Regression-Based Methods

In this kind of methods, at first m price trajectories are being simulated and

then approximating continuation values is done by making a linear combination

of current state known functions (for example the stock price and square stock

price of current state) and uses regression to find the best coefficients of them.

These methods are trying to solve the problem of finding the true value of

option by solving (or actually just approximating the answers of) (1.5) and (1.6).

So in these methods we again put the value of option at the final states (states

in maturity time) equal to the payoff of exercising (according to (1.5)). It means

that we put V̂n(Snj) = hn(Snj) for each j = 1, 2, ...,m (we divided the time

interval into n time steps and simulated the price trajectory m times).

After the initial step, we move backward, trying to approximate the value at

states Sij according to (1.6). Suppose that currently we are in state ij, having the

stock price of Sij. It means that by now we approximated the value of the option

in all states i′j′ where i′ = i+ 1, i+ 2, ..., n and j′ = 1, 2, ...,m. Now suppose that

we have known functions ψij1 , ψ
ij
2 , ..., ψ

ij
k of current states. There may exist some

true values of β1, β2, ..., βk so that the exact continuation value, Ci(Sij), is equal

13



to
k∑
r=1

βrψ
ij
r ,

but also we may be able to get some approximated values of them by regression,

like β̂1, β̂2, ..., β̂k resulting in an approximation of continuation value at current

state as

Ĉi(Sij) =
k∑
r=1

β̂rψ
ij
r .

Then according to (1.6) we put

V̂i(Sij) = max
{
hi(Sij), Ĉi(Sij)

}
. (1.12)

In the end we can approximate the true value as

V̂0 =
V̂1(S11) + V̂1(S12) + ...+ V̂1(S1m)

m
.

The process described above is the general approach in regression-based meth-

ods. Differences between different regression-based methods usually come from

the way the regression is being done. In the regression-based method that we dis-

cuss later in Chapter 3, Longstaff and Schwartz use a slightly different approach

to estimate the values. Instead of (1.12) they do it as below [3]

V̂i(Sij) =

{
hi(Sij) hi(Sij) ≥ Ĉi((Sij)

V̂i+1(Si+1,j) hi(Sij) < Ĉi(Sij)
(1.13)

The only difference between (1.12) and (1.13) is when hi(Sij) is less than

Ĉi(Sij). Also in each step, they take the regression only on the options that are

in the money. Their method will be discussed more later.

1.6.3 Stochastic Mesh Methods

In these methods the trajectories simulation are like what is being done in

regression-based methods and approximating continuation values are somehow

like random tree methods.
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(a) m price trajectories

(b) Interactions between different states

Figure 1.3: Simulating and approximating continuation values process diagram
in stochastic mesh methods

In Figure 1.3 the simulations and approximation process is shown with two

diagrams. In Figure 1.3a the way of trajectories simulation is shown. It shows

that each trajectory is actually a Markov chain in which states are only depen-

dent on their previous states in the same trajectory. So states from different

trajectories, or from states more than one states after or before a state, are inde-

pendent. Figure 1.3b shows which states help us to approximate the continuation

values of any arbitrary state (in each states, continuation value approximation is

dependent on those states that has a line to it and are in the next step).

In random tree methods, the process of approximating continuation values of

a state is done according to states in next step which are only successors of it.

But in stochastic mesh methods all the states in the next step are interfering.

The general approach in stochastic mesh methods is as follows.

The option value in final step states are computed as (1.5): V̂n(Snj) = hn(Snj)

for j = 1, 2, ...,m where in an American put option they are equal to (K −
Snj)

+. Recursively, for previous steps consider that we want to approximate
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the continuation value in a state (i, j) with price Sij. The diagram in Figure

1.3b shows that it can be dependent on option values in states (i + 1, 1), (i +

1, 2), ..., (i+ 1,m) (it actually can be dependent on all of them or just a number

of them). Now if we define some kind of weight function on those option values

and we define the approximation as (1.14), then we actually have a stochastic

mesh method. In general, this weight function can be like a function as W k
ij,

where i = 1, 2, ..., n− 1 and j, k = 1, 2, ...,m. For a specific i, j and k, W k
ij is the

weight on the line between states (i, j) and (i+ 1, k).

Ĉi(Sij) =

∑m
r=1W

r
ijV̂i+1(Si+1,r)

m
. (1.14)

According to (1.6), it means that in these methods, the option value approx-

imation will be

V̂i(Sij) = max

{
hi(Sij),

∑m
r=1W

r
ijV̂i+1(Si+1,r)

m

}

for i = 1, 2, ..., n− 1 and j = 1, 2, ...,m.

Let us define the mesh estimator as

V̂0 =

∑m
j=1 V̂1(S1j)

m
.

With this definition it is easy to see that the method which will be discussed

in Chapter 5 is indeed a stochastic mesh method. In that method, the weight

function is actually simply equal to 1 for all states in next step who has a successor

in current step that has a price close to current state’s stock price and 0 for all

other steps.

Glasserman describes a detailed construction of a weight function [3] which is

not going to be discussed here, but he also states three initial conditions on the

mesh construction and weight functions which will be explained below. He then

proves that if a mesh estimator satisfies those three conditions is indeed biased

high.
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Before stating the conditions, let

Si = (Si1, Si2, ..., Sim),

which denotes the mesh state at step i. Put S0 = S.

We assumed that each of those simulated trajectories in Figure 1.3a are ac-

tually a Markov chain. The first condition states that it has to be the case as

follows.

M1: {S0,S1, ...,Si−1} and {Si+1,Si+2, ...,Sn} are independent given Si for i =

1, 2, ..., n.

M2: W k
ij is a deterministic function of Si and Si+1 for i = 1, 2, ..., n − 1 and

j, k = 1, 2, ...,m.

(M2) says that each value of weight function should be dependent to at most

states in the current step or the next step.

M3: We have

Ci(Sij) =

∑m
r=1 E

[
W r
ijV̂i+1(Si+1,r) | Si

]
m

,

for i = 1, 2, ..., n− 1 and j = 1, 2, ...,m.

Having (M3) means that in any arbitrary state in steps 1, 2, ..., n − 1, if we

have the true option values in states at next step, then our expectation from the

approximated continuation value in current state is the true continuation value.

Broadie and Glasserman [5] prove that the mesh estimator V̂0 is converging

when S1,S2, ...,Sn are independent of each other, Si1, Si2, ... are i.i.d. for each i,

and each weight W k
ij is a function only of Sij and Si+1,k.

Also for the error in the mesh estimator, Avramidis and Matzinger [1] derived

a probabilistic upper bound for a type of dependence structure that fits within

conditions (M1) and (M2). Then using this bound they prove convergence as

m→∞.
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Chapter 2

A Random Tree Method

Broadie and Glasserman in their paper [2] present a random tree method with an

example in pricing a American call option. It will be described here, and it will

be implemented and used to price an American put option.

2.1 Approach

The approach to simulate and generate the random tree is as explained in section

1.6.1. Note that when it says that the tree has height n, it means that we are

actually dividing the time interval into n steps.

Suppose that we generated the random tree. The way of processing this

random tree can result into high or low biased estimators for the option value.

2.1.1 High Estimator

We start from the last step, at maturity time. By (1.5), we put the value of

the option at that time equal to the payoff by exercising. Moving backwards,

to approximate the continuation value for each state, we compute the average

of value of next step states who are successors of current state. In the sense

that if we are in a state (i; j1, j2, · · · , ji) with price Sj1j2···jii trying to approximate
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Ci(S
j1j2···ji
i ), i < n, we put

Ĉi(S
j1j2···ji
i ) =

1

b

b∑
j=1

V̂i+1(S
j1j2···jij
i+1 )

So according to (1.6) we put

V̂i(S
j1j2···ji
i ) = max

{
hi(S

j1j2···ji
i ), Ĉi(S

j1j2···ji
i )

}
This is a simple approach to obtain a high estimator. An example is shown

in Figure 2.1.

Figure 2.1: The process on the random tree to get a high estimator for a put
option with stock and strike price equal to 50 (discount factor considered to be
1). In each state, labels are stock price and estimated option value (in bracket)

It is easy to prove by induction that this high estimator is indeed biased high

in relative to the true option value.

We want to prove that

E
[
V̂i(S

j1j2···ji
i )

]
≥ Vi(S

j1j2···ji
i ).

The induction base would be when i = n, where actually for all s, V̂n(s) =
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hn(s) = Vn(s). Now we show that if above inequality holds for i+ 1 it also holds

for i.

E
[
V̂i(S

j1j2···ji
i )

]
= E

[
max

{
hi(S

j1j2···ji
i ), Ĉi(S

j1j2···ji
i )

}]
≥ max

{
hi(S

j1j2···ji
i ),E

[
Ĉi(S

j1j2···ji
i )

]}
= max

{
hi(S

j1j2···ji
i ),E

[
1

b

b∑
j=1

V̂i+1(S
j1j2···jij
i+1 ) | Sj1j2···jii

]}
= max

{
hi(S

j1j2···ji
i ),E

[
V̂i+1(S

j1j2···jij
i+1 ) | Sj1j2···jii

]}
≥ max

{
hi(S

j1j2···ji
i ),E

[
Vi+1(S

j1j2···jij
i+1 ) | Sj1j2···jii

]}
= Vi(S

j1j2···ji
i )

The first inequality comes from Jensen’s inequality.

With a similar induction it is possible to prove that this high estimator does

converge in probability (and in norm) as b→∞ to the true value [3].

2.1.2 Low Biased Estimator

Suppose that we want to calculate

max{h,E[c]}

Now suppose that we replicate c, b times. The fact that

E[max{h, c̄}] ≥ max{h,E[c̄]} = max{h,E[c]}

produced the high bias in previous high estimator. There, we actually should

have calculated the maximum between the payoff of exercising and the expected

continuation payoff, and instead we calculated the maximum between the payoff

of exercising and the average continuation values of b replications. So if we are

able to remove this bias, we can probably get an unbiased estimator, or maybe
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an estimator that is biased low. There are several ways to do that and one of

them is as follows.

To keep it simple let us explain it on the previous example. Partition b

replicates of c into two disjoint groups and call their sample means c̄1 and c̄2.

Instead of directly calculating

v = max{h,E[c]},

let us calculate

v̂ =

{
h, if h ≥ c̄1;

c̄2, otherwise.
(2.1)

The way of calculating v̄ in our problem is that for calculating the value of the

option in an arbitrary state, like (i; j1, j2, ..., ji), we use some of its successors, for

example states (i + 1; j1, j2, ..., ji, 1), (i + 1; j1, j2, ..., ji, 2), ...(i + 1; j1, j2, ..., ji, j)

and calculate the mean of their option values for c̄1 and use the others, (i +

1; j1, j2, ..., ji, j + 1), (i+ 1; j1, j2, ..., ji, j + 2), ...(i+ 1; j1, j2, ..., ji, b) for c̄2. Then

we make the comparison between hi(S
j1j2···ji
i ) and c̄1. If hi(S

j1j2···ji
i ) was greater we

exercise and put the estimated value equal to it and if not, we put the estimated

value equal to c̄2.

Now we prove that v̂, defined in (2.1) is indeed biased low:

E[v̂] = P (c̄1 ≤ h) · h+ (1− P (c̄1 ≤ h)) · E[c] ≤ max{h,E[c]}.

The way of partitioning replications into two disjoint subsets can result in

different estimators, which of course all of the are biased low. A simple example

is that we use the first replication for calculating c̄1 and the rest for calculating

c̄2. A sample of this process is shown in Figure 2.2 where actually for calculating

c̄1 we used the first replication and used the others for calculating c̄2.

Broadie and Glasserman in their paper [2] suggested a way as below.

They calculated b different c̄1 and c̄2’s as follows. For calculating c̄i1 they

got the sample mean of the option values at all of the replications except the

i-th replication and for c̄i2 they put it equal to the value of the option at the

i-th replication. It means that they calculated b different v̂j1j2···jiik ’s as below
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Figure 2.2: The process on the random tree to get a low estimator for a put
option with stock and strike price equal to 50 (discount factor considered to be
1). In each state, labels are stock price and estimated option value (in bracket)

(k = 1, 2, ..., b):

v̂j1j2···jiik =

{
hi(S

j1j2···ji
i ), if hi(S

j1j2···ji
i ) ≥ 1

b−1
∑b

j=1,j 6=k v̂
j1j2···jij
i+1 ;

v̂j1j2···jiki+1 , otherwise.

Then they set

v̂j1j2···jii =
1

b

b∑
k=1

v̂j1j2···jiik .

They also provided a proof for the convergence in their paper [2].

Now, with these two estimators, if we form a 95% confidence interval for each

of them, then we can use them to form a 90% confidence interval for the true

value of the option.

2.2 Memory Requirement

As it was already stated, this method is not very efficient in practice. With

increasing n, the computational time increases exponentially. We can do the im-
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plementation in a way that we would not need an exponentially-growing memory

requirement though.

Broadie and Glasserman described a detailed process how to not be obliged

to save the whole tree. But also a more brief description is possible as follows.

Suppose that we implement the method as a function to solve the problem re-

cursively. When we execute the program, we actually run the function in which

we only do the replication part and then call the same function again for each

of the replications. When we know that no more replications are needed, we do

not call the function again and we just return the payoff of exercising (it means

that we are in a last step state). In this way, even if we save all the b states in

each function, the function is called at most n times in a row (until it reaches the

maturity time). So with considering the single starting state, we need to save at

most an order of nb+ 1 states.

2.3 Results

The results of this method are not considerable in comparison to other methods

that we are going to discuss in following chapters. Even with a computational

time around 30 seconds, the variance of the estimated values (for the same options

that other methods estimated the value of them) is very high and usually the

estimated values by this method are 10% blow or above the value computed by

finite difference method.

This method has been implemented in MATLAB as like other methods and

its implementation can be seen in appendix A.1.
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Chapter 3

The Least-Squares Method

In this chapter Least-Squares Method or LSM suggested by Longstaff and Schwartz [4]

will be discussed. This method is based on using regression to approximate the

continuation values.

3.1 Approach

The approach is simple as follows. First divide the time interval to different time

steps, t0 = 0, t1, · · · , tN = T . Simulate M (with M more antithetic trajectories)

and compute the payoff at maturity time for each trajectory, (K − siN)+ (siN
is the stock value in maturity time for the i-th trajectory). Going backward

from maturity time, at each time step, regress the discounted continuation value

according to the stock price at current time. The regression is done only by the

values of in the money trajectories. This regression give a conditional expectation

which can be used to see whether to decide to exercise or continue. This process

should be done until the first time step after t0 = 0. Also note that at each

step, the discounted continuation value is the discounted value of the payoff from

exercising at the earliest time after the current time step that we decided to

exercise the option.

This approach can be explained by a simple example (regression basis function

can be chosen arbitrarily, though some of them are better to get more accurate

results but for simplicity in this example regression is based on a constant, X
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and X2).

Suppose we have S = 2, K = 2.5, M = 10 trajectories, T = 3, N = 3 and

r = 0.06. Also the simulated trajectories are as shown in Table 3.1.

Table 3.1: Stock price of 10 simulated trajectories

# t0 = 0 t1 = 1 t2 = 2 t3 = 3
1 2.0000 1.0594 1.0633 1.5612
2 2.0000 1.7688 2.4863 2.6489
3 2.0000 1.9848 3.2129 3.4922
4 2.0000 2.5316 2.2920 1.7711
5 2.0000 2.5659 2.0577 3.3024
6 2.0000 3.5971 6.7394 5.6394
7 2.0000 1.9184 1.6326 1.6076
8 2.0000 2.9906 2.5891 3.9831
9 2.0000 1.6111 2.2270 2.6936
10 2.0000 1.8321 1.9369 2.7104

For the first step, the continuation value for trajectories number 1, 4 and 7 are

0.9388, 0.7289 and 0.8924 respectively and is equal to 0 for the other trajectories

(the other trajectories expire worthless).

In time t2 = 2, there are 7 in the money trajectories. For these trajectories,

we compute the discounted value of continuation. These discounted continuation

values, Y , and the stock price, X, are listed in Table 3.21.

With regressing Y according to a constant, X and X2 we get the conditional

expectation: E[Y|X] = 0.2693 × X2 − 1.5512 × X + 2.2956. With having these

conditional expectation, now we decide to exercise any of in the money trajectories

at time 2 or not. These values are shown in Table 3.3.

So by now the expected continuation value for time t1 = 1 is as written in

Table 3.4.

Note that continuation value for the second trajectory is 0 because although

the trajectory is in the money at time 2, we decided not to exercise and un-

fortunately we did not get anything at time 3, the maturity time, because the

1The discount coefficient from a time step to its left time step is e−0.06∗1 = 0.9418.
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Table 3.2: Discounted continuation value and stock price for in the money tra-
jectories at time t2 = 2

# X Y
1 1.0633 0.9388 × 0.9418
2 2.4863 0.0000 × 0.9418
4 2.2920 0.7289 × 0.9418
5 2.0577 0.0000 × 0.9418
7 1.6326 0.8924 × 0.9418
9 2.2270 0.0000 × 0.9418
10 1.9369 0.0000 × 0.9418

Table 3.3: The payoff of exercising and expected payoff of continuing for in the
money trajectories at time t2 = 2

# Exercising Continuing Decision
1 1.4367 0.9506 exercise
2 0.0137 0.1036 continue
4 0.2080 0.1550 exercise
5 0.4423 0.2440 exercise
7 0.8674 0.4809 exercise
9 0.2730 0.1767 exercise
10 0.5631 0.3014 exercise

trajectory was still not in the money. Actually we were expecting to get more

than the payoff by exercising but we were unlucky!

If we continue the above process for time 1, we get X and Y as shown in Table

3.5 for 6 in the money trajectories.

Again with regressing Y according to a constant, X and X2 we get the con-

ditional expectation: E[Y|X] = 2.2038 × X2 − 7.7261 × X + 7.0480. For each of

in the money trajectories at time t1 = 1, the payoff from exercising and expected

payoff of continuing is listed in Table 3.6.

So finally the continuation values for time t0 = 0 is as written in Table 3.7.

The final value is the discounted average of these values.

The value obtained by this process is 0.5121 and the stopping rule for these
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Table 3.4: The expected payoff of continuing at time 1 for all trajectories

# Continuation Value
1 1.4367
2 0.0000
3 0.0000
4 0.2080
5 0.4423
6 0.0000
7 0.8674
8 0.0000
9 0.2730
10 0.5631

Table 3.5: Discounted continuation value and stock price for in the money tra-
jectories at time t1 = 1

# X Y
1 1.0594 1.4367 × 0.9418
2 1.7688 0.0000 × 0.9418
3 1.9848 0.0000 × 0.9418
7 1.9184 0.8674 × 0.9418
9 1.6111 0.2730 × 0.9418
10 1.8321 0.5631 × 0.9418

Table 3.6: The payoff of exercising and expected payoff of continuing for in the
money trajectories at time t1 = 1

# Exercising Continuing Decision
1 1.4406 1.3364 exercise
2 0.7312 0.2770 exercise
3 0.5152 0.3949 exercise
7 0.5816 0.3368 exercise
9 0.8889 0.3208 exercise
10 0.6679 0.2903 exercise
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Table 3.7: The expected payoff of continuing at time 0 for all trajectories

# Continuation Value
1 1.4406
2 0.7312
3 0.5152
4 0.1959
5 0.4166
6 0.0000
7 0.5816
8 0.0000
9 0.8889
10 0.6679

trajectories are shown in Table 3.8.

Table 3.8: Stopping rule

# t1 = 1 t2 = 2 t3 = 3
1 1 0 0
2 1 0 0
3 1 0 0
4 0 1 0
5 0 1 0
6 0 0 0
7 1 0 0
8 0 0 0
9 1 0 0
10 1 0 0

This stopping rule is obtained by checking when was the last time (the most

close time to starting time t0 = 0) that each trajectory has been exercised. At last

step, we exercised trajectories 1, 2, 3, 7, 9 and 10 (see Table 3.6) and in the step

before the last step, we exercised trajectories 1, 4, 5, 7, 9 and 10 (see Table 3.3).

But we never exercised trajectories 6 and 8 (we even did not do the comparison

to see whether to exercise them or not any time, because they were always out
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of the money)1. The reason for that is easily understandable. With a perfect

stopping rule, even a trajectory that is in the money most of the times may not

be exercised ever until it does not go below the optimal stopping boundary. So

this case can happen with an approximated stopping rule too!

3.2 Basis Functions for Regression

The basis functions that we used for regression in above example were a constant,

X and X2, but in experiments these basis functions are not good enough to

approximate the conditional expectation. The paper [4], suggests different types

of basis functions such as (weighted) Laguerre, Hermite, Legendre, Chebyshev,

Gegenbauer and Jacobi polynomials.

For implementation, several different type of those functions were used. Nu-

merical tests showed that with the same number of basis functions from each type

of functions, one of the best of them to be used as basis functions are weighted

Laguerre polynomials.

3.2.1 Weighted Laguerre Polynomials

For implementation of this method, weighted Laguerre polynomials are used. The

n-th Laguerre function, denoted by Ln, is defined as below

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
,

and for getting weighted Laguerre polynomials we can multiply them by for

example e−
x
2 .

In paper it states that with a constant and first three weighted Laguerre

polynomials some sufficiently good results are obtained, but with using only the

three first weighted Laguerre polynomials, the obtained results were not very

accurate. This can be because of several reasons, like the probably different way

of simulating trajectories or maybe the built-in regress function of MATLAB

1Also note that we could have never decided to exercise the second trajectory if it was out
of the money at time t1 = 1, although it was in the money most of the times.
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that has been used to compute the regression. This function is for calculating

multiple linear regressions where the best results are achieved by having different

linearly independent observations. If instead of only three first polynomials we

use first eight polynomials, we can obtain a good accuracy.

The basis function that had been used in implementation are as below.

1

e−
x
2

e−
x
2 (−x+ 1)

e−
x
2

(
x2 − 4x+ 2

2

)
e−

x
2

(
−x3 + 9x2 − 18x+ 6

6

)
e−

x
2

(
xx4 − 16x3 + 72x2 − 96x+ 24

24

)
e−

x
2

(
−x5 + 25x4 − 200x3 + 600x2 − 600x+ 120

120

)
e−

x
2

(
x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x+ 720

720

)
e−

x
2

(
−x7 + 49x6 − 882x5 + 7350x4 − 29400x3 + 105840x2 − 35280x+ 5040

5040

)

3.3 Convergence

The authors did not provide any proof for the convergence of LSM, but they

proved that the approximated value is biased low relative to true value when the

number of trajectories goes to infinity (with a finite number of basis functions,

number of time steps and coefficients of basis functions obtained by regression).

The fact of being biased low relative to true value has a simple explanation:

The perfect stopping rule maximizes the option value obtained by infinite number

of truly random trajectories, while any other approximated stopping rule (which

is the case in LSM of course) ca not achieve that maximum.
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3.4 Results

The implemented LSM which can be seen in appendix A.2, has been tested for

20 different American put options. The results are presented in Table 3.91.

Table 3.9: Comparing results of Finite Difference Method and Least-Squares
Method. LSM is using 50000 simulated trajectories (plus 50000 antithetic tra-
jectories) and 50 time steps for each year. Option strike price, K, is 40 and risk
free interest rate is 0.06 in all cases.

S σ T FDM Values LSM Values Difference
36 .20 1 4.478 4.478 0.000
36 .20 2 4.840 4.858 -0.018
36 .40 1 7.101 7.087 -0.013
36 .40 2 8.508 8.456 0.052
38 .20 1 3.250 3.263 -0.013
38 .20 2 3.745 3.765 -0.020
38 .40 1 6.148 6.157 -0.009
38 .40 2 7.670 7.636 0.033
40 .20 1 2.314 2.317 -0.003
40 .20 2 2.885 2.883 0.001
40 .40 1 5.312 5.283 0.029
40 .40 2 6.920 6.899 0.021
42 .20 1 1.617 1.605 0.011
42 .20 2 2.212 2.216 -0.004
42 .40 1 4.582 4.600 -0.018
42 .40 2 6.248 6.232 0.015
44 .20 1 1.110 1.118 -0.008
44 .20 2 1.690 1.703 -0.013
44 .40 1 3.948 3.972 -0.024
44 .40 2 5.647 5.607 0.039

The Finite Difference Method Value (FDM Value) column in the table is taken

from the paper [4]. According to it, the FDM used to obtain those results were

1Note that the results are computed with more than 3 precision digits, but are written with
only their first 3 precision digits. Also the difference is shown with only 3 precision digits, so
the positive differences may look like that they are 0.001 unit less than the true difference.
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from an implicit finite difference method with 40000 time steps for each year and

1000 price step for stock price.

Computational time varying from less than 1 second to less than 5 seconds.

The average computation time was around 2 seconds1.

1All of the methods in this thesis were tested on a computer with Intel Core 2 Duo, 2.53
GHz CPU.
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Chapter 4

Rogers’ Martingale Method

The method that we explain in this chapter is based on L. C. G. Rogers paper [6].

He suggests a method using martingales which gives a biased high estimator

relative to the true value. The approach is pretty similar to what has been

described in section 1.5 and is as follows.

4.1 Approach

The theoretical basis of the paper is the following theorem.

Theorem 4.1.1

V0 = inf
M∈H1

0

E

[
sup

0≤t≤T
(Zt −Mt)

]
where H1

0 is the space of martingales M for which sup0≤t≤T |Mt |∈ L1, and such

that M0 = 0. Also Zt is the discounted payoff of exercising the option at time t.

The proof of Theorem 4.1.1 is beyond the scope of this thesis.

Let us explain the idea in this method in more simple words. Suppose that

we have an arbitrary martingale, M∗
t , which vanishes at 0. Now if we simulate n

trajectories, and for each of the trajectories, like St, we calculate sup0≤t≤T (Zt −
M∗

t ) where Zt = (K − St)+, and then we get the average of all of them (so that

we estimate the expectation), then the value would be an upper bound for the

true value (as n→∞).
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So it suggests that we first find a (group of) suitable martingale(s), then

simulate a lot of trajectories and calculate the corresponding value, and then get

the average and that would be an (biased high) approximation of the true value.

Rogers suggests a single martingale for pricing an American put option which

also gives some good results. For each trajectory, the martingale is the discounted

value of the corresponding European put option, started at the first time that St

goes below the Strike price, K. It means that our martingale is as bellow.

Mt =

{
0 for t < γ

e−r(t−γ)BS(St, K, r, σ, T − t)− BS(K,K, r, σ, T − γ) for t ≥ γ

where γ is the first time that option goes in the money, St = S(t), and BS give

the Black-Scholes value of the European put option.

With using only one martingale we can not be sure that the approximation is

actually accurate, but the results show that it is reasonably accurate.

4.2 Optimizations

Clearly if M is a martingale which vanishes at 0, then also λ ·M is a martingale

which vanishes at 0.

So we can probably find a better λ than λ = 1 for martingale defined above.

We do as follows. We simulate a small number of trajectories (usually less than

1000) and will try to find a λ which minimizes E
[
sup0≤t≤T (Zt − λMt)

]
(of course

we are not able to find the true expectation, but we are just approximating it by

those few trajectories). Suppose that λ∗ is minimizing that expectation. Then

we put M∗ = λ∗ ·M , and simulate a large number of independent trajectories to

previous trajectories and approximate E
[
sup0≤t≤T (Zt −M∗

t )
]

according to them.

This value would still be biased high, but it should give a better approximation

of the true value.

Of course, in practice, for a simple American put option, λ∗ is usually very

close to 1 as also stated in the paper but with using it, it does optimize the final

approximated value.

The approach to do this optimization in the implementation is that first we
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decrease λ by a small value a couple of times and then until it seems that de-

creasing it makes the above expectation smaller, then we do the converse process.

In one of these direction we will eventually get enough close to λ∗ (intuitively,

decreasing/increasing smaller values result in better approximations of λ∗).

4.3 Results

The results with this method for the same 20 American put options as other

chapters is shown in Table 4.1.

As it can be seen, most of the differences are negative, showing that the

approximated value is actually an upper bound of the true value.

Computational time was varying from 4 to 30 seconds, averagely around 16

seconds.

The implementation of this method can be seen in appendix A.3.
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Table 4.1: Comparing results of Finite Difference Method and Rogers’ Method.
It is using 5000 final simulated trajectories and 300 simulated trajectories for
optimization and 50 time steps for each year. Option strike price, K, is 40 and
risk free interest rate is 0.06 in all cases.

Rogers’ Method
S σ T FDM Values Values Difference
36 .20 1 4.478 4.525 -0.047
36 .20 2 4.840 4.983 -0.143
36 .40 1 7.101 7.095 -0.006
36 .40 2 8.508 8.592 -0.084
38 .20 1 3.250 3.295 -0.045
38 .20 2 3.745 3.885 -0.140
38 .40 1 6.148 6.140 0.007
38 .40 2 7.670 7.729 -0.059
40 .20 1 2.314 2.364 -0.050
40 .20 2 2.885 2.986 -0.101
40 .40 1 5.312 5.314 -0.002
40 .40 2 6.920 6.989 -0.069
42 .20 1 1.617 1.642 -0.025
42 .20 2 2.212 2.287 -0.075
42 .40 1 4.582 4.575 0.006
42 .40 2 6.248 6.281 -0.033
44 .20 1 1.110 1.139 -0.029
44 .20 2 1.690 1.765 -0.075
44 .40 1 3.948 3.947 0.000
44 .40 2 5.647 5.670 -0.023
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Chapter 5

Interval-Based Expectation

Method

5.1 Approach

The first new method to be discussed is an Interval-Based Expectation method.

This method is one word and is trying to solve the problem determined by (1.5)

and (1.6) directly. A few optimization steps used to make some better results

which will be discussed later.

The whole approach is as follows. It uses time discretization and splits the in-

terval from time zero to maturity time toN different times, t0 = 0, t1, · · · , tN = T .

With simulating M trajectories (plus M antithetic trajectories) it tries to approx-

imate the value of option corresponding to each trajectory in each of time steps.

First it calculates the option value at maturity time which for each trajectory is

simply equal to payoff function (according to (1.5)), (K−sN)+ = max{K−sN , 0}.
By going backward from the maturity time, at each step it approximates the ex-

pected payoff of each trajectory at that step. For doing the comparison in (1.6)

two values should be computed: First the payoff at that time step and second

the corresponding expectation. The payoffs of each trajectory are determined

obviously. To determine the expectation, for each trajectory, algorithm gets an

average of values of all trajectories that pass through a small interval containing

that trajectory (see Figure 5.1) in previous step (one time step closer to maturity
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time). For choosing those trajectories that are being used for approximation,

algorithm starts from the main trajectory and search for the next trajectory that

passes through the interval and has the most close trajectory to main trajectory

in either direction. In the sense that if for example we had the value of 34.5 for

the stock at a time step in the main trajectory, algorithm gets the first trajectory

that has the value (equal to or) less than 34.5; after choosing that trajectories, it

continues to choose in this manner until a limited number of trajectories. It then

gets the trajectories with stock value (equal to or) greater than 34.5.

Figure 5.1: The main trajectory (bold) and other trajectories which pass through
the interval at time t

If we, by a chance, have sufficiently many trajectories passing through that

interval, then we hopefully can have a good approximation close enough to real

value.

After approximating that value, algorithm makes the comparison in (1.6),

seeing whether the payoff of immediate exercise is higher or the expected payoff

of continuing (which already had been approximated by nearby trajectories at

that point), deciding whether to exercise or continue. If it decided to exercise,

then put the value of payoff as corresponding option value at that time step

and if it decided to continue it puts the discounted approximated value. So the
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algorithm assumes that when going backward, it has well approximated the value

of option corresponded to each trajectory, in previous step.

5.2 Convergence

We can prove the convergence of the algorithm, when the number of trajectories

goes to infinity, using induction and law of large numbers. A sketch of proof

is as follows. Induction base is the maturity time where clearly the computed

value for each trajectory is exactly equal to value of the corresponding option

at that time. While going backward we can assume that we have computed the

exact values for each trajectory in previous time step (by induction). For current

time step, because of the infinite number of trajectories and the way algorithm

chooses them in the interval, we get infinite number of trajectories that for each

of them we already have the exact values of continuation and where also their

stock value is equal to the main trajectory stock value at that time. Because of

the assumption that we have the exact value of continuation of those trajectories,

when we get the average, we still have the exact value. And so at the time of

making the comparison we do not have any error.

This proves the convergence of the algorithm for a Bermudan put option.

So if maximum length of time steps goes to zero, the option will be in fact an

American put option (which is exercisable in every moment until maturity time).

5.3 Optimizations

5.3.1 Bias

It is not easy to see whether the result from this algorithm is biased high or

low relative to the true value. The bias happens because of various reasons. For

example it can happen because of probably not being able to simulate trajectories

based on a true randomness. It also can happen because of the finite number of

exercise date (which changes the option to Bermudan put option). Apart from

those two reasons, a bias can happen when we approximate the expectation with

finite number of trajectories.
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If we assume that we were looking for the price of the Bermudan put option

already and also that we can simulate the trajectories with a sufficiently (high)

accuracy, the last reason can be the main reason producing the bias. When

testing the algorithm, it has been seen that the number of decisions to exercise

(in 1.6) is less than the number of decisions to continue (around one tenth in many

experiments) which is of course understandable (because the expected average of

trajectories is a straight line with the slope equal to the risk free interest rate

and on the other hand, the optimal stopping boundary is well below the straight

horizontal line at K and so trajectories are usually above the optimal stopping

boundary in comparison being below of it which we would exercise the option).

So this bias (if be a large bias) can effect the result pretty much. This bias will be

high if the approximated expectation is usually bigger than the true expectation

and vice versa. In tests it has been seen the first is happening: The final value

is usually biased high relative to the true value. We can try to offset this bias in

many ways. One way is to increase the number of trajectories or the number of

time steps. But both of these ways, increase the computation time a lot.

5.3.2 Computational Time

Consider that we are approximating the expectation for a trajectory at a time

step. The number of trajectories close to the main trajectory (and in the interval)

can be unlimitedly large (in comparison to the number of all simulated trajecto-

ries) which leads to a big computational time. But in implementation a limit has

been defined, so that we do not get greater number of trajectories than a defined

limit (for example 250). Also to offset the mentioned bias we can set the limit of

number of trajectories with stock value below the main trajectory’s stock value

to be a bit less than the limit of number of trajectories with stock value above it

(for example 240 rather than 250). You can see that this way has been used in

the implementation of the algorithm in appendix A.4. And also with this limit

(250) the computational time in not much, usually less than 20 seconds.
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5.3.3 Simulating New Trajectories

What happens if the number of trajectories in a small interval around the main

trajectory at some time steps is too small? It can be said that the approximation

can lose its accuracy to some extent. For solving this issue one idea can be to

add some new independent trajectories, to increase the accuracy. This idea is

discussed in below.

5.3.3.1 Approach

Look at Figure 5.1. If we have many simulated trajectories, the chance of having

too few trajectories in that interval is low, but still it can happen in the extreme

trajectories (trajectories which are fluctuating very much). One may say that the

effect of value of these (probably) few trajectories in the final result is not that

much; but still it is not easily possible to estimate it. The good part is that in

put options, the final value of a trajectory is bounded. The estimated value of

each trajectory is at most K, which may happen if the stock price be close to 0 at

some points. The effect of these bad simulated trajectories could be much worse

if the estimated value could get arbitrarily large (like call options). But even in

put options, this effect can be big enough to make the final result not-accurate

and it would be better to control it in some ways.

The idea that was thought can be used to (probably!) increase the accuracy is

as follows. We set a limit, and whenever the number of trajectories in the interval

be less than this limit, we simulate some new independent trajectories from the

stock price at main trajectory until the maturity time and we compute the value

of option with these new parameters (S equal to stock price at that point, K is

the same, and T is the length of time interval between current time step to the

maturity time). For these new trajectories, we use the same method as discussed

in this chapter, but without any limit that we set in this new revised version. See

Figure 5.2.

This revision can arise several new questions. One is that, is it not better

to put a limit for the new trajectories too? How many exercise points should

be considered for the new simulated trajectories to achieve the best possible

approximation? How many new trajectories should be simulated? How big or
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Figure 5.2: The main trajectory (bold) and new simulated trajectories which
start from the current time until maturity with starting stock price equal to main
trajectory’s stock price

small can be the limit? Or is it good to have different limits for different number

of trajectories? And many more questions. Rather than theoretically, we can try

to guess the answers to these questions practically. For example, it has been seen

that in practice, reducing the number of simulated trajectories does not decrease

the computation time as expected, because the number of times that we need

to simulate new trajectories for approximating the expectation, is increased in

some cases. Or that increasing the number of exercise points in new simulated

trajectories does not necessarily increase the accuracy. Or increasing the number

of new simulated trajectories are not good enough in comparison to increase the

number of starting simulated trajectories. And several other observations that

has been achieved during testing this revised method.
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5.3.3.2 Convergence

In comparison to previous method, the new simulated trajectories are added. If

the number of starting trajectories goes to infinity, and if the limit of trajectories

in interval be larger than twice the limit introduced in this chapter (in which we

simulate new trajectories if the number of trajectories in interval be less than it),

then this revised part does not effect the method and convergency would be the

same as the original method. Also even if we do simulate new trajectories, but

still consider it to be infinitely many and with infinite number of exercise points,

it will actually again converge to the true value.

On the other hand, intuitively the convergence is easily understood when

the number of trajectories and time steps goes to infinity because of the law of

large numbers and the fact that algorithm base the approximations and results

according to exact values in each trajectory (not for example make a regression

like LSM or any other approximation functions).

5.3.3.3 Outcome

Unfortunately the results for this revised method are not good as expected. In

analyzing the result, several reasons had been found for this issue. The main

reason seems to be that in several cases the approximated continuation value

from new simulated trajectories are not accurate enough in compare to even

the approximation from those few (starting) trajectories. And in these many

cases, new simulated trajectories just decrease the accuracy. Of course this can

give a more accurate approximation if we increase the number of new simulated

trajectories, but it needs a lot of more computational time rather than just forget

these new simulated trajectories and increase the starting trajectories to increase

the accuracy!

5.4 Results

The computational time is dependent on the number of trajectories, number of

time steps, the length of interval, the limit of the number of trajectories in the

interval (and of course different ways of implementation). It depends on how our
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time constraint is. For example For a T = 2, r = 0.06, σ = 0.4 good results can

be obtained with 20000 trajectories (plus 20000 antithetic trajectories) and 100

time steps with around 30 seconds for computation time.

For reducing the computational time, we can do several things: We can reduce

the items mentioned above (which reduces the algorithm’s accuracy) or maybe

just skip doing the expectation approximations for options that are out of the

Table 5.1: Comparing results of Finite Difference Method and two versions of
Interval-Based Expectation method; first (#1) is with 20000 simulated trajec-
tories (plus 20000 antithetic trajectories), 100 time steps and skipping approx-
imations for out of the money options, second (#2) is with 15000 simulated
trajectories (plus 15000 antithetic trajectories), 100 time steps and approximat-
ing the expectation for all trajectories. Option strike price, K, is 40 and risk free
interest rate is 0.06 in all cases.

Interval-Based Interval-Based FDM and FDM and
S σ T FDM Expectation Expectation #1 Results #2 Results

Value Results #1 Results #2 Differences Differences

36 .20 1 4.478 4.519 4.511 -0.041 -0.033

36 .20 2 4.840 4.857 4.848 -0.017 -0.008

36 .40 1 7.101 7.074 7.109 0.026 -0.008

36 .40 2 8.508 8.490 8.538 0.018 -0.030

38 .20 1 3.250 3.239 3.225 0.011 0.024

38 .20 2 3.745 3.737 3.719 0.007 0.025

38 .40 1 6.148 6.148 6.152 0.000 -0.004

38 .40 2 7.670 7.674 7.695 -0.004 -0.025

40 .20 1 2.314 2.304 2.275 0.009 0.038

40 .20 2 2.885 2.876 2.858 0.008 0.026

40 .40 1 5.312 5.315 5.334 -0.003 -0.022

40 .40 2 6.920 6.917 6.947 0.003 -0.027

42 .20 1 1.617 1.605 1.597 0.011 0.020

42 .20 2 2.212 2.205 2.188 0.006 0.023

42 .40 1 4.582 4.572 4.587 0.009 -0.005

42 .40 2 6.248 6.241 6.262 0.007 -0.014

44 .20 1 1.110 1.100 1.083 0.009 0.026

44 .20 2 1.690 1.692 1.661 -0.002 0.028

44 .40 1 3.948 3.949 3.959 -0.001 -0.011

44 .40 2 5.647 5.643 5.681 0.003 -0.034
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money and simply put the discounted value of that option at next time step

(which seems to also reduce the accuracy). It will reduce the computational time

from around 30 seconds to around 15 seconds (this computational time is around

10 seconds when the starting stock price is bigger than the strike price). Without

skipping computing the expectation approximations and by just reducing the

number of trajectories to 15000, we get almost 20 seconds for the computational

time. With skipping the approximations or reducing the trajectories, we in fact

are decreasing the accuracy. But the accuracy in both cases is still good as shown

in Table 5.1.

For these tests, average computational time for results #1 was around 14

seconds. This average for results #2 were around 19 seconds. By knowing the

computational time and looking at the error columns (last two columns) in Table

5.1, we conclude that if we have a time constraint, it is better to have more sim-

ulated trajectories and just skip the computations for out of the money options

rather than keep computing them and reduce the number of simulated trajecto-

ries. Also in that case, if the beginning stock price be larger than the strike price,

we can have a very faster algorithm and also in general we will expect a higher

accuracy in compare to when we reduce the number of simulated trajectories.
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Chapter 6

Optimal Stopping Boundary

Estimation Method

In this chapter we try to estimate optimal stopping boundary. As stated before,

no solution had been found to the problem of optimal stopping boundary. Several

methods in pricing options try to just estimate it and then with the help of this

estimation they price the options. Although as already been said that the value of

option is not much sensitive to the exact knowledge of optimal stopping boundary,

for a very accurate price, we need an accurate stopping boundary for sure.

6.1 Approach

Suppose we have a new option, which is obtained from the equivalent European

put option plus the possibility of exercising at time 0. We call it a semi-European

put option. With Black-Scholes formula we can value an European put option,

but what about the new semi-European option?

By checking European put options values in Table 6.1 we see that from a point

(after increasing the maturity time), the option value goes below the absolute

value of difference between the stock and the strike price.

In Table 6.1, the first time that the option values goes below the absolute

value of difference between stock and strike price (equal to 4, in this case), is

with maturity time of 25. So what can we say about the value of semi-European
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Table 6.1: European put option values with different maturity time. The stock
price, strike price, risk free interest rate and volatility are 36, 40, 0.06 and 0.4
respectively.

T Option Value
5 8.3961
10 7.5608
15 6.2475
20 4.9883
25 3.9107

put option with the same parameters? At the time of 0, this value is not less than

the regular European option for sure. Because more than exercising at maturity,

in semi-European put option, we have the option to exercise at time 0. So for

a semi-European put option, we surely choose not to exercise in any one of first

four options in Table 6.1. That is because the value of European put option is

actually the expected payoff of continuing at time 0! So because the European

put option value is decreasing with increasing maturity time, we can obtain that

the value of the semi-European put option with the same parameters is as shown

in Table 6.2.

Table 6.2: Semi-European put option values with different maturity times. The
stock price, strike price, risk free interest rate and volatility are 36, 40, 0.06 and
0.4 respectively.

T Option Value
5 8.3961
10 7.5608
15 6.2475
20 4.9883
≥ 25 4.0000

So actually we can say that the value of semi-European put option is equal

to max{(K − S)+, value of equivalent European put option}.
Now coming back to American put option, it is obvious that their values are
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greater than or equal to value of their equivalent semi-European put options.

So for having a rough estimation of optimal stopping boundary of (Bermudan)

American put option, in each time step, we can search for the highest price for

which the value of semi-European put option starting at that position is equal to

(K − S).

Look at the Figure 6.1. It is understandable that to find this rough estimation,

the stock price, S, is not important. For any arbitrary stock price, but the

same strike price, risk free interest rate, volatility and maturity time, this rough

estimation is the same1.

Figure 6.1: A rough approximation of optimal stopping boundary, with 50 time
steps.

Now that we have this rough estimation, we may be able to optimize it in

some ways. A suggestion to do it, which has been also implemented, is as follows.

1According to this fact, we can use this rough estimation (and/or its optimized version)
for several groups of new independent trajectories. These boundaries are not dependent on
the stock price of American put options and neither on any new simulated trajectories to
exercise according to them and to obtain the price the option, and therefore we can for example
compute these boundaries with high accuracy once, save them and use them anytime later for
any American put options with the same strike price, maturity time, risk free interest rate and
volatility.
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We try to alter this boundary so that it give us a good estimation of the real

optimal stopping boundary depended on the finite number of time steps. The

value of this boundary at maturity time is K obviously. This value at time step

right before the maturity is, can be get better as what already we have estimated

it. Because the Bermudan put option which starts at this time step, is actually

a semi-European put option (we can either exercise at that point or decide to

continue and wait until the maturity time without any more options to exercise

before the maturity time). Now by going backward from the time step before

that time step (two time steps before maturity time), for each remaining time

steps, we do as this:

• We start from the stock price equal to minimum of the value obtained at

previous step and the value of the rough estimation at current time step.

– We simulate some new independent trajectories started at this time

step and at this stock price. According to previous time steps approx-

imations of optimal stopping boundary, we approximate the value of

an American put option (according to those new simulated trajecto-

ries) that starts at this time step with this stock price. The process

of approximating the value of option is that while we simulate the

new trajectories, we exercise them according to the optimal stopping

boundary that has been estimated until now (we already has the new

estimations of optimal stopping boundary in time steps towards ma-

turity time).

– We consider this new estimated value of option as the discounted con-

tinuation value. Now we see whether the payoff of immediate exercise

is higher or the expected payoff of continuing. If the expected pay-

off from continuing is higher, then we decrease the stock price (which

leads to increasing the payoff of immediate exercise) and do the whole

previous process again (We do it until we arrive at a stock price that if

we decrease the stock price further, the payoff from immediate exercise

be higher that continuation time. This means that we approximately

got the stock price on the real optimal stopping boundary).
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If we do as the algorithm above, we might end up getting an optimized version

of the rough estimation of optimal stopping time, as shown in Figure 6.21.

Figure 6.2: The optimized version (bold) of previous rough approximation of
optimal stopping boundary.

The rate of decreasing the stock price and then simulating new trajectories

from the new stock price, and also the number of new simulated trajectories are

some of the main parameters to achieve the desired accuracy of the new stopping

boundary.

We will discuss more about this in Optimization section.

6.2 Convergence

The proof of this method’s convergence is simple.

Suppose that the rate of decreasing stock price goes to zero and the number

of new simulated trajectories goes to infinity. Then in this case the stopping

boundary converges to the true optimal stopping boundary for the corresponding

Bermudan put option obviously. Now if we increase the time steps unlimitedly,

1Note that the figure is not starting exactly from the point 0 of vertical axis.
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this optimal stopping boundary will be the optimal stopping boundary an Amer-

ican put option.

On the other hand when we are going to use this optimal stopping boundary

to value the option, if we simulate infinitely many trajectories and exercise them

according to this optimal stopping boundary and then get the average, we will in

fact get the exact value of the option (law of large numbers).

So the method converges to the true value when the number of simulated

trajectories in both cases goes to infinity and also we decrease the stock price at

each step with ε→ 0.

6.3 Optimization

As also wrote in Convergence section, obviously simulating more trajectories and

also decreasing the rate of reducing stock price are helping to optimize the stop-

ping boundary. More than that, by increasing the number of time steps we can

optimize this boundary. But all of them will increase the computational time

a lot. So can we do something else if we want to keep the computational time

constant and increase the accuracy?

By any arbitrary parameters, because of the nature of Monte Carlo methods

we always get different results by running the method again. But one way is

using antithetic variates method to help reducing the variance. It will help a lot

optimizing the stopping boundary after roughly approximating it.

The most important part of where we can try to optimize the algorithm while

having the same computational time is when we are going to decrease the stock

price. Several ways had been checked to see whether they increase the accuracy

without necessarily increasing computational time and one of the best ways is as

below.

The way has been used, uses the idea that we do not have to always decrease

the stock price with a constant value. As can be seen in implementation in

Appendix A.5, we first reduced the price by for example 0.1, then we decrease

the price until we reach to the point that payoff is more than the approximated

continuation value. Then we increase it by 0.1, and this time start decreasing it

by 0.01 instead of 0.1. When we realize that we probably went below the optimal
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stopping boundary, we increase the price by 0.01 and do the process again with

0.001 this time. We can do it as many times as we want and with more steps,

we get more accuracy for sure (every time around a digit of precision, but not

exactly as that good of course, because the simulated trajectories are not perfect

neither and their number is limited too).

Also while we change the amount of decreasing the stock price we may try

to change the number of simulated trajectories too. But unfortunately this way

seems not to be useful practically.

6.4 Results

This method has been used to price the same options as previous tests and the

option prices obtained by this method are shown in Table 6.3.

Every parameter discussed in previous sections, obviously effect the computa-

tional speed. But in this method it has been tried to always have a computational

time almost less than 5 seconds. The average computational time is around 3

seconds.

Again, because this method tries to estimate optimal stopping boundary and

then uses this boundary to exercise some simulated trajectories and get the value

of the option, it is intuitively biased low relative to the true value. But practi-

cally it does not happen, as by looking at the results, most of the differences are

negative. This suggests that by increasing the simulated trajectories we can be

hopeful to converge to the true value with a good rate and that the difference

appeared on those results are coming mostly from the limited number of trajec-

tories and/or the not high accuracy of simulated trajectory (the randomness in

computer programs is not perfect anyway).

One of the good things about this method is that it does not need to store all

of the trajectories, so the number of trajectories can be increased unlimitedly, as

long as we do not mind about the computational time. So memory limitations

does not bound this method to achieve some certain accuracy.
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Table 6.3: Comparing results of Finite Difference Method and OSB Estimation
Method. It is using 200000 final simulated trajectories (plus 200000 antithetic
trajectories), 1000 simulated trajectories (plus 1000 antithetic trajectories) for
each round of reducing stock price and 50 time steps for each year. Option strike
price, K, is 40 and risk free interest rate is 0.06 in all cases.

OSB Estimation
S σ T FDM Values Values Difference
36 .20 1 4.478 4.476 0.001
36 .20 2 4.840 4.838 0.001
36 .40 1 7.101 7.111 -0.010
36 .40 2 8.508 8.522 -0.014
38 .20 1 3.250 3.253 -0.003
38 .20 2 3.745 3.752 -0.007
38 .40 1 6.148 6.150 -0.002
38 .40 2 7.670 7.683 -0.012
40 .20 1 2.314 2.313 0.001
40 .20 2 2.885 2.889 -0.004
40 .40 1 5.312 5.323 -0.011
40 .40 2 6.920 6.930 -0.010
42 .20 1 1.617 1.616 0.010
42 .20 2 2.212 2.211 0.000
42 .40 1 4.582 4.597 -0.015
42 .40 2 6.248 6.258 -0.010
44 .20 1 1.110 1.114 -0.004
44 .20 2 1.690 1.702 -0.012
44 .40 1 3.948 3.969 -0.021
44 .40 2 5.647 5.659 -0.012
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Chapter 7

Conclusions

Due to exponentially growing computational time of random tree method, it is

practically impossible to use it even for a simple American put option.

Let us compare the other four methods: LSM, RMM1, IBEM2 and OSBEM3.

Amongst them, IBEM and worst than that, RMM are slow. IBEM has an

advantage to RMM and that is we are sure about its convergence. But for RMM,

we can not be sure about the accuracy and even the convergence. More than that,

IBEM is giving very more accurate results with almost the same computational

time.

Both of the other two methods are pretty fast. Although the convergence of

LSM has not been proved completely by the authors, but it is reliable and seems

to converge. Also the results of it are enough accurate. Though the results of the

implemented version of LSM in this thesis are not as accurate as those in their

paper [4], they are still enough accurate to rely on. OSBEM, on the other hand,

is converging to the true value intuitively and also is almost as fast as LSM. The

results of it is more accurate than LSM too.

In general it can be said that if we are looking for a more faster method,

we can choose either LSM or OSBEM and if we are looking for a more accurate

method, we can choose between IBEM and OSBEM.

The best method amongst them for a simple American put option seems to

be OSBEM. It gives the most accurate results (the average absolute error is equal

1Rogers’ Martingale Method
2Interval-Based Expectation Method
3Optimal Stopping Boundary Estimation Method
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to almost 2% of the stock price) for 20 American put options that we have been

tested and also with a very small computational time.

For a quick comparison between LSM, RMM, IBEM and OSBEM take a look

at the Table 7.1.

Table 7.1: Comparison of computational time and accuracy between different
methods.

LSM RMM IBEM OSBEM
Average Absolute Error 0.017 0.051 0.009 0.008

Average Computational Time 2 16 14 3
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Appendix A

Matlab Implementations
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A.1 A Random Tree Method

1 function value = Random Tree Method (m, b , S , K, T, sigma ,

r , lh )

2

3 value = max(0 , K − S) ;

4

5 i f m == 0

6 return

7 end

8

9 dt = T / m;

10 v = zeros (b , 1) ;

11 dc = exp(−r ∗ dt ) ;

12

13 for i = 1 : b

14 dw = randn ∗ sqrt ( dt ) ;

15 s = S + r ∗ S ∗ dt + sigma ∗ S ∗ dw;

16 v ( i ) = Random Tree Method (m − 1 , b , s , K, T − dt ,

sigma , r , lh ) ;

17 end

18

19 i f lh == ’h ’

20 c = dc ∗ mean( v ) ;

21 value = max( value , c ) ;

22 e l s e i f lh == ’ l ’

23 vk = zeros (b , 1) ;

24 for i = 1 : b

25 c1 = (sum( v ) − v ( i ) ) / (b − 1) ;

26 c2 = v ( i ) ;

27 i f value > c1

28 vk ( i ) = value ;

29 else
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30 vk ( i ) = c2 ;

31 end

32 end

33 value = mean( vk ) ;

34 end
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A.2 Least-Squares Method

1 M = 50000; % Number o f t r a j e c t o r i e s

2 N = 50 ; % D i s c r e t i z a t i o n p o i n t s per u n i t o f matur i ty time

3 T = 1 ; % Maturi ty time

4 S = 40 ; % Stock p r i c e

5 K = 40 ; % S t r i k e p r i c e

6 sigma = . 4 ; % V o l a t i l i t y

7 r = . 0 6 ; % R i s k f r e e i n t e r e s t r a t e

8

9 dt = T / N;

10 s = zeros (2 ∗ M, N + 1) ;

11 s ( : , 1) = S ∗ ones (2 ∗ M, 1) ;

12 xy = zeros (2 ∗ M, 2) ;

13

14 for j = 1 : M

15 for i = 1 : N

16 dw = randn ∗ sqrt ( dt ) ;

17 s (2 ∗ j − 1 , i + 1) = s (2 ∗ j − 1 , i ) + r ∗ s (2 ∗
j − 1 , i ) ∗ dt + sigma ∗ s (2 ∗ j − 1 , i ) ∗ dw;

18 s (2 ∗ j , i + 1) = s (2 ∗ j , i ) + r ∗ s (2 ∗ j , i ) ∗
dt − sigma ∗ s (2 ∗ j , i ) ∗ dw;

19 end

20 s (2 ∗ j − 1 , N + 1) = max(0 , K − s (2 ∗ j − 1 , N + 1) ) ;

21 s (2 ∗ j , N + 1) = max(0 , K − s (2 ∗ j , N + 1) ) ;

22 end

23

24 t ic ;

25

26 cont = s ( : , N + 1) ;

27 d i scount = exp(−r ∗ dt ) ;

28

29 for i = N: −1: 2
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30 cont = di scount ∗ cont ;

31 p = 0 ;

32 for j = 1 : 2 ∗ M

33 i f K − s ( j , i ) > 0

34 p = p + 1 ;

35 xy (p , 1) = s ( j , i ) ;

36 xy (p , 2) = cont ( j ) ;

37 end

38 end

39

40 x = xy ( 1 : p , 1) ;

41 x2 = xy ( 1 : p , 1) . ˆ 2 ;

42 x3 = xy ( 1 : p , 1) . ˆ 3 ;

43 x4 = xy ( 1 : p , 1) . ˆ 4 ;

44 x5 = xy ( 1 : p , 1) . ˆ 5 ;

45 x6 = xy ( 1 : p , 1) . ˆ 6 ;

46 x7 = xy ( 1 : p , 1) . ˆ 7 ;

47 x8 = xy ( 1 : p , 1) . ˆ 8 ;

48

49 basreg = [ ones (p , 1) . . .

50 exp(−x / 2) . . .

51 exp(−x / 2) .∗ (1 − x ) . . .

52 exp(−x / 2) .∗ ( x2 − 4 ∗ x + 2) / 2 . . .

53 exp(−x / 2) .∗ (−x3 + 9 ∗ x2 − 18 ∗ x + 6) / 6 . . .

54 exp(−x / 2) .∗ ( x4 − 16 ∗ x3 + 72 ∗ x2 − 96 ∗ x +

24) / 24 . . .

55 exp(−x / 2) .∗ (−x5 + 25 ∗ x4 − 200 ∗ x3 + 600 ∗
x2 − 600 ∗ x + 120) / 120 . . .

56 exp(−x / 2) .∗ ( x6 − 36 ∗ x5 + 450 ∗ x4 − 2400 ∗
x3 + 5400 ∗ x2 − 4320 ∗ x + 720) / 720 . . .

57 exp(−x / 2) .∗ (−x7 + 49 ∗ x6 − 882 ∗ x5 + 7350 ∗
x4 − 29400 ∗ x3 + 105840 ∗ x2 − 35280 ∗ x +

5040) / 5 0 4 0 ] ;

61



58

59 reg = r e g r e s s ( xy ( 1 : p , 2) , basreg ) ;

60

61 expec = basreg ∗ reg ;

62 p = 0 ;

63 for j = 1 : 2 ∗ M

64 i f K − s ( j , i ) > 0

65 p = p + 1 ;

66 i f K − s ( j , i ) > expec (p)

67 cont ( j ) = K − s ( j , i ) ;

68 end

69 end

70 end

71 end

72

73 cont = di scount ∗ cont ;

74

75 value = mean( cont ) ;

76 disp ( va lue ) ;

77

78 toc ;
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A.3 Rogers’ Martingale Method

1 M = 5000 ; % Number o f t r a j e c t o r i e s

2 m = 300 ; % Number o f t r a j e c t o r i e s f o r o p t i m i z a t i o n

3 T = 2 ; % Maturi ty time

4 N = 50 ∗ T; % Number o f time s t e p s

5 S = 44 ; % Stock p r i c e

6 K = 40 ; % S t r i k e p r i c e

7 sigma = . 4 ; % V o l a t i l i t y

8 r = . 0 6 ; % R i s k f r e e i n t e r e s t r a t e

9

10 dt = T / N;

11 s = zeros (M, N + 1) ;

12 s ( : , 1) = S ∗ ones (M, 1) ;

13

14 dc i = exp(−r ∗ dt ) . ˆ [ 0 : N ] ;

15

16 t ic

17

18 ind = (N + 1) ∗ ones (m, 1) ;

19 for j = 1 : m

20 for i = 1 : N

21 dw = randn ∗ sqrt ( dt ) ;

22 s ( j , i + 1) = s ( j , i ) + r ∗ s ( j , i ) ∗ dt − sigma ∗
s ( j , i ) ∗ dw;

23 i f ( ind ( j ) == N + 1) && ( s ( j , i + 1) < K)

24 ind ( j ) = i + 1 ;

25 end

26 end

27 end

28

29 v1 = 4 ∗ K;

30 v2 = 4 ∗ K − 1 ;
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31 lambda = 1 ;

32 while v2 < v1

33 v1 = v2 ;

34 v2 = 0 ;

35 lambda = lambda − . 0 5 ;

36 for j = 1 : m

37 i f ind ( j ) == N + 1

38 v2 = v2 + max( s ( j , N + 1) − K, 0) ;

39 else

40 ov = 0 ;

41 bs = b l a c k s c h o l e s p u t ( s ( j , ind ( j ) ) , K, r ,

sigma , T − ( ind ( j ) − 1) ∗ dt ) ;

42 for i = ind ( j ) : N + 1

43 mart inga le = dc i ( i − ind ( j ) + 1) ∗
b l a c k s c h o l e s p u t ( s ( j , i ) , K, r , sigma ,

T − ( i − 1) ∗ dt ) − bs ;

44 ov = max( ov , dc i ( i ) ∗ max(K − s ( j , i ) , 0)

− lambda ∗ mart inga le ) ;

45 end

46 v2 = v2 + ov ;

47 end

48 end

49 v2 = v2 / m;

50 end

51 lambda = lambda + . 0 5 ;

52 v1 = v2 + v1 ;

53 v2 = v1 − v2 ;

54 v1 = v1 − v2 ;

55 while v2 < v1

56 v1 = v2 ;

57 v2 = 0 ;

58 lambda = lambda + . 0 5 ;

59 for j = 1 : m
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60 i f ind ( j ) == N + 1

61 v2 = v2 + max( s ( j , N + 1) − K, 0) ;

62 else

63 ov = 0 ;

64 bs = b l a c k s c h o l e s p u t ( s ( j , ind ( j ) ) , K, r ,

sigma , T − ( ind ( j ) − 1) ∗ dt ) ;

65 for i = ind ( j ) : N + 1

66 mart inga le = dc i ( i − ind ( j ) + 1) ∗
b l a c k s c h o l e s p u t ( s ( j , i ) , K, r , sigma ,

T − ( i − 1) ∗ dt ) − bs ;

67 ov = max( ov , dc i ( i ) ∗ max(K − s ( j , i ) , 0)

− lambda ∗ mart inga le ) ;

68 end

69 v2 = v2 + ov ;

70 end

71 end

72 v2 = v2 / m;

73

74 end

75 lambda = lambda − . 0 5 ;

76

77 ind = (N + 1) ∗ ones (M, 1) ;

78 for j = 1 : M

79 for i = 1 : N

80 dw = randn ∗ sqrt ( dt ) ;

81 s ( j , i + 1) = s ( j , i ) + r ∗ s ( j , i ) ∗ dt − sigma ∗
s ( j , i ) ∗ dw;

82 i f ( ind ( j ) == N + 1) && ( s ( j , i + 1) < K)

83 ind ( j ) = i + 1 ;

84 end

85 end

86 end

87
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88 value = 0 ;

89

90 for j = 1 : M

91 i f ind ( j ) == N + 1

92 value = value + dc i (N + 1) ∗ max(K − s ( j , N + 1) ,

0) ;

93 else

94 ov = 0 ;

95 bs = b l a c k s c h o l e s p u t ( s ( j , ind ( j ) ) , K, r , sigma ,

T − ( ind ( j ) − 1) ∗ dt ) ;

96 for i = ind ( j ) : N + 1

97 mart inga le = dc i ( i − ind ( j ) + 1) ∗
b l a c k s c h o l e s p u t ( s ( j , i ) , K, r , sigma , T −

( i − 1) ∗ dt ) − bs ;

98 ov = max( ov , dc i ( i ) ∗ max(K − s ( j , i ) , 0) −
lambda ∗ mart inga le ) ;

99 end

100 value = value + ov ;

101 end

102 end

103

104 value = value / M;

105

106 disp ( va lue ) ;

107

108 toc ;
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A.4 Interval-Based Expectation Method

1 M = 20000; % Number o f t r a j e c t o r i e s

2 N = 100 ; % Number o f time s t e p s

3 T = 2 ; % Maturi ty time

4 S = 42 ; % Stock p r i c e

5 K = 40 ; % S t r i k e p r i c e

6 sigma = . 4 ; % V o l a t i l i t y

7 r = . 0 6 ; % R i s k f r e e i n t e r e s t r a t e

8

9 dt = T / N;

10 s = zeros (2 ∗ M, N + 1) ;

11 s ( : , 1) = S ∗ ones (2 ∗ M, 1) ;

12 dc = exp(−r ∗ dt ) ;

13

14 t ic ;

15

16 for j = 1 : M

17 for i = 1 : N

18 dw = randn ∗ sqrt ( dt ) ;

19 s (2 ∗ j − 1 , i + 1) = s (2 ∗ j − 1 , i ) + r ∗ s (2 ∗
j − 1 , i ) ∗ dt + sigma ∗ s (2 ∗ j − 1 , i ) ∗ dw;

20 s (2 ∗ j , i + 1) = s (2 ∗ j , i ) + r ∗ s (2 ∗ j , i ) ∗
dt − sigma ∗ s (2 ∗ j , i ) ∗ dw;

21 end

22 end

23

24 value = zeros (2 ∗ M, N + 1) ;

25 value ( : , N + 1) = max(K − s ( : , N + 1) , 0) ;

26

27 i n t e r v a l = . 5 ;

28

29 for i = N: −1: 2
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30 dc i = dc ˆ ( i − 1) ;

31 [ s r ind ] = sort ( s ( : , i ) ) ;

32

33 s ( : , 2 : i ) = s ( ind , 2 : i ) ;

34 value ( : , i + 1) = value ( ind , i + 1) ;

35

36 value ( : , i ) = dc ∗ value ( : , i + 1) ;

37

38 for j = 1 : 2 ∗ M

39 i f s ( j , i ) > K

40 cont inue

41 end

42 i n t e r v a l = c o e f ∗ s ( j , i ) ;

43

44 f r s = j ;

45 l s t = j ;

46 while ( s ( f r s , i ) > s ( j , i ) − i n t e r v a l ) && ( j − f r s

< 240) && ( f r s > 5)

47 f r s = f r s − 5 ;

48 end

49 while ( s ( l s t , i ) < s ( j , i ) + i n t e r v a l ) && ( l s t −
j < 250) && ( l s t < 2 ∗ M − 5)

50 l s t = l s t + 5 ;

51 end

52 expec = sum( va lue ( f r s : l s t , i + 1) ) / ( l s t − f r s +

1) ;

53

54 i f K − s ( j , i ) < dc ∗ expec

55 value ( j , i ) = dc ∗ expec ;

56 else

57 value ( j , i ) = K − s ( j , i ) ;

58 end

59 end
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60 end

61

62 value ( : , 1) = max(K − S , dc ∗ value ( : , 2) ) ;

63 value = mean( va lue ( : , 1) ) ;

64

65 toc ;
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A.5 Optimal Stopping Boundary Estimation Method

1 M = 200000; % Number o f t r a j e c t o r i e s

2 m = 1000 ; % Number o f t r a j e c t o r i e s to approximate OST

3 T = 1 ; % Maturi ty time

4 N = 50 ∗ T; % D i s c r e t i z a t i o n p o i n t s per u n i t o f matur i ty

time ;

5 S = 36 ; % Stock p r i c e

6 K = 40 ; % S t r i k e p r i c e

7 sigma = . 4 ; % V o l a t i l i t y

8 r = . 0 6 ; % R i s k f r e e i n t e r e s t r a t e e u v a l u e =

b l a c k s c h o l e s p u t (S , K, r , sigma , T) ;

9

10 t ic ;

11

12 dt = T / N;

13 dc = exp(−r ∗ dt ) ;

14 dc i = dc . ˆ [ 1 : N ] ;

15

16 eu va lue = b l a c k s c h o l e s p u t (S , K, r , sigma , T) ;

17

18 OST = zeros (N + 1 , 1) ;

19 OST(N + 1) = K;

20

21 for i = N: −1: 1

22 OST( i ) = OST( i + 1) ;

23 value = K;

24 sub = . 1 ;

25 for j = 1 : 5

26 sub = sub / 10 ;

27 while K − OST( i ) < value

28 value = b l a c k s c h o l e s p u t (OST( i ) , K, r , sigma ,

(N − i + 1) ∗ dt ) ;
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29 OST( i ) = OST( i ) − sub ;

30 end

31 OST( i ) = OST( i ) + sub ;

32 end

33 end

34

35 AST = OST;

36

37 for i = N − 1 : −1: 1

38 AST( i ) = min(AST( i ) , AST( i + 1) ) ;

39

40 sub = 1 ;

41 for l = 1 : 5

42 value = K;

43 sub = sub / 10 ;

44 while K − AST( i ) < value

45 AST( i ) = AST( i ) − sub ;

46

47 value = 0 ;

48

49 for j = 1 : m

50 s1 = AST( i ) ;

51 s2 = AST( i ) ;

52 cs1 = 1 ;

53 cs2 = 1 ;

54 for k = i : N

55 dw = randn ∗ sqrt ( dt ) ;

56 s1 = s1 + r ∗ s1 ∗ dt + sigma ∗ s1 ∗
dw;

57 s2 = s2 + r ∗ s2 ∗ dt − sigma ∗ s2 ∗
dw;

58 i f cs1 && s1 < AST( k + 1)

59 value = value + (K − s1 ) ∗ dc i ( k −
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i + 1) ;

60 cs1 = 0 ;

61 end

62 i f cs2 && s2 < AST( k + 1)

63 value = value + (K − s2 ) ∗ dc i ( k −
i + 1) ;

64 cs2 = 0 ;

65 end

66 i f ˜ cs1 && ˜ cs2

67 break

68 end

69 end

70 end

71 value = value / (2 ∗ m) ;

72 end

73 AST( i ) = AST( i ) + sub ;

74 end

75 end

76

77 value = 0 ;

78

79 for j = 1 : M

80 s1 = S ;

81 s2 = S ;

82 cs1 = 1 ;

83 cs2 = 1 ;

84 for i = 1 : N

85 dw = randn ∗ sqrt ( dt ) ;

86 s1 = s1 + r ∗ s1 ∗ dt + sigma ∗ s1 ∗ dw;

87 s2 = s2 + r ∗ s2 ∗ dt − sigma ∗ s2 ∗ dw;

88 i f cs1 && s1 < AST( i + 1)

89 value = value + (K − s1 ) ∗ dc i ( i ) ;

90 cs1 = 0 ;
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91 end

92 i f cs2 && s2 < AST( i + 1)

93 value = value + (K − s2 ) ∗ dc i ( i ) ;

94 cs2 = 0 ;

95 end

96 i f ˜ cs1 && ˜ cs2

97 break

98 end

99 end

100 end

101

102 value = value / (2 ∗ M) ;

103 disp ( va lue ) ;

104 toc
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