Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007

See also

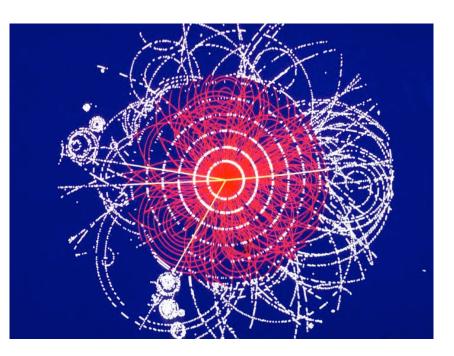
ESW: "QCD and Collider Physics", C.U.P. 1996 http://www.hep.phy.cam.ac.uk/theory/webber/QCDupdates.html http://www.hep.phy.cam.ac.uk/theory/webber/QCD_03/

Thanks to Mike Seymour, Torbjörn Sjöstrand, Frank Krauss, Peter Richardson,...

Monte Carlo Methods 1

Monte Carlo Event Generation

- Basic Principles
- Event Generation
- Parton Showers
- Hadronization
- Underlying Event
- Event Generator Survey
- Matching to Fixed Order
- Beyond Standard Model



Lecture1: Basics

- The Monte Carlo concept
- Event generation
- Examples: particle production and decay
- Structure of an LHC event
- Monte Carlo implementation of NLO QCD

Integrals as Averages

- Basis of all Monte Carlo methods: $I = \int_{x_1}^{x_2} f(x) \, dx = (x_2 - x_1) \langle f(x) \rangle$
- Draw N values from a uniform distribution: $I \approx I_N \equiv (x_2 - x_1) \frac{1}{N} \sum_{i=1}^N f(x_i)$
- Sum invariant under reordering: randomize
- Central limit theorem:

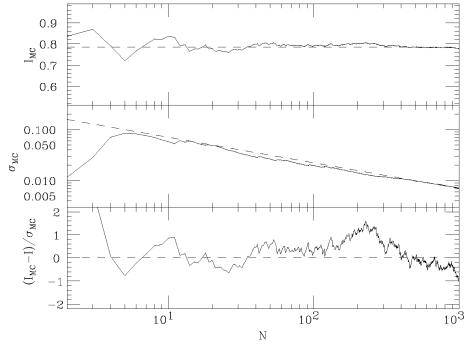
$$I\approx I_N\pm \sqrt{V_N/N}$$

$$V = (x_2 - x_1) \int_{x_1}^{x_2} \left[f(x) \right]^2 dx - \left[\int_{x_1}^{x_2} f(x) \, dx \right]^2$$

Convergence

• Monte Carlo integrals governed by Central Limit Theorem: error $\propto 1/\sqrt{N}$ c.f. trapezium rule $\propto 1/N^2$ Simpson's rule $\propto 1/N^4$

but only if derivatives exist and are finite: $\sqrt{1-x^2} \sim 1/N^{3/2}$



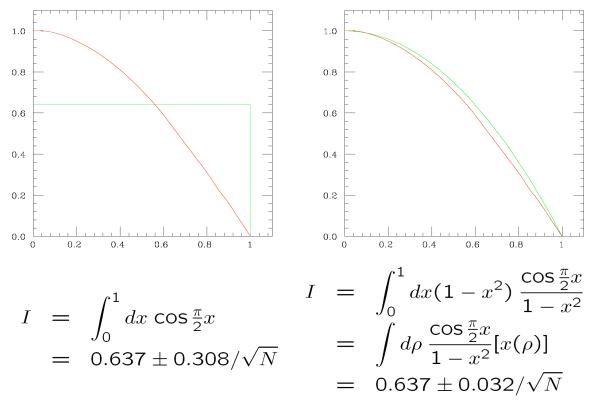
Monte Carlo Methods 1

Importance Sampling

Convergence improved by putting more samples in region where function is largest.

Corresponds to a Jacobian transformation.

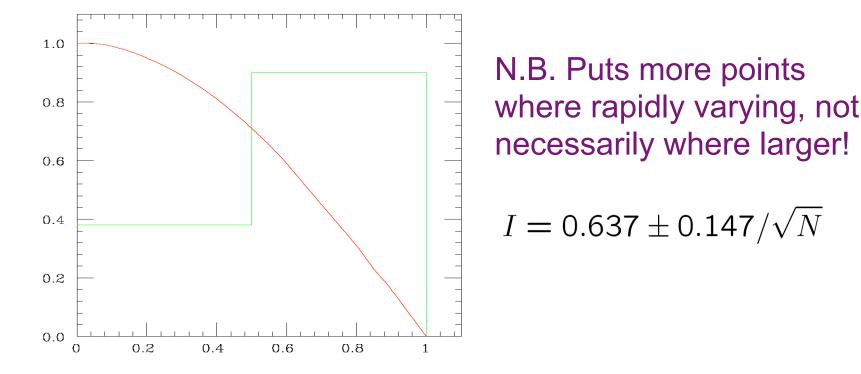
Hit-and-miss: accept points with probability = ratio (if < 1)



Monte Carlo Methods 1

Stratified Sampling

Divide up integration region piecemeal and optimize to minimize total error.Can be done automatically (eg VEGAS).Never as good as Jacobian transformations.



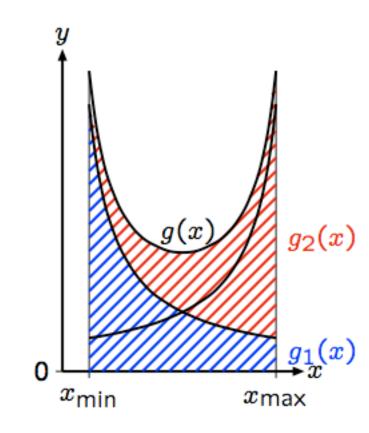
Monte Carlo Methods 1

Multichannel Sampling

If $f(x) \le g(x) = \sum_i g_i(x)$, where all g_i "nice" (but g(x) not) 1) select *i* with relative probability

$$A_i = \int_{x_{\min}}^{x_{\max}} g_i(x') \, \mathrm{d}x'$$

2) select x according to $g_i(x)$ 3) select $y = R g(x) = R \sum_i g_i(x)$ 4) while y > f(x) cycle to 1)



Multi-dimensional Integration

- Formalism extends trivially to many dimensions
- Particle physics: very many dimensions,
 e.g. phase space = 3 dimensions per particles,
 LHC event ~ 250 hadrons.
- Monte Carlo error remains $\propto 1/\sqrt{N}$
- Trapezium rule $\propto 1/N^{2/d}$
- Simpson's rule $\propto 1/N^{4/d}$

Summary

Disadvantages of Monte Carlo:

- Slow convergence in few dimensions. Advantages of Monte Carlo:
- Fast convergence in many dimensions.
- Arbitrarily complex integration regions (finite discontinuities not a problem).
- Few points needed to get first estimate ("feasibility limit").
- Every additional point improves accuracy ("growth rate").
- Easy error estimate.

Phase Space

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Pi_n(\sqrt{s})$$

$$\Gamma = \frac{1}{2M} \int |\mathcal{M}|^2 d\Pi_n(M)$$

Phase space:

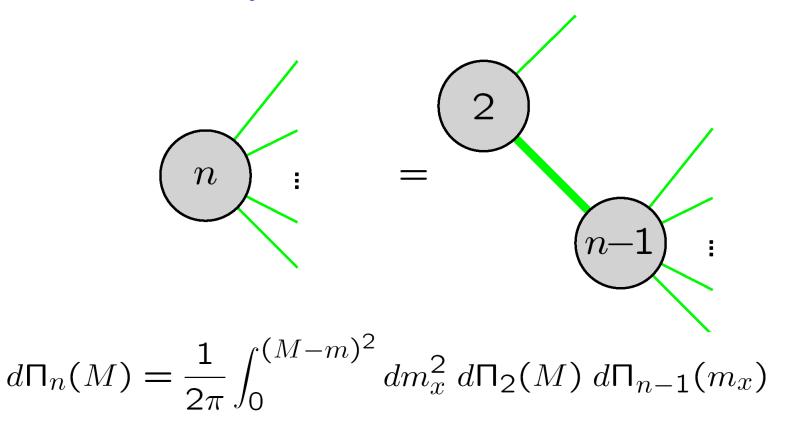
$$d\Pi_n(M) = \left[\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 (2E_i)}\right] (2\pi)^4 \delta^{(4)} \left(p_0 - \sum_{i=1}^n p_i\right)$$

Two-body easy:

$$d\Pi_2(M) = \frac{1}{8\pi} \frac{2p}{M} \frac{d\Omega}{4\pi}$$

Monte Carlo Methods 1

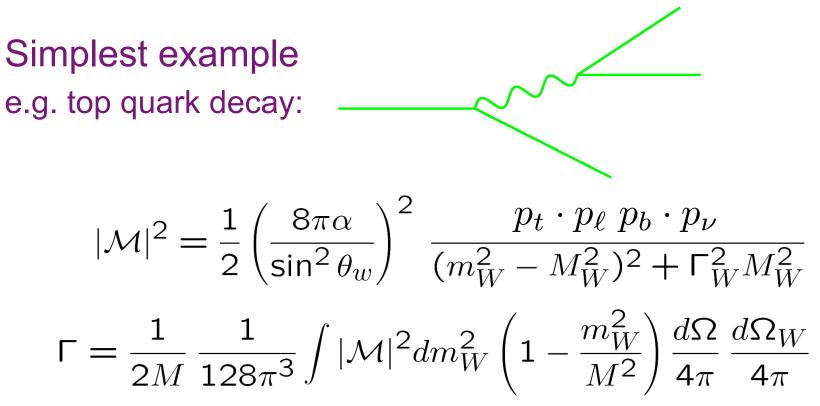
Other cases by recursive subdivision:



Or by 'democratic' algorithms: RAMBO, MAMBO Can be better, but matrix elements rarely flat.

Monte Carlo Methods 1

Particle Decays

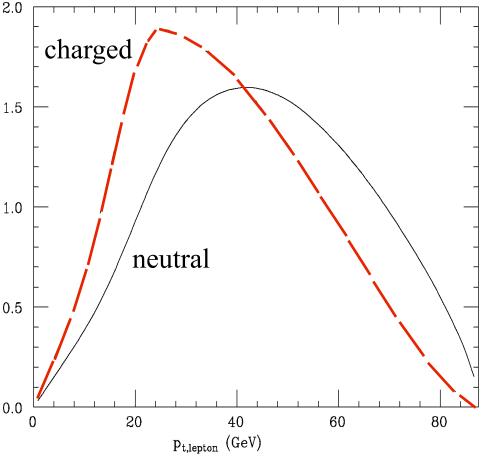


Breit-Wigner peak of W very strong: must be removed by Jacobian factor

Associated Distributions

Big advantage of Monte Carlo integration: simply histogram any associated quantities.^{1.5} Almost any other technique requires new integration for each observable. Can apply arbitrary cuts/smearing.

e.g. lepton momentum in top decays:



Cross Sections

Additional integrations over incoming parton densities:

$$\sigma(s) = \int_0^1 dx_1 f_1(x_1) \int_0^1 dx_2 f_2(x_2) \,\hat{\sigma}(x_1 x_2 s) \\ = \int_0^1 \frac{d\tau}{\tau} \hat{\sigma}(\tau s) \int_{\tau}^1 \frac{dx}{x} \, x f_1(x) \, \frac{\tau}{x} f_2(\frac{\tau}{x})$$

 $\hat{\sigma}(\hat{s})$ can have strong peaks, eg Z Breit-Wigner: need Jacobian factors.

Hard to make process-independent.

Leading Order Monte Carlo Calculations

- Now have everything we need to make leading order cross section calculations and distributions
- Can be largely automated...
- MADGRAPH
- GRACE
- COMPHEP
- AMEGIC++
- ALPGEN

But...

- Fixed parton/jet multiplicity
- No control of large logs
- Parton level

→ Need hadron level event generators

Monte Carlo Methods 1

Event Generators

Up to here, only considered Monte Carlo as a numerical integration method.

If function being integrated is a probability density (positive definite), trivial to convert it to a simulation of physical process = an event generator.

Simple example:
$$\sigma = \int_0^1 \frac{d\sigma}{dx} \, dx$$

Naive approach: 'events' x with 'weights' $d\sigma/dx$

Can generate unweighted events by keeping them with probability $(d\sigma/dx)/(d\sigma/dx)_{max}$: give them all weight σ_{tot} Happen with same frequency as in nature. Efficiency: $\frac{(d\sigma/dx)_{avge}}{(d\sigma/dx)_{max}}$ = fraction of generated events kept. Monte Carlo Methods 1

Structure of LHC Events

- 1. Hard process
- 2. Parton shower
- 3. Hadronization
- 4. Underlying event

Koplek	

We'll return to this later...

Monte Carlo Calculations of NLO QCD

Two separate divergent integrals:

$$\sigma_{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V$$

Must combine before numerical integration.

Jet definition could be arbitrarily complicated. $d\sigma^R = d\Pi_{m+1} |\mathcal{M}_{m+1}|^2 F_{m+1}^J(p_1, \dots, p_{m+1})$ How to combine without knowing F^J ?

Two solutions:

phase space slicing and subtraction method.

Illustrate with simple one-dim. example:

$$|\mathcal{M}_{m+1}|^2 \equiv \frac{1}{x}\mathcal{M}(x)$$

x = gluon energy or two-parton invariant mass. Divergences regularized by $d = 4 - 2\epsilon$ dimensions. $|\mathcal{M}_m^{\text{one-loop}}|^2 \equiv \frac{1}{\epsilon}\mathcal{V}$

Cross section in d dimensions is:

$$\sigma = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} F_0^J$$

nfrared safety: $F_1^J(0) = F_0^J$
(LN cancellation theorem: $\mathcal{M}(0) = \mathcal{V}$

Phase space slicing

Introduce arbitrary cutoff $\delta \ll 1$:

$$\sigma = \int_0^\delta \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) + \int_\delta^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} F_0^J$$
$$\approx \int_0^\delta \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_0^J + \int_\delta^1 \frac{dx}{x} \mathcal{M}(x) F_1^J(x) + \frac{1}{\epsilon} \mathcal{V} F_0^J$$
$$= \int_\delta^1 \frac{dx}{x} \mathcal{M}(x) F_1^J(x) + \log(\delta) \mathcal{V} F_0^J$$

Two separate finite integrals \rightarrow Monte Carlo. Becomes exact for $\delta \rightarrow 0$ but numerical errors blow up \rightarrow compromise (trial and error). Systematized by Giele-Glover-Kosower. JETRAD, DYRAD, EERAD, ...

Subtraction method

Exact identity:

$$\sigma = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_1^J(x) - \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_0^J + \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{V} F_0^J + \frac{1}{\epsilon} \mathcal{V} F_0^J = \int_0^1 \frac{dx}{x} \left(\mathcal{M}(x) F_1^J(x) - \mathcal{V} F_0^J \right) + \mathcal{O}(1) \mathcal{V} F_0^J.$$

→ Two separate finite integrals again.

Subtraction method

Exact identity:

$$\sigma = \int_0^1 \frac{dx}{x} \left(\mathcal{M}(x) F_1^J(x) - \mathcal{V} F_0^J \right) + \mathcal{O}(1) \mathcal{V} F_0^J.$$

Two separate finite integrals again.

Much harder: subtracted cross section must be valid everywhere in phase space.

Systematized in

S. Catani and M.H. Seymour, Nucl. Phys. B485 (1997) 291.

- S. Catani, S. Dittmaier, M.H. Seymour and Z. Trocsanyi, Nucl. Phys. B627 (2002) 189.
- → any observable in any process

→ analytical integrals done once-and-for-all EVENT2, DISENT, NLOJET++, MCFM, ...

Monte Carlo Methods 1

Summary

- Monte Carlo is a very convenient numerical integration method.
- Well-suited to particle physics: difficult integrands, many dimensions.
- Integrand positive definite \rightarrow event generator.
- Fully exclusive \rightarrow treat particles exactly like in data.
- \rightarrow need to understand/model hadronic final state.

N.B. NLO QCD programs are not event generators: Not positive definite.

But full numerical treatment of arbitrary observables.

We'll discuss later how to combine/match NLO and EGs