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Chapter 1

Introduction

Experience, how much and of what, is a valuable commodity. It is a major

difference between an airline pilot and a New York Cab driver, a surgeon and

a butcher, a succesful financeer and a cashier at your local grocers. Experience

with data, with its analysis, experience constructing portfolios, trading, and

even experience losing money (one experience we all think we could do without)

are all part of the education of the financially literate. Of course, few of us

have the courage to approach the manager of our local bank and ask for a few

million so we can acquire this experience, and fewer still managers have the

courage to acceed to our request. The “joy of simulation” is that you do not

need to have a Boeing 767 to fly one, and that you don’t need millions of dollars

to acquire a considerable experience valuing financial products, constructing

portfolios and testing trading rules. Of course if your trading rule is to buy

condos in Florida because you expect boomers to all wish to retire there, a

computer simulation will do little to help you since the ingredients to your

decision are largely psychological (yours and theirs), but if it is that you should

hedge your current investment in condos using financial derivatives real estate

companies, then the methods of computer simulation become relevant.

1



2 CHAPTER 1. INTRODUCTION

This book concerns the simulation and analysis of models for financial mar-

kets, particularly traded assets like stocks, bonds. We pay particular attention

to financial derivatives such as options and futures. These are financial instru-

ments which derive their value from some associated asset. For example a call

option is written on a particular stock, and its value depends on the price of

the stock at expiry. But there are many other types of financial derivatives,

traded on assets such as bonds, currency markets or foreign exchange markets,

and commodities. Indeed there is a growing interest in so-called “real options”,

those written on some real-world physical process such as the temperature or

the amount of rainfall.

In general, an option gives the holder a right, not an obligation, to sell or

buy a prescribed asset (the underlying asset) at a price determined by the

contract (the exercise or strike price). For example if you own a call option on

shares of IBM with expiry date Oct. 20, 2000 and exercise price $120, then

on October 20, 2000 you have the right to purchase a fixed number , say 100

shares of IBM at the price $120. If IBM is selling for $130 on that date, then

your option is worth $10 per share on expiry. If IBM is selling for $120 or less,

then your option is worthless. We need to know what a fair value would be

for this option when it is sold, say on February 1, 2000. Determining this fair

value relies on sophisticated models both for the movements in the underlying

asset and the relationship of this asset with the derivative, and is the subject of

a large part of this book. You may have bought an IBM option for two possible

reasons, either because you are speculating on an increase in the stock price,

or to hedge a promise that you have made to deliver IBM stocks to someone

in the future against possible increases in the stock price. The second use of

derivatives is similar to the use of an insurance policy against movements in

an asset price that could damage or bankrupt the holder of a portfolio. It is

this second use of derivatives that has fueled most of the phenomenal growth

in their trading. With the globalization of economies, industries are subject to
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more and more economic forces that they are unable to control but nevertheless

wish some form of insurance against. This requires hedges against a whole

litany of disadvantageous moves of the market such as increases in the cost of

borrowing, decreases in the value of assets held, changes in a foreign currency

exchange rates, etc.

The advanced theory of finance, like many areas where advanced mathemat-

ics plays an important part, is undergoing a revolution aided and abetted by

the computer and the proliferation of powerful simulation and symbolic math-

ematical tools. This is the mathematical equivalent of the invention of the

printing press. The numerical and computational power once reserved for the

most highly trained mathematicians, scientists or engineers is now available to

any competent programmer.

One of the first hurdles faced before adopting stochastic or random models in

finance is the recognition that for all practical purposes, the prices of equities in

an efficient market are random variables, that is while they may show some de-

pendence on fiscal and economic processes and policies, they have a component

of randomness that makes them unpredictable. This appears on the surface to

be contrary to the training we all receive that every effect has a cause, and every

change in the price of a stock must be driven by some factor in the company or

the economy. But we should remember that random models are often applied

to systems that are essentially causal when measuring and analyzing the vari-

ous factors influencing the process and their effects is too monumental a task.

Even in the simple toss of a fair coin, the result is predetermined by the forces

applied to the coin during and after it is tossed. In spite of this, we model it

as a random variable because we have insufficient information on these forces

to make a more accurate prediction of the outcome. Most financial processes

in an advanced economy are of a similar nature. Exchange rates, interest rates

and equity prices are subject to the pressures of a large number of traders,

government agencies, speculators, as well as the forces applied by international
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trade and the flow of information. In the aggregate there is an extraordinary

number of forces and information that influence the process. While we might

hope to predict some features of the process such as the average change in price

or the volatility, a precise estimate of the price of an asset one year from to-

day is clearly impossible. This is the basic argument necessitating stochastic

models in finance. Adoption of a stochastic model does neither implies that

the process is pure noise nor that we are unable to forecast. Such a model is

adopted whenever we acknowledge that a process is not perfectly predictable

and the non-predictable component of the process is of sufficient importance to

warrant modeling.

Now if we accept that the price of a stock is a random variable, what are

the constants in our model? Is a dollar of constant value, and if so, the dollar

of which nation? Or should we accept one unit of a index what in some sense

represents a share of the global economy as the constant? This question concerns

our choice of what is called the “numeraire” in deference to the French influence

on the theory of probability, or the process against which the value of our assets

will be measured. We will see that there is not a unique answer to this question,

nor does that matter for most purposes. We can use a bond denominated in

Canadian dollars as the numeraire or one in US dollars. Provided we account

for the variability in the exchange rate, the price of an asset will be the same.

So to some extent our choice of numeraire is arbitrary- we may pick whatever

is most convenient for the problem at hand.

One of the most important modern tools for analyzing a stochastic system

is simulation. Simulation is the imitation of a real-world process or system. It

is essentially a model, often a mathematical model of a process. In finance,

a basic model for the evolution of stock prices, interest rates, exchange rates

etc. would be necessary to determine a fair price of a derivative security.

Simulations, like purely mathematical models, usually make assumptions about

the behaviour of the system being modelled. This model requires inputs, often
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called the parameters of the model and outputs a result which might measure the

performance of a system, the price of a given financial instrument, or the weights

on a portfolio chosen to have some desirable property. We usually construct the

model in such a way that inputs are easily changed over a given set of values,

as this allows for a more complete picture of the possible outcomes.

Why use simulation? The simple answer is that is that it transfers work

to the computer. Models can be handled which have greater complexity, and

fewer assumptions, and a more faithful representation of the real-world than

those that can be handled tractable by pure mathematical analysis are possible.

By changing parameters we can examine interactions, and sensitivities of the

system to various factors. Experimenters may either use a simulation to provide

a numerical answer to a question, assign a price to a given asset, identify optimal

settings for controllable parameters, examine the effect of exogenous variables

or identify which of several schemes is more efficient or more profitable. The

variables that have the greatest effect on a system can be isolated. We can

also use simulation to verify the results obtained from an analytic solution.

For example many of the tractable models used in finance to select portfolios

and price derivatives are wrong. They put too little weight on the extreme

observations, the large positive and negative movements (crashes), which have

the most dramatic effect on the results. Is this lack of fit of major concern when

we use a standard model such as the Black-Scholes model to price a derivative?

Questions such as this one can be answered in part by examining simulations

which accord more closely with the real world, but which are intractable to

mathematical analysis.

Simulation is also used to answer questions starting with “what if”. For

example, What would be the result if interest rates rose 3 percentage points

over the next 12 months? In engineering, determining what would happen under

more extreme circumstances is often referred to as stress testing and simulation

is a particularly valuable tool here since the scenarios we are concerned about are
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those that we observe too rarely to have a substantial experience of. Simulations

are used, for example, to determine the effect of an aircraft of flying under

extreme conditions and is used to analyse the flight data information in the

event of an accident. Simulation often provides experience at a lower cost than

the alternatives.

But these advantages are not without some sacrifice. Two individuals may

choose to model the same phenomenon in different ways, and as a result, may

have quite different simulation results. Because the output from a simulation

is random, it is sometimes harder to analyze- some statistical experience and

tools are a valuable asset. Building models and writing simulation code is not

always easy. Time is required both to construct the simulation, validate it, and

to analyze the results. And simulation does not render mathematical analysis

unnecessary. If a reasonably simple analytic expression for a solution exists,

it is always preferable to a simulation. While a simulation may provide an

approximate numerical answer at one or more possible parameter values, only

an expression for the solution provides insight to the way in which it responds

to the individual parameters, the sensitivities of the solution.

In constructing a simulation, you should be conscious of a number of distinct

steps;

1. Formulate the problem at hand. Why do we need to use simulation?

2. Set the objectives as specifically as possible. This should include what

measures on the process are of most interest.

3. Suggest candidate models. Which of these are closest to the real-world?

Which are fairly easy to write computer code for? What parameter values

are of interest?

4. If possible, collect real data and identify which of the above models is

most appropriate. Which does the best job of generating the general
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characteristics of the real data?

5. Implement the model. Write computer code to run simulations.

6. Verify (debug) the model. Using simple special cases, insure that the code

is doing what you think it is doing.

7. Validate the model. Ensure that it generates data with the characteristics

of the real data.

8. Determine simulation design parameters. How many simulations are to

be run and what alternatives are to be simulated?

9. Run the simulation. Collect and analyse the output.

10. Are there surprises? Do we need to change the model or the parameters?

Do we need more runs?

11. Finally we document the results and conclusions in the light of the simula-

tion results. Tables of numbers are to be avoided. Well-chosen graphs are

often better ways of gleaning qualitative information from a simulation.

In this book, we will not always follow our own advice, leaving some of

the above steps for the reader to fill in. Nevertheless, the importance of model

validation, for example, cannot be overstated. Particularly in finance where data

is often plentiful, highly complex mathematical models are too often applied

without any evidence that they fit the observed data adequately. The reader is

advised to consult and address the points in each of the steps above with each

new simulation (and many of the examples in this text).

Example
Let us consider the following example illustrating a simple use for a simu-

lation model. We are considering a buy-out bid for the shares of a company.

Although the company’s stock is presently valued at around $11.50 per share,

a careful analysis has determined that it fits sufficiently well with our current
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assets that if the buy-out were successful, it would be worth approximately

$14.00 per share in our hands. We are considering only three alternatives,

an immediate cash offer of $12.00, $13.00 or $14.00 per share for outstanding

shares of the company. Naturally we would like to bid as little as possible, but

we expect a competitor to virtually simultaneously make a bid for the company

and the competitor values the shares differently. The competitor has three bid-

ding strategies that we will simply identify as I, II, and III. There are costs

associated with any pair of strategies (our bid-competitor’s bidding strategy)

including costs associated with losing a given bid to the competitor or paying

too much for the company. In other words, the payoff to our firm depends on

the amount bid by the competitor and the possible scenarios are as given in

the following table.

Competitor’s Strategy

Bid I II III

Your 12 3 2 -2

Bid 13 1 -4 4

14 0 -5 5

The payoffs to the competitor are somewhat different and given below

Competitor’s Strategy

I II III

Your 12 -1 -2 3

Bid 13 0 4 -6

14 0 5 -5

For example, the combination of your bid=$13 per share and your com-

petitor’s strategy II results in a loss of 4 units (for example four dollars per

share) to you and a gain of 4 units to your competitor. However it is not always

the case that the your loss is the same as your competitor’s gain. A game with

this property is called a zero-sum game and these are much easier to analyze

analytically. Define the 3 × 3 matrix of payoffs to your company by A and the
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payoff matrix to your competitor by B,

A =

⎛⎜⎜⎜⎝
3 2 -2

1 -4 4

0 -5 5

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
-1 -2 3

0 4 -6

0 5 -5

⎞⎟⎟⎟⎠ .
Provided that you play strategy i = 1, 2, 3 (i.e. bid $12,$13,$14 with proba-

bilities p1, p2, p3 respectively and the probabilities of the competitor’s strategies

are q1, q2, q3. Then if we denote

p =

⎛⎜⎜⎜⎝
p1

p2

p3

⎞⎟⎟⎟⎠ , and q =

⎛⎜⎜⎜⎝
q1

q2

q3

⎞⎟⎟⎟⎠ ,
we can write the expected payoff to you in the form

P3
i=1

P3
j=1 piAijqj . When

written as a vector-matrix product, this takes the form pTAq. This might be

thought of as the average return to your firm in the long run if this game were

repeated many times, although in the real world, the game is played only once.

If the vector q were known to you, you would clearly choose pi = 1 for the

row i corresponding to the maximum component of Aq since this maximizes

your payoff. Similarly if your competitor knew p, they would choose qj = 1

for the column j corresponding to the maximum component of pTB. Over

the long haul, if this game were indeed repeated may times, you would likely

keep track of your opponent’s frequencies and replace the unknown probabilities

by the frequencies. However, we assume that both the actual move made by

your opponent and the probabilities that they use in selecting their move are

unknown to you at the time you commit to your strategy. However, if the game

is repeated many times, each player obtains information about their opponent’s

taste in moves, and this would seem to be a reasonable approach to building a

simulation model for this game. Suppose the game is played repeatedly, with

each of the two players updating their estimated probabilities using information

gathered about their opponent’s historical use of their available strategies. We
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may record number of times each strategy is used by each player and hope that

the relative frequencies approach a sensible limit. This is carried out by the

following Matlab function;

function [p,q]=nonzerosum(A,B,nsim)

% A and B are payoff matrices to the two participants in a game.

Outputs

%mixed strategies p and q determined by simulation conducted nsim

times

n=size(A); % A and B have the same size

p=ones(1,n(1)); q=ones(n(2),1); % initialize with positive weights

on all strategies

for i=1:nsim % runs the simulation nsim times

[m,s]=max(A*q); % s=index of optimal strategy for

us

[m,t]=max(p*B); % =index of optimal strategy for

competitor

p(s)=p(s)+1; % augment counts for us

q(t)=q(t)+1; % augment counts for competitor

end

p=p-ones(1,n(1)); p=p/sum(p); %remove initial weights from counts

and then

q=q-ones(n(2),1); q=q/sum(q); % convert counts to relative frequencies

The following output results from running this function for 50,000 simula-

tions.

[p,q]=nonzerosum(A,B,50000)

This results in approximately p0 = [23 0
1
3 ] and q0 = [0 1

2
1
2 ] with an

average payoff to us of 0 and to the competitor 1/3. This seems to indicate that

the strategies should be “mixed” or random. You should choose a bid of $12.00

with probability around 2/3, and $14.00 with probability 1/3. It appears that
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the competitor need only toss a fair coin and select between B and C based on

its outcome. Why randomize your choice? The average value of the game to

you is 0 if you use the probabilities above (in fact if your competitor chooses

probabilities q0 = [0 1
2

1
2 ] it doesn’t matter what your frequencies are, your

average is 0). If you were to believe a single fixed strategy is always your “best”

then your competitor could presumably determine what your “best” strategy is

and act to reduce your return (i.e. substantially less than 0) while increasing

theirs. Only randomization provides the necessary insurance that neither player

can guess the strategy to be employed by the other. This is a rather simple

example of a two-person game with non-constant sum (in the sense that A+B

is not a constant matrix). Mathematical analysis of such games can be quite

complex. In such case, provided we can ensure cooperation, participants may

cooperate for a greater total return.

There is no assurance that the solution above is optimal. In fact the above

solution is worth an average of 0 per game to us and 1/3 to our competitor.

If we revise our strategy to p0 = [23
2
9
1
9 ], for example, our average return is

still 0 but we have succeeded in reducing that of our opponent to 1/9. The

solution we arrived at in this case seems to be sensible solution, achieved with

little effort. Evidently, in a game such as this, there is no clear definition of

what an optimal strategy would be, since one might plan one’s play based on

the worst case, or the best case scenario, or something in between such as an

average? Do you attempt to collaborate with your competitor for greater total

return and then subsequently divide this in some fashion? This simulation has

emulated a simple form of competitor behaviour and arrived at a reasonable

solution, the best we can hope for without further assumptions.

There remains the question of how we actually select a bid with probabilities

2/3, 0 and 1/3 respectively. First let us assume that we are able to choose a

“random number” U in the interval [0,1] so that the probability that it falls

in any given subinterval is proportional to the length of that subinterval. This
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means that the random number has a uniform distribution on the interval [0,1].

Then we could determine our bid based on the value of this random number

from the following table;

If U < 2/3 2/3 · U < 1

Bid 12 13 14

The way in which U is generated on a computer will be discussed in more

detail in chapter 2, but for the present note that each of the three alternative

bids have the correct probabilities.



Chapter 2

Some Basic Theory of

Finance

Introduction to Pricing: Single Period Models

Let us begin with a very simple example designed to illustrate the no-arbitrage

approach to pricing derivatives. Consider a stock whose price at present is $s.

Over a given period, the stock may move either up or down, up to a value su

where u > 1 with probability p or down to the value sd where d < 1 with

probability 1− p. In this model, these are the only moves possible for the stock

in a single period. Over a longer period, of course, many other values are

possible. In this market, we also assume that there is a so-called risk-free bond

available returning a guaranteed rate of r% per period. Such a bond cannot

default; there is no random mechanism governing its return which is known

upon purchase. An investment of $1 at the beginning of the period returns a

guaranteed $(1 + r) at the end. Then a portfolio purchased at the beginning

of a period consisting of y stocks and x bonds will return at the end of the

period an amount $x(1 + r) + ysZ where Z is a random variable taking

13
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values u or d with probabilities p and 1− p respectively. We permit owning

a negative amount of a stock or bond, corresponding to shorting or borrowing

the correspond asset for immediate sale.

An ambitious investor might seek a portfolio whose initial cost is zero (i.e.

x+ ys = 0) such that the return is greater than or equal to zero with positive

probability. Such a strategy is called an arbitrage. This means that the investor

is able to achieve a positive probability of future profits with no down-side risk

with a net investment of $0. In mathematical terms, the investor seeks a point

(x, y) such that x+ ys = 0 (net cost of the portfolio is zero) and

x(1 + r) + ysu ≥ 0,

x(1 + r) + ysd ≥ 0

with at least one of the two inequalities strict (so there is never a loss and a

non-zero chance of a positive return). Alternatively, is there a point on the line

y = − 1
sx which lies above both of the two lines

y = −
1 + r

su
x

y = −
1 + r

sd
x

and strictly above one of them? Since all three lines pass through the origin,

we need only compare the slopes; an arbitrage will NOT be possible if

−
1 + r

sd
· −

1

s
· −

1 + r

su
(2.1)

and otherwise there is a point (x, y) permitting an arbitrage. The condition for

no arbitrage (2.1) reduces to

d

1 + r
< 1 <

u

1 + r
(2.2)

So the condition for no arbitrage demands that (1 + r − u) and (1 + r − d)

have opposite sign or d · (1 + r) · u. Unless this occurs, the stock always

has either better or worse returns than the bond, which makes no sense in a
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free market where both are traded without compulsion. Under a no arbitrage

assumption since d · (1 + r) · u, the bond payoff is a convex combination or

a weighted average of the two possible stock payoffs; i.e. there are probabilities

0 · q · 1 and (1− q) such that (1 + r) = qu+ (1− q)d. In fact it is easy to

solve this equation to determine the values of q and 1− q.

q =
(1 + r)− d

u− d
, and 1− q =

u− (1 + r)

u− d
.

Denote by Q the probability distribution which puts probabilities q and 1− q

on these points su, sd. Then if S1 is the value of the stock at the end of the

period, note that

1

1 + r
EQ(S1) =

1

1 + r
(qsu+ (1− q)sd) =

1

1 + r
s(1 + r) = s

where EQ denotes the expectation assuming that Q describes the probabilities

of the two outcomes.

In other words, if there is to be no arbitrage, there exists a probability mea-

sure Q such that the expected price of future value of the stock S1 discounted

to the present using the return from a risk-free bond is exactly the present value

of the stock. The measure Q is called the risk-neutral measure and the prob-

abilities that it assigns to the possible outcomes of S are not necessarily those

that determine the future behaviour of the stock. The risk neutral measure

embodies both the current consensus beliefs in the future value of the stock and

the consensus investors’ attitude to risk avoidance. It is not usually true that

1
1+rEP (S1) = s with P denoting the actual probability distribution describing

the future probabilities of the stock. Indeed it is highly unlikely that an investor

would wish to purchase a risky stock if he or she could achieve exactly the same

expected return with no risk at all using a bond. We generally expect that

to make a risky investment attractive, its expected return should be greater

than that of a risk-free investment. Notice in this example that the risk-neutral

measure Q did not use the probabilities p, and 1− p that the stock would go
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up or down and this seems contrary to intuition. Surely if a stock is more likely

to go up, then a call option on the stock should be valued higher!

Let us suppose for example that we have a friend willing, in a private trans-

action with me, to buy or sell a stock at a price determined from his subjectively

assigned distribution P , different from Q. The friend believes that the stock

is presently worth

1

1 + r
EPS1 =

psu+ (1− p)sd

1 + r
6= s since p 6= q.

Such a friend offers their assets as a sacrifice to the gods of arbitrage. If the

friend’s assessed price is greater than the current market price, we can buy on

the open market and sell to the friend. Otherwise, one can do the reverse.

Either way one is enriched monetarily (and perhaps impoverished socially)!

So why should we use the Q measure to determine the price of a given asset

in a market (assuming, of course, there is a risk-neutral Q measure and we are

able to determine it)? Not because it precisely describes the future behaviour

of the stock, but because if we use any other distribution, we offer an intelligent

investor (there are many!) an arbitrage opportunity, or an opportunity to make

money at no risk and at our expense.

Derivatives are investments which derive their value from that of a corre-

sponding asset, such as a stock. A European call option is an option which

permits you (but does not compel you) to purchase the stock at a fixed future

date ( the maturity date) or for a given predetermined price, the exercise price

of the option). For example a call option with exercise price $10 on a stock

whose future value is denoted S1, is worth on expiry S1 − 10 if S1 > 10 but

nothing at all if S1 < 10. The difference S1 − 10 between the value of the stock

on expiry and the exercise price of the option is your profit if you exercises the

option, purchasing the stock for $10 and sell it on the open market at $S1.

However, if S1 < 10, there is no point in exercising your option as you are

not compelled to do so and your return is $0. In general, your payoff from pur-
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chasing the option is a simple function of the future price of the stock, such as

V (S1) = max(S1 − 10, 0). We denote this by (S1 − 10)+. The future value of

the option is a random variable but it derives its value from that of the stock,

hence it is called a derivative and the stock is the underlying.

A function of the stock price V (S1) which may represent the return from a

portfolio of stocks and derivatives is called a contingent claim. V (S1) repre-

sents the payoff to an investor from a certain financial instrument or derivative

when the stock price at the end of the period is S1. In our simple binomial

example above, the random variable takes only two possible values V (su) and

V (sd). We will show that there is a portfolio, called a replicating portfolio, con-

sisting of an investment solely in the above stock and bond which reproduces

these values V (su) and V (sd) exactly. We can determine the corresponding

weights on the bond and stocks (x, y) simply by solving the two equations in

two unknowns

x(1 + r) + ysu = V (su)

x(1 + r) + ysd = V (sd)

Solving: y∗ = V (su)−V (sd)
su−sd and x∗ = V (su)−y∗su

1+r . By buying y∗ units of

stock and x∗ units of bond, we are able to replicate the contingent claim V (S1)

exactly- i.e. produce a portfolio of stocks and bonds with exactly the same

return as the contingent claim. So in this case at least, there can be only one

possible present value for the contingent claim and that is the present value

of the replicating portfolio x∗ + y∗s. If the market placed any other value

on the contingent claim, then a trader could guarantee a positive return by a

simple trade, shorting the contingent claim and buying the equivalent portfolio

or buying the contingent claim and shorting the replicating portfolio. Thus this

is the only price that precludes an arbitrage opportunity. There is a simpler
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expression for the current price of the contingent claim in this case: Note that

1

1 + r
EQV (S1) =

1

1 + r
(qV (su) + (1− q)V (sd))

=
1

1 + r
(
1 + r − d

u− d
V (su) +

u− (1 + r)

u− d
V (sd))

= x∗ + y∗s.

In words, the discounted expected value of the contingent claim is equal to

the no-arbitrage price of the derivative where the expectation is taken using the

Q-measure. Indeed any contingent claim that is attainable must have its price

determined in this way. While we have developed this only in an extremely

simple case, it extends much more generally.

Suppose we have a total of N risky assets whose prices at times t = 0, 1,

are given by (Sj0, S
j
1), j = 1, 2, ..., N. We denote by S0, S1 the column vector of

initial and final prices

S0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S10

S20

.

.

.

SN0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11

S21

.

.

.

SN1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where at time 0, S0 is known and S1 is random. Assume also there is a riskless

asset (a bond) paying interest rate r over one unit of time. Suppose we borrow

money (this is the same as shorting bonds) at the risk-free rate to buy wj units

of stock j at time 0 for a total cost of
P
wjS

j
0. The value of this portfolio at

time t = 1 is T (w) =
P
wj(S

j
1 − (1 + r)S

j
0). If there are weights wj so that

this sum is always non-negative, and P (T (w) > 0) > 0, then this is an arbitrage

opportunity. Similarly, by replacing the weights wj by their negative −wj ,

there is an arbitrage opportunity if for some weights the sum is non-positive

and negative with positive probability. In summary, there are no arbitrage op-
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portunities if for all weights wj P (T (w) > 0) > 0 and P (T (w) < 0) > 0 so

T (w) takes both positive and negative values. We assume that the moment

generating function M(w) = E[exp(
P
wj(S

j
1 − (1+ r)S

j
0))] exists and is an an-

alytic function of w.Roughly the condition that the moment generating function

is analytic assures that we can expand the function in a series expansion in w.

This is the case, for example, if the values of S1, S0 are bounded. The following

theorem provides a general proof, due to Chris Rogers, of the equivalence of the

no-arbitrage condition and the existence of an equivalent measure Q. Refer to

the appendix for the technical definitions of an equivalent probability measure

and the existence and properties of a moment generating function M(w).

Theorem 2 A necessary and sufficient condition that there be no arbitrage op-

portunities is that there exists a measure Q equivalent to P such that EQ(S
j
1) =

1
1+rS

j
0 for all j = 1, ...,N.

Proof. Define M(w) = E exp(T (w)) = E[exp(
P
wj(S

j
1 − (1 + r)S

j
0))] and

consider the problem

min
w
ln(M(w)).

The no-arbitrage condition implies that for each j there exists ε > 0,

P [Sj1 − (1 + r)S
j
0 > ε] > 0

and therefore as wj →∞ while the other weights wk, k 6= j remain fixed,

M(w) = E[exp(
X

wj(S
j
1−(1+r)S

j
0))] > C exp(wjε)P [S

j
1−(1+r)S

j
0 > ε]→∞ as wj →∞.

Similarly, M(w) → ∞ as wj → −∞. From the properties of a moment gen-

erating function (see the appendix) M(w) is convex, continuous, analytic and

M(0) = 1. Therefore the functionM(w) has a minimum w∗ satisfying ∂M
∂wj

= 0

or

∂M(w)

∂wj
= 0 or (2.3)

E[Sj1 exp(T (w))] = (1 + r)S
j
0E[exp(T (w))]
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or

Sj0 =
E[exp(T (w))Sj1]

(1 + r)E[exp(T (w))]
.

Define a distribution or probability measure Q as follows; for any event A,

Q(A) =
EP [IA exp(w

0S1)]
EP [exp(w0S1)]

.

The Radon-Nikodym derivative (see the appendix) is

dQ

dP
=

exp(w0S1)]
EP [exp(w0S1)]

.

Since ∞ > dQ
dP > 0, the measure Q is equivalent to the original probability mea-

sure P (in the intuitive sense that it has the same support). When we calculate

expected values under this new measure, note that for each j,

EQ(S
j
1) = EP [

dQ

dP
Sj1]

=
EP [S

j
1 exp(w

0S1)]
EP [exp(w0S1)]

= (1 + r)Sj0.

or

Sj0 =
1

1 + r
EQ(S

j
1).

Therefore, the current price of each stock is the discounted expected value of the

future price under this “risk-neutral” measure Q.

Conversely if

EQ(S
j
1) =

1

1 + r
Sj0, for all j (2.4)

holds for some measure Q then EQ[T (w)] = 0 for all w and this implies that the

random variable T (w) is either identically 0 or admits both positive and negative

values. Therefore the existence of the measure Q satisfying (2.4) implies that

there are no arbitrage opportunities.

The so-called risk-neutral measure Q is constructed to minimize the cross-

entropy between Q and P subject to the constraints E(S1 − (1 + r)S0) = 0
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where cross-entropy is defined in Section 1.5. If there N possible values of the

random variables S1 and S0 then (2.3) consists of N equations in N unknowns

and so it is reasonable to expect a unique solution. In this case, the Q measure

is unique and we call the market complete.

The theory of pricing derivatives in a complete market is rooted in a rather

trivial observation because in a complete market, the derivative can be replicated

with a portfolio of other marketable securities. If we can reproduce exactly the

same (random) returns as the derivative provides using a linear combination of

other marketable securities (which have prices assigned by the market) then the

derivative must have the same price as the linear combination of other securities.

Any other price would provide arbitrage opportunities.

Of course in the real world, there are costs associated with trading, these

costs usually related to a bid-ask spread. There is essentially a different price for

buying a security and for selling it. The argument above assumes a frictionless

market with no trading costs, with borrowing any amount at the risk-free bond

rate possible, and a completely liquid market- any amount of any security can be

bought or sold. Moreover it is usually assumed that the market is complete and

it is questionable whether complete markets exist. For example if a derivative

security can be perfectly replicated using other marketable instruments, then

what is the purpose of the derivative security in the market? All models,

excepting those on Fashion File, have deficiencies and critics. The merit of the

frictionless trading assumption is that it provides an accurate approximation

to increasingly liquid real-world markets. Like all useful models, this permits

tentative conclusions that should be subject to constant study and improvement.

Multiperiod Models.

When an asset price evolves over time, the investor normally makes decisions

about the investment at various periods during its life. Such decisions are made
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with the benefit of current information, and this information, whether used

or not, includes the price of the asset and any related assets at all previous

time periods, beginning at some time t = 0 when we began observation of the

process. We denote this information available for use at time t as Ht. Formally,

Ht is what is called a sigma-field (see the appendix) generated by the past, and

there are two fundamental properties of this sigma-field that will use. The first

is that the sigma-fields increase over time. In other words, our information

about this and related processes increases over time because we have observed

more of the relevant history. In the mathematical model, we do not “forget”

relevant information: this model fits better the behaviour of youthful traders

than aging professors. The second property of Ht is that it includes the value

of the asset price Sτ , τ · t at all times τ · t. In measure-theoretic language, St

is adapted to or measurable with respect to Ht. Now the analysis above shows

that when our investment life began at time t = 0 and we were planning for the

next period of time, absence of arbitrage implies a risk-neutral measure Q such

that EQ( 1
1+rS1) = S0. Imagine now that we are in a similar position at time

t, planning our investment for the next unit time. All expected values should

be taken in the light of our current knowledge, i.e. given the information Ht.

An identical analysis to that above shows that under the risk neutral measure

Q, if St represents the price of the stock after t periods, and rt the risk-free

one-period interest rate offered that time, then

EQ(
1

1 + rt
St+1|Ht) = St. (2.5)

Suppose we let Bt be the value of $1 invested at time t = 0 after a total

of t periods. Then B1 = (1 + r0), B2 = (1 + r0)(1 + r1), and in general

Bt = (1+r0)(1+r1)...(1+rt−1). Since the interest rate per period is announced

at the beginning of this period, the value Bt is known at time t − 1. If you

owe exactly $1.00 payable at time t, then to cover this debt you should have an
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investment at time t = 0 of $E(1/Bt), which we might call the present value

of the promise. In general, at time t, the present value of a certain amount

$VT promised at time T (i.e. the present value or the value discounted to the

present of this payment) is

E(VT
Bt
BT
|Ht).

Now suppose we divide (2.5) above by Bt. We obtain

EQ(
St+1
Bt+1

|Ht) = EQ(
1

Bt(1 + rt)
St+1|Ht) =

1

Bt
EQ(

1

1 + rt
St+1|Ht) =

St
Bt
.

(2.6)

Notice that we are able to take the divisor Bt outside the expectation since Bt

is known at time t (in the language of Appendix 1, Bt is measurable with re-

spect to Ht+1). This equation (2.6) describes an elegant mathematical property

shared by all marketable securities in a complete market. Under the risk-neutral

measure, the discounted price Yt = St/Bt forms a martingale. A martingale

is a process Yt for which the expectation of a future value given the present is

equal to the present i.e.

E(Yt+1|Ht) = Yt.for all t. (2.7)

Properties of a martingale are given in the appendix and it is easy to show that

for such a process, when T > t,

E(YT |Ht) = E[...E[E(YT |HT−1)|HT−2]...|Ht] = Yt. (2.8)

A martingale is a fair game in a world with no inflation, no need to consume

and no mortality. Your future fortune if you play the game is a random vari-

able whose expectation, given everything you know at present, is your present

fortune.

Thus, under a risk-neutral measure Q in a complete market, all marketable

securities discounted to the present form martingales. For this reason, we often

refer to the risk-neutral measure as a martingale measure. The fact that prices of
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marketable commodities must be martingales under the risk neutral measure has

many consequences for the canny investor. Suppose, for example, you believe

that you are able to model the history of the price process nearly perfectly, and

it tells you that the price of a share of XXX computer systems increases on

average 20% per year. Should you use this P−measure in valuing a derivative,

even if you are confident it is absolutely correct, in pricing a call option on

XXX computer systems with maturity one year from now? If you do so, you are

offering some arbitrager another free lunch at your expense. The measure Q,

not the measure P , determines derivative prices in a no-arbitrage market. This

also means that there is no advantage, when pricing derivatives, in using some

elaborate statistical method to estimate the expected rate of return because this

is a property of P not Q.

What have we discovered? In general, prices in a market are determined as

expected values, but expected values with respect to the measure Q. This is true

in any complete market, regardless of the number of assets traded in the market.

For any future time T > t, and for any derivative defined on the traded assets

in a market whose value at time t is given by Vt, EQ( Bt

BT
VT |Ht] = Vt = the

market price of the derivative at time t. So in theory, determining a reasonable

price of a derivative should be a simple task, one that could be easily handled

by simulation. Suppose we wish to determine a suitable price for a derivative

whose value is determined by some stock price process St. Suppose that at

time T > t, the value of the derivative is a simple function of the stock price at

that time VT = V (ST ). We may simply generate many simulations of the future

value of the stock and corresponding value of the derivative ST , V (ST ) given the

current store of information Ht. These simulations must be conducted under the

measure Q. In order to determine a fair price for the derivative, we then average

the discounted values of the derivatives, discounted to the present, over all the

simulations. The catch is that the Q measure is often neither obvious from

the present market prices nor statistically estimable from its past. It is given
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implicitly by the fact that the expected value of the discounted future value of

traded assets must produce the present market price. In other words, a first

step in valuing any asset is to determine a measure Q for which this holds. Now

in some simple models involving a single stock, this is fairly simple, and there

is a unique such measure Q. This is the case, for example, for the stock model

above in which the stock moves in simple steps, either increasing or decreasing

at each step. But as the number of traded assets increases, and as the number

of possible jumps per period changes, a measure Q which completely describes

the stock dynamics and which has the necessary properties for a risk neutral

measure becomes potentially much more complicated as the following example

shows.

Solving for the Q Measure.

Let us consider the following simple example. Over each period, a stock price

provides a return greater than, less than, or the same as that of a risk free

investment like a bond. Assume for simplicity that the stock changes by the

factor u(1 + r) (greater) or (1 + r) (the same) d(1 + r)(less) where u > 1 > d =

1/u. The Q probability of increases and decreases is unknown, and may vary

from one period to the next. Over two periods, the possible paths executed by

this stock price process are displayed below assuming that the stock begins at

time t = 0 with price S0 = 1.

[FIGURE 2.1 ABOUT HERE]

In general in such a tree there are three branches from each of the nodes

at times t = 0, 1 and there are a total of 1 + 3 = 4 such nodes. Thus, even

if we assume that probabilities of up and down movements do not depend on

how the process arrived at a given node, there is a total of 3 × 4 = 12 unknown

parameters. Of course there are constraints; for example the sum of the three

probabilities on branches exiting a given node must add to one and the price
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Figure 2.1: A Trinomial Tree for Stock Prices

process must form a martingale. For each of the four nodes, this provides two

constraints for a total of 8 constraints, leaving 4 parameters to be estimated.

We would need the market price of 4 different derivatives or other contingent

claims to be able to generate 4 equations in these 4 unknowns and solve for

them. Provided we are able to obtain prices of four such derivatives, then we

can solve these equations. If we denote the risk-neutral probability of ’up’ at

each of the four nodes by p1, p2, p3, p4 then the conditional distribution of St+1

given St = s is:

Stock value su(1 + r) s(1 + r) sd(1 + r)

Probability pi 1− u−d
1−d pi = 1− kpi

u−1
1−dpi = cpi

Consider the following special case, with the risk-free interest rate per period

r, u = 1.089, S0 = $1.00. We also assume that we are given the price of four

call options expiring at time T = 2. The possible values of the price at time

T = 2 corresponding to two steps up, one step up and one constant, one up

one down, etc. are the values of S(T ) in the set

{1.1859, 1.0890, 1.0000, 0.9183, 0.8432}.

Now consider a “call option” on this stock expiring at time T = 2 with strike
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price K. Such an option has value at time t = 2 equal to (S2 − K) if this is

positive, or zero otherwise. For brevity we denote this by (S2 − K)+. The

present value of the option is EQ(S2 −K)+ discounted to the present, where

K is the exercise price of the option and S2 is the price of the stock at time 2.

Thus the price of the call option at time 0 is given by

V0 = EQ(S2 −K)
+/(1 + r)2

Assuming interest rate r = 1% per period, suppose we have market prices of four

call options with the same expiry and different exercise prices in the following

table;

K =Exercise Price T =Maturity V0 =Call Option Price

0.867 2 0.154

0.969 2 .0675

1.071 2 .0155

1.173 2 .0016

If we can observe the prices of these options only, then the equations to be

solved for the probabilities associated with the measure Q equate the observed

price of the options to their theoretical price V0 = E(S2 −K)+/(1 + r)2.

0.0016 =
1

(1.01)2
(1.186− 1.173)p1p2

0.0155 =
1

(1.01)2
[(1.186− 1.071)p1p2 + (1.089− 1.071){p1(1− kp2) + (1− kp1)p2}]

0.0675 =
1

(1.01)2
[0.217p1p2 + 0.12{p1(1− kp2) + (1− kp1)p2}

+ 0.031{(1− kp1)(1− kp2) + cp1p2 + cp1p4)}

0.154 =
1

(1.01)2
[0.319p1p2 + 0.222{p1(1− kp2) + (1− kp1)p2}

+ 0.133{(1− kp1)(1− kp2) + cp1p2 + cp1p4)}

+ 0.051{{cp1(1− kp4) + (1− kp1)cp3}].
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While it is not too difficult to solve this system in this case one can see that

with more branches and more derivatives, this non-linear system of equations

becomes difficult very quickly. What do we do if we observe market prices for

only two derivatives defined on this stock, and only two parameters can be

obtained from the market information? This is an example of what is called

an incomplete market, a market in which the risk neutral distribution is not

uniquely specified by market information. In general when we have fewer

equations than parameters in a model, there are really only two choices

(a) Simplify the model so that the number of unknown parameters and the

number of equations match.

(b) Determine additional natural criteria or constraints that the parameters

must satisfy.

In this case, for example, one might prefer a model in which the probability

of a step up or down depends on the time, but not on the current price of the

stock. This assumption would force equal all of p2 = p3 = p4 and simplify the

system of equations above. For example using only the prices of the first two

derivatives, we obtain equations, which, when solved, determine the probabilities

on the other branches as well.

0.0016 =
1

(1.01)2
(1.186− 1.173)p1p2

0.0155 =
1

(1.01)2
[(1.186− 1.071)p1p2 + (1.089− 1.071){p1(1− kp2) + (1− kp1)p2}]

This example reflects a basic problem which occurs often when we build a

reasonable and flexible model in finance. Frequently there are more parameters

than there are marketable securities from which we can estimate these parame-

ters. It is quite common to react by simplifying the model. For example, it

is for this reason that binomial trees (with only two branches emanating from

each node) are often preferred to the trinomial tree example we use above, even

though they provide a worse approximation to the actual distribution of stock
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returns.

In general if there are n different securities (excluding derivatives whose value

is a function of one or more of these) and if each security can take any one of m

different values, then there are a total of mn possible states of nature at time

t = 1. The Q measure must assign a probability to each of them. This results in

a total ofmn unknown probability values, which, of course must add to one, and

result in the right expectation for each of n marketable securities. To uniquely

determine Q we would require a total of mn − n− 1 equations or mn − n− 1

different derivatives. For example for m = 10, n = 100, approximately one with

a hundred zeros, a prohibitive number, are required to uniquely determine Q.

In a complete market, Q is uniquely determined by marketed securities, but

in effect no real market can be complete. In real markets, one asset is not

perfectly replicated by a combination of other assets because there is no value

in duplication. Whether an asset is a derivative whose value is determined by

another marketed security, together with interest rates and volatilities, markets

rarely permit exact replication. The most we can probably hope for in practice

is to find a model or measure Q in a subclass of measures with desirable features

under which

EQ[
Bt
BT
V (ST )|Ht] ≈ Vt for all marketable V. (2.9)

Even if we had equalities in (2.9), this would represent typically fewer equa-

tions than the number of unknown Q probabilities so some simplification of the

model is required before settling on a measure Q. One could, at one’s peril,

ignore the fact that certain factors in the market depend on others. Similar

stocks behave similarly, and none may be actually independent. Can we, with

any reasonable level of confidence, accurately predict the effect that a lowering

of interest rates will have on a given bank stock? Perhaps the best model

for the future behaviour of most processes is the past, except that as we have

seen the historical distribution of stocks do not generally produce a risk-neutral
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measure. Even if historical information provided a flawless guide to the future,

there is too little of it to accurately estimate the large number of parameters

required for a simulation of a market of reasonable size. Some simplification of

the model is clearly necessary. Are some baskets of stocks independent of other

combinations? What independence can we reasonably assume over time?

As a first step in simplifying a model, consider some of the common measures

of behaviour. Stocks can go up, or down. The drift of a stock is a tendency in

one or other of these two directions. But it can also go up and down- by a lot

or a little. The measure of this, the variance or variability in the stock returns

is called the volatility of the stock. Our model should have as ingredients these

two quantities. It should also have as much dependence over time and among

different asset prices as we have evidence to support.

Determining the Process Bt.

We have seen in the last section that given theQ or risk-neutral measure, we can,

at least in theory, determine the price of a derivative if we are given the price Bt

of a risk-free investment at time t (in finance such a yardstick for measuring and

discounting prices is often called a “numeraire”). Unfortunately no completely

liquid risk-free investment is traded on the open market. There are government

treasury bills which, depending on the government, one might wish to assume

are almost risk-free, and there are government bonds, usually with longer terms,

which complicate matters by paying dividends periodically. The question dealt

with in this section is whether we can estimate or approximate an approximate

risk-free process Bt given information on the prices of these bonds. There are

typically too few genuinely risk-free bonds to get a detailed picture of the process

Bs, s > 0. We might use government bonds for this purpose, but are these

genuinely risk-free? Might not the additional use of bonds issued by other large

corporations provide a more detailed picture of the bank account process Bs?
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Can we incorporate information on bond prices from lower grade debt? To

do so, we need a simple model linking the debt rating of a given bond and the

probability of default and payoff to the bond-holders in the event of default. To

begin with, let us assume that a given basket of companies, say those with a

common debt rating from one of the major bond rating organisations, have a

common distribution of default time. The thesis of this section is that even if

no totally risk-free investment existed, we might still be able to use bond prices

to estimate what interest rate such an investment would offer.

We begin with what we know. Presumably we know the current prices of

marketable securities. This may include prices of certain low-risk bonds with

face value F , the value of the bond on maturity at time T. Typically such a bond

pays certain payments of value dt at certain times t < T and then the face value

of the bond F at maturity time T, unless the bond-holder defaults. Let us assume

for simplicity that the current time is 0. The current bond prices P0 provide some

information on Bt as well as the possibility of default. Suppose we let τ denote

the random time at which default or bankruptcy would occur. Assume that the

effect of possible default is to render the payments at various times random so

for example dt is paid provided that default has not yet occurred, i.e. if τ > t,

and similarly the payment on maturity is the face value of the Bond F if default

has not yet occurred and if it has, some fraction of the face value pF is paid.

When a real bond defaults, the payout to bondholders is a complicated function

of the hierarchy of the bond and may occur before maturity, but we choose this

model with payout at maturity in any case for simplicity. Then the current

price of the bond is the expected discounted value of all future payments, so

P0 = EQ(
X

{s;0<s<T}

1

Bs
dsI(τ > s) +

pF

BT
I(τ · T ) +

F

BT
I(τ > T ))

=
X

{s;0<s<T}
dsEQ[B

−1
s I(τ > s)] + FEQ[B

−1
T (p+ (1− p)I(τ > T ))]
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The bank account process Bt that we considered is the compounded value at

time of an investment of $1 deposited at time 0. This value might be random

but the interest rate is declared at the beginning of each period so, for example,

Bt is completely determined at time t− 1. In measure-theoretical language, Bt

is Ht−1 measurable for each t. With Q is the risk-neutral distribution

P0 = EQ{
X

{s;0<s<T}
dsB

−1
s Q(τ > s|Hs−1)+FB−1T (p+(1− p)Q(τ > T |HT−1))}.

This takes a form very similar to the price of a bond which does not default but

with a different bank account process. Suppose we define a new bank account

process fBs, equivalent in expectation to the risk-free account, but that only
pays if default does not occur in the interval. Such a process must satisfy

EQ(fBsI(τ > s)|Hs−1) = Bs.
From this we see that the process fBs is defined by

fBs = Bs
Q[τ > s|Hs−1]

on the set Q[τ > s|Hs−1] > 0.

In terms of this new bank account process, the price of the bond can be rewritten

as

P0 = EQ{
X

{s;0<s<T}
ds
gB−1s + (1− p)FgB−1T + pFB−1T }.

If we subtract from the current bond price the present value of the guaranteed

payment of pF, the result is

P0 − pFEQ(B
−1
T ) = EQ{

X
{s;0<s<T}

ds
gB−1s + (1− p)FgB−1T }.

This equation has a simple interpretation. The left side is the price of the

bond reduced by the present value of the guaranteed payment on maturity Fp.

The right hand side is the current value of a risk-free bond paying the same

dividends, with interest rates increased by replacing Bs by fBs and with face

value F (1 − p) all discounted to the present using the bank account process
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fBs. In words, to value a defaultable bond, augment the interest rate using the

probability of default in intervals, change the face value to the potential loss of

face value on default and then add the present value of the guaranteed payment

on maturity.

Typically we might expect to be able to obtain prices of a variety of bonds

issued on one firm, or firms with similar credit ratings. If we are willing to

assume that such firms share the same conditional distribution of default time

Q[τ > s|Hs−1] then they must all share the same process fBs and so each

observed bond price P0 leads to an equation of the form

P0 =
X

{s;0<s<T}
ds evs + (1− p)FgB−1T + pFvT .

in the unknowns evs = EQ(
gB−1s ), ...s · T. and vT = EQ(B

−1
T ). If we assume

that the coupon dates of the bonds match, then k bonds of a given maturity

T and credit rating will allow us to estimate the k unknown values of evs. Since
the term vT is included in all bonds, it can be estimated from all of the bond

prices, but most accurately from bonds with very low risk.

Unfortunately, this model still has too many unknown parameters to be

generally useful. We now consider a particular case that is considerably simpler.

While it seems unreasonable to assume that default of a bond or bankruptcy

of a firm is unrelated to interest rates, one might suppose some simple model

which allows a form of dependence. For most firms, one might expect that

the probability of survival another unit time is negatively associated with the

interest rate. For example we might suppose that the probability of default in

the next time interval conditional on surviving to the present is a function of

the current interest rate, for example

ht = Q(τ = t|τ ≥ t, rt) =
a+ (b− 1)rt
1 + a+ brt

.

The quantity ht is a more natural measure of the risk at time t than are

other measures of the distribution of τ and the function ht is called the hazard
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function. If the constant b > 1+a, then the“hazard” ht increases with increasing

interest rates, otherwise it decreases. In case the default is independent of the

interest rates, we may put b = 1+a in which case the hazard is a/(1+a). Then

on the set [τ ≥ s]

fBs = 1 + rs
1− hs

eBs−1 = (1 + a+ brs) eBs−1
which means that the bond is priced using a similar bank account process but

one for which the effective interest rate is not rs but a + brs. The difference

a+ (b− 1)rs between the effective interest rate and rs is usually referred to as

the spread and this model justifies using a linear function to model this spread.

Now suppose that default is assumed independent of the past history of interest

rates under the risk-neutral measure Q. In this case, b = 1+ a and the spread

is a(1 + rs) ' a ' a/(1 + a) provided both a and rs is small. So in this case

the spread gives an approximate risk-neutral probability of default in a given

time interval, conditional on survival to that time.

We might hope that the probabilities of default are very small and follow a

relatively simple pattern. If the pattern is not perfect, then little harm results

provided that indeed the default probabilities are small. Suppose for example

that the time of default follows a geometric distribution so that the hazard is

constant ht = h = a/(1 + a). Then

fBs = (1 + a)sBs for s > 0.
fBs grows faster than Bs and it grows even faster as the probability of default h
increases. The effective interest rate on this account is approximately a units

per period higher.

Given only three bond prices with the same default characteristics, for ex-

ample, and assuming constant interest rates so that Bs = (1+r)s, we may solve

for the values of the three unknown parameters (r, a, p) equations of the form
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P0 − pF (1 + r)
−T =

X
0<s<T

(1 + a+ r + ar)−sds + (1− p)F (1 + a+ r + ar)−T .

Market prices for a minimum of three different bonds would allow us to solve

for the unknowns (r, a, p) and these are obtainable from three different bonds.

MinimumVariance Portfolios and the Capital As-

set Pricing Model.

Let us begin by building a model for portfolios of securities that captures many

of the features of market movements. We assume that by using the methods of

the previous section and the prices of low-risk bonds, we are able to determine

the value Bt of a risk-free investment at time t in the future. Normally these

values might be used to discount future stock prices to the present. However

for much of this section we will consider only a single period and the analysis

will be essentially the same with our without this discounting.

Suppose we have a number n of potential investments or securities, each

risky in the sense that prices at future dates are random. Suppose we denote

the price of these securities at time t by Si(t), i = 1, 2, ..., n. There is a better

measure of the value of an investment than the price of a security or even the

change in the price of a security Si(t)−Si(t−1) over a period because this does

not reflect the cost of our initial investment. A common measure on investments

that allows to obtain prices, but is more stable over time and between securities

is the return. For a security that has prices Si(t) and Si(t+1) at times t and

t+ 1, we define the return Ri(t+ 1) on the security over this time interval by

Ri(t+ 1) =
Si(t+ 1)− Si(t)

Si(t)
.

For example a stock that moved in price from $10 per share to $11 per share

over a period of time corresponds to a return of 10%. Returns can be measured
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in units that are easily understood (for example 5% or 10% per unit time) and

are independent of the amount invested. Obviously the $1 profit obtained on

the above stock could has easily been obtained by purchasing 10 shares of a

stock whose value per share changed from $1.00 to $1.10 in the same period

of time, and the return in both cases is 10%. Given a sequence of returns and

the initial value of a stock Si(0), it is easy to obtain the stock price at time t

from the initial price at time 0 and the sequence of returns.

Si(t) = Si(0)(1 +Ri(1))(1 +Ri(2))...(1 +Ri(t))

= Si(0)Π
t
s=1(1 +Ri(s)).

Returns are not added over time they are multiplied as above. A 10% return

followed by a 20% return is not a 30% return but a return equal to (1+ .1)(1+

.2)− 1 or 32%. When we buy a portfolio of stocks, the individual stock returns

combine in a simple fashion to give the return on the whole portfolio. For

example suppose that we wish to invest a total amount $I(t) at time t. The

amounts will change from period to period because we may wish to reinvest

gains or withdraw sums from the account. Suppose the proportion of our total

investment in stock i at time t is wi(t) so that the amount invested in stock i is

wi(t)I(t). Note that since wi(t) are proportions,
Pn
i=1wi(t) = 1. What is the

return on this investment over the time interval from t to t+ 1? At the end of

this period of time, the value of our investment is

I(t)
nX
i=1

wi(t)Si(t+ 1).

If we now subtract the value invested at the beginning of the period and divide

by the value at the beginning, we obtain

I(t)
Pn

i=1wi(t)Si(t+ 1)− I(t)
Pn
i=1wi(t)Si(t)

I(t)
Pn

i=1 wi(t)Si(t)
=

nX
i=1

wi(t)Ri(t+ 1)

which is just a weighted average of the individual stock returns. Note that it

does not depend on the initial price of the stocks or the total amount that we
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invested at time t. The advantage in using returns instead of stock prices to

assess investments is that the return of a portfolio over a period is a value-

weighted average of the returns of the individual investments.

When time is measured continuously, we might consider defining returns by

using the definition above for a period of length h and then reducing h. In other

words we could define the instantaneous returns process as

lim
h→0

Si(t+ h)− Si(t)

Si(t)
.

In most cases, the returns over shorter and shorter periods are smaller and

smaller, and approach the limit zero so some renormalization is required above.

It seems more sensible to consider returns per unit time and then take a limit

i.e.

Ri(t) = lim
h→0

Si(t+ h)− Si(t)

hSi(t)
.

Notice that by the definition of the derivative of a logarithm and assuming that

this derivative is well-defined,

d ln(Si(t))

dt
=

1

Si(t)

d

dt
Si(t)

= lim
h→0

Si(t+ h)− Si(t)

hSi(t)

= Ri(t)

In continuous time, if the stock price process Si(t) is differentiable, the natural

definition of the returns process is the derivative of the logarithm of the stock

price. This definition needs some adjustment later because the most common

continuous time models for asset prices does not result in a differentiable process

Si(t). The solution we will use then will be to adopt a new concept of an integral

and recast the above in terms of this integral.
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The Capital Asset Pricing Model (CAPM)

We now consider a simplified model for building a portfolio based on quite basic

properties of the potential investments. Let us begin by assuming a single period

so that we are planning at time t = 0 investments over a period ending at time

t = 1.We also assume that investors are interested in only two characteristics of

a potential investment, the expected value and the variance of the return over

this period. We have seen that the return of a portfolio is the value-weighted

average of the returns of the individual investments so let us denote the return

on stock i by

Ri =
Si(1)− Si(0)

Si(0)
,

and define µi = E(Ri) and wi the proportion of my total investment in stock i

at the beginning of the period. For brevity of notation, let R,w and µ denote

the column vectors

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1

R2

.

.

.

Rn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

.

.

.

wn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, µ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1

µ2

.

.

.

µn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the return on the portfolio is
P
iwiRi or in matrix notation w

0R. Let us

suppose that the covariance matrix of returns is the n × n matrix Σ so that

cov(Ri, Rj) = Σij .

We will frequently use the following properties of expected value and covariance.
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Lemma 3 Suppose

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1

R2

.

.

.

Rn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a column vector of random variables Ri with E(Ri) = µi, i = 1, ..., n and

suppose R has covariance matrix Σ. Suppose A is a non-random vector or matrix

with exactly n columns so that AR is a vector of random variables. Then AR

has mean Aµ and covariance matrix AΣA0.

Then it is easy to see that the expected return from the portfolio with weights

wi is
P
iwiE(Ri) =

P
iwiµi = w

0µ and the variance is

var(w0R) = w0Σw.

We will need to assume that the covariance matrix Σ is non-singular, that

is it has a matrix inverse Σ−1. This means, at least for the present, that our

model covers only risky stocks for which the variance of returns is positive. If

a risk-free investment is available (for example a secure bond whose return is

known exactly in advance), this will be handled later.

In the Capital Asset Pricing model it is assumed at the outset that investors

concentrate on two measures of return from a portfolio, the expected value and

standard deviation. These expected values and variances are computed under

the real-world probability distribution P not under some risk-neutralQmeasure.

Clearly investors prefer high expected return, wherever possible, associated with

small standard deviation of return. As a first step in this direction suppose we

plot the standard deviation and expected return for the n stocks, i.e. the n

points {(σi, µi), i = 1, 2, ..., n} where µi = E(Ri) and σi =
p
var(Ri) =

√
Σii.

These n points do not consist of the set of all achievable values of mean and
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standard of return, since we are able to construct a portfolio with a certain

proportion of our wealth wi invested in stock i.In fact the set of possible points

consists of

{(
√
w0Σw,w0µ) as the vector w ranges over all possible weights such that

X
wi = 1}.

The resulting set has a boundary as in Figure 2.2.
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Figure 2.2: The Efficient Frontier

[FIGURE 2.2 ABOUT HERE]

Exactly what form this figure takes depends in part on the assumptions ap-

plied to the weights. Since they represent the proportion of our total investment

in each of n stocks they must add to one. Negative weights correspond to selling

short one stock so as to be able to invest more in another, and we may assume

no limit on our ability to do so. In this case the only constraint on w is the

constraint
P
wi = 1. With this constraint alone, we can determine the bound-

ary of the admissible set by fixing the vertical component (the mean return) of

a portfolio at some value say η and then finding the minimum possible standard
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deviation corresponding to that mean. This allows us to determine the leading

edge or left boundary of the region. The optimisation problem is as follows

min
√
w0Σw subject to

subject to the two constraints on the weights

w01 = 1

w0µ = η.

where 1 is the column vector of n ones. Since we will often make use of the

method of Lagrange multipliers for constrained problems such as this one, we

interject a lemma justifying the method. For details, consult Apostol (1973),

Section 13.7 or any advanced calculus text.

Lemma 4 Consider the optimisation problem

min{f(w);w ∈ Rn} subject to p constraints (2.10)

of the form g1(w) = 0, g2(w) = 0, ..., gp(w) = 0.

Then provided the functions f, g1, ..., gp are continuously differentiable, a nec-

essary solution for a solution to (2.10) is that there is a solution in the n + p

variables (w1, ...wn,λ1, ...,λp) of the equations

∂

∂wi
{f(w) + λ1g1(w) + ...+ λpgp(w)} = 0, i = 1, 2, ..., n

∂

∂λj
{f(w) + λ1g1(w) + ...+ λpgp(w)} = 0, j = 1, 2, ..., p.

This constants λiare called the Lagrange multipliers and the function that

is differentiated, {f(w) + λ1g1(w) + ...+ λpgp(w)} is the Lagrangian.

Let us return to our original minimization problem with one small simplifi-

cation. Since minimizing
√
w0Σw results in the same weight vector w as does

minimizing w
0
Σw we choose the latter as our objective function.
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We introduce Lagrange multipliers λ1,λ2 and we wish to solve

∂

∂wi
{w

0
Σw + λ1(w

01− 1) + λ2(w
0µ− η)} = 0, i = 1, 2, ..., n

∂

∂λj
{w

0
Σw + λ1(w

01− 1) + λ2(w
0µ− η)} = 0, j = 1, 2.

The solution is obtained from the simple differentiation rule

∂

∂w
w0Σw = 2Σw and

∂

∂w
µ0w = w

and is of the form

w = λ1Σ
−11+λ2Σ−1µ

with the Lagrange multipliers λ1,λ2chosen to satisfy the two constraints, i.e.

λ11
0Σ−1µ+ λ21

0Σ−11 = 1

λ1µ
0Σ−1µ+ λ2µ

0Σ−11 = η.

Suppose we define an n × 2 matrix M with columns 1 and µ,

M = [ 1 µ ]

and the 2 × 2 matrix A = (M 0Σ−1M)−1, then the Lagrange multipliers are

given by the vector

λ =

⎛⎝ λ1

λ2

⎞⎠ = A
⎡⎣ 1

η

⎤⎦
and the weights by the vector

w = Σ−1MA

⎡⎣ 1

η

⎤⎦ . (2.11)

We are now in a position to identify the boundary or the curve in Figure 2.2.

As the mean of the portfolio η changes, the point takes the form (
√
w0Σw, η)
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with w given by (2.11). Notice that

w
0
Σw = [ 1 η ]A

0M 0Σ−1ΣΣ−1MA

⎡⎣ 1

η

⎤⎦
= [ 1 η ]A

0M 0Σ−1MA

⎡⎣ 1

η

⎤⎦
= [ 1 η ]A

⎡⎣ 1

η

⎤⎦
= A11 + 2A12η +A22η

2.

Therefore a point on the boundary (σ, η) = (
√
w0Σw, η) satisfies

σ2 − A22η
2 − 2A12η − A11 = 0

or

σ2 = A22η
2 + 2A12η +A11

= σ2g +A22(η − ηg)
2

where

ηg = −
A12
A22

=
10Σ−1µ
10Σ−11

(2.12)

σ2g = A11 −
A212
A22

=
|A|

A22

=
1

10Σ−11
. (2.13)

and the point (σg, µg) represents the point in the region corresponding to the

minimum possible standard deviation over all portfolios. This is the most

conservative investment portfolio available with this class of securities. What

weights to do we need to put on the individual stocks to achieve this conservative

portfolio? It is easy to see that the weight vector is given by

w0g =
10Σ−1

10Σ−11
(2.14)
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and since the quantity 10Σ−11 in the denominator is just a scale factor to insure

that the weights add to one, the amount invested in stock i is proportional to

the sum of the elements of the i’th row of the inverse covariance matrix Σ−1.

An equation of the form

σ2 − A22(η − ηg)
2 = σ2g

represents a hyperbola since A22 > 0. Of course investors are presumed to prefer

higher returns for a given value of the standard deviation of portfolio so it is

only the upper boundary of this curve in Figure 2.2 that is efficient in the sense

that there is no portfolio that is strictly better (better in the sense of higher

return combined with standard deviation that is not larger).

Now let us return to a portfolio whose standard deviation and mean return

lie on the efficient frontier. Let us call these efficient portfolios. It turns out

that any portfolio on this efficient frontier has the same covariance with the

minimum variance portfolio w0gR derived above.

Proposition 5 Every efficient portfolio has the same covariance 1
10Σ−11 with

the conservative portfolio w0gR.

Proof. We noted before that such a portfolio has mean return η and stan-

dard deviation σ which satisfy the relation

σ2 − A22η
2 − 2A12η − A11 = 0.

Moreover the weights for this portfolio are described by

w = Σ−1MA

⎡⎣ 1

η

⎤⎦ . (2.15)

so the returns vector from this portfolio can be written as

w0R = [ 1 η ]AM
0Σ−1R.
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It is interesting to observe that the covariance of returns between this efficient

portfolio and the conservative portfolio w
0
gR is given by

cov(w
0
gR, [ 1 η ]AM

0Σ−1R)= [ 1 η ]AM
0Σ−1Σwg

= [ 1 η ]A

⎡⎣ 10
µ0

⎤⎦Σ−11 1

10Σ−11

= [ 1 η ]A

⎡⎣ 10Σ−11
µ0Σ−11

⎤⎦ 1

10Σ−11

= [ 1 η ]

⎡⎣ 1
0

⎤⎦ 1

10Σ−11

=
1

10Σ−11

where we use the fact that, by the definition of A,

A

⎡⎣ 10Σ−11 µ0Σ−11

µ0Σ−11 µ0Σ−1µ

⎤⎦ =
⎡⎣ 1 0

0 1

⎤⎦ .

Now consider two portfolios on the boundary in Figure 2.2. For each the

weights are of the same form, say

wp = Σ
−1MA

⎡⎣ 1

ηp

⎤⎦ and wq = Σ
−1MA

⎡⎣ 1

ηq

⎤⎦ (2.16)

where the mean returns are ηp and ηq respectively. Consider the covariance

between these two portfolios

cov(w0pR,w
0
qR) = w

0
pΣwq

= [ 1 ηp ](M 0Σ−1M)−1

⎡⎣ 1

ηq

⎤⎦
= A11 +A12(ηp + ηq) +A22ηpηq

= var(w0pR)− [ 1 ηp ]A

⎡⎣ 0

ηp − ηq

⎤⎦
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An interesting special portfolio that is a “zero-beta” portfolio, one that is

perfectly uncorrelated with the portfolio with weights w0pR. This is obtained by

setting the above covariance equal to 0 and solving we obtain

ηq = −
A11 +A12ηp
A12 +A22ηp

=
µ0Σ−1µ− (µ0Σ−11)ηp
µ0Σ−11− (10Σ−11)ηp

.

There is a simple method for determining the point (, ηq) graphically indicated

in Figure ??. From the equation relating points on the boundary,

σ2 − A22(η − ηg)
2 = σ2g

we obtain

∂η

∂σ
=

σ

A22(η − ηg)

and so the tangent line at the point (σp, ηp) strikes the σ = 0 axis at a point

ηq which satisfies

ηp − ηq
σp

=
σp

A22(ηp − ηg)

or

ηq = ηp −
σ2p

A22(ηp − ηg)

= ηp −
A22η

2
p + 2A12ηp +A11

A22ηp +A12

= −
A11 +A12ηp
A12 +A22ηp

. (2.17)

Note that this is exactly the same mean return obtained earlier for the portfolio

which has zero covariance with w0
pR. This shows that we can find the standard

deviation and mean of this uncorrelated portfolio by constructing the tangent

line at the point (σp, ηp) and then setting ηq to be the y-coordinate of the

point where this tangent line strikes the σ = 0 axis as in Figure 2.3.

[FIGURE 2.3 ABOUT HERE]
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Figure 2.3: The tangent line at the point (σp, ηp)

Now suppose that there is available to all investors a risk-free investment.

Such an investment typically has smaller return than those on the efficient

frontier but since there is no risk associated with the investment, its standard

deviation is 0. It may be a government bond or treasury bill yielding interest

rate r so it corresponds to a point in Figure 2.4 at (0, r). Since all investors are

able to include this in their portfolio, the efficient frontier changes. In fact if

an investor invests an amount β in this risk-free investment and amount 1 − β

(this may be negative) in the risky portfolio with standard deviation and mean

return (σp, ηp) then the resulting investment has mean return

E(βr + (1− β)w0
pR) = βr+(1− β)ηp

and standard deviation of returnq
V ar(βr + (1− β)w0

pR) = (1− β)σp.

This means that every point on a line joining (0, r) to points in the risky portfolio

are now attainable and so the new set of attainable values of (σ, η) consists of a

cone with vertex at (0, r),the region shaded in Figure 2.4. The efficient frontier
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Figure 2.4: _____

is now the line L in Figure 2.4. The point m is the point at which this line is

tangent to the efficient frontier determined from the risky investments. Under

this theory, this point has great significance.

[FIGURE 2.4 ABOUT HERE]

Lemma 6 The value-weighted market average corresponds to the point of tan-

gency m of the line to the risky portfolio efficient frontier.

From (2.17) the point m has standard deviation, mean return ηm which

solves

r = −
A11 +A12ηm
A12 +A22ηm

=
µ0Σ−1µ− (µ0Σ−11)ηm
µ0Σ−11− (10Σ−11)ηm

and this gives

ηm =
µ0Σ−1µ− r(µ0Σ−11)
µ0Σ−11− r(10Σ−11)

.
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The corresponding weights on individual stocks are given by

wm = Σ
−1MA

⎡⎣ 1

ηm

⎤⎦ .
= Σ−1[1 µ]

⎡⎣ A11 +A12ηm
A12 +A22ηm

⎤⎦
= cΣ−1[1 µ]

⎡⎣ −r
1

⎤⎦ , where c = A12 +A22ηm
= cΣ−1(µ−r1).

These market weights depend essentially on two quantities. If R denotes the

correlation matrix

Rij =
Σij
σiσj

where σi =
√
Σii is the standard deviation of the returns from stock i, and

λi =
µi − r

σi

is the standardized excess return or the price of risk, then the weight wi on

stock i is such that

wiσi ∝ R−1λ (2.18)

with λ the column vector of values of λi. For the purpose of comparison, recall

that the conservative portfolio, one minimizing the variance over all portfolios

of risky stocks, has weights

wg ∝ Σ−11

which means that the weight on stock i satisfies a relation exactly like (2.18)

except that the mean returns µi have all been replaced by the same constant.

Let us suppose that stocks, weighed by their total capitalization in the mar-

ket result in some weight vector w 6= wm.When there is a risk-free investment,

m is the only point in the risky stock portfolio that lies in the efficient frontier

and so evidently if we are able to trade in a market index (a stock whose value
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depends on the total market), we can find an investment which is a combination

of the risk-free investment with that corresponding to m which has the same

standard deviation as w0R but higher expected return. By selling short the

market index and buying this new portfolio, an arbitrage is possible. In other

words, the market will not stay in this state for long.

If the market portfolio m has standard deviation σm and mean ηm, then

the line L is described by the relation

η = r +
ηm − r

σm
σ.

For any investment with mean return η and standard deviation of return σ

to be competitive, it must lie on this efficient frontier, i.e. it must satisfy the

relation

η − r = β(ηm − r), where β =
σ

σm
or equivalently (2.19)

η − r

σ
=
(ηm − r)

σm
.

This is the most important result in the capital asset pricing model. The excess

return of a stock η−r divided by its standard deviation σ is supposed constant,

and is called the Sharpe ratio or the market price of risk. The constant β called

the beta of the stock or portfolio and represents the change in the expected

portfolio return for each unit change in the market. It is also the ratio of the

standard deviations of return of the stock and the market. Values of β > 1

indicate a stock that is more variable than the market and tends to have higher

positive and negative returns, whereas values of β < 1 are investments that are

more conservative and less volatile than the market as a whole.

We might attempt to use this model to simplify the assumed structure of

the joint distribution of stock returns. One simple model in which (2.19) holds

is one in which all stocks are linearly related to the market index through a

simple linear regression. In particular, suppose the return from stock i, Ri, is
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related to the return from the market portfolio Rm by

Ri − r = βi(Rm − r) + ²i, where βi =
σi
σm
, and σ2i = Σii.

The “errors” ²i are assumed to be random variables, uncorrelated with the

market returns Rm. This model is called the single-index model relating the

returns from the stock Ri and from the market portfolio Rm.It has the merit

that the relationship (2.19) follows immediately.

Taking variance on both sides, we obtain

var(Ri) = β2i var(Rm) + var(²i) = σ2i + var(²) > σ2i

which contradicts the assumption that var(Ri) = σ2i . What is the cause of this

contradiction? The relationship (2.19) assumes that the investment lies on the

efficient frontier. Is this not a sufficient condition for investors to choose this

investment? All that is required for rational investors to choose a particular

stock is that it forms part of a portfolio which does lie on the efficient frontier.

Is every risk in an efficient market rewarded with additional expected return?

We cannot expect the market to compensate us with a higher rate of return for

additional risks that could be diversified away. Suppose, for example, we have

two stocks with identical values of β. Suppose their returns R1and R2 both

satisfy a linear regression relation above

Ri − r = β(Rm − r) + ²i, i = 1, 2,

where cov(²1, ²2) = 0. Consider an investment of equal amounts in both stocks

so that the return is

R1 +R2
2

= β(Rm − r) +
²1 + ²2
2

.

For simplicity assume that σ1 · σ2 and notice that the variance of this new

investment is

β2σ2m +
1

4
[var(²1) + var(²2)] < var(R2).
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The diversified investment consisting of the average of the two results in the

same mean return with smaller variance. Investors should not compensated for

the additional risk in stock 2 above the level that we can achieve by sensible

diversification. In general, by averaging or diversifying, we are able to provide

an investment with the same average return characteristics but smaller variance

than the original stock. We say that the risk (i.e. var(²i)) associated with

stock i which can be diversified away is the specific risk, and this risk is not

rewarded with increased expected return. Only the so-called systematic risk σi

which cannot by removed by diversification is rewarded with increased expected

return with a relation like (2.19).

The covariance matrix of stock returns is one of the most difficult parameters

to estimate in practice form historical data. If there are n stocks in a market

(and normally n is large), then there are n(n+ 1)/2 elements of Σ that need

to be estimated. For example if we assume all stocks in the TSE 300 index

are correlated this results in a total of (300)(301)/2 = 45, 150 parameters

to estimate. We might use historical data to estimate these parameters but

variances and covariances among stocks change over time and it is not clear

over what period of time we can safely use to estimate these parameters. In

spite of its defects, the single index model can be used to provide a simple

approximate form for the covariance matrix Σ of the vector of stock returns.

Notice that under the model, assuming uncorrelated random errors ²i with

var(²i) = δi,

Ri − r = βi(Rm − r) + ²i,

we have

cov(Ri, Rj) = βiβjσ
2
m, i 6= j, var(Ri) = β2i σ

2
m + δi.

Whereas n stocks would otherwise require a total of n(n+1)/2 parameters in

the covariance matrix Σ of returns, the single index model allows us to reduce

this to the n+1 parameters σ2m, and δi, i = 1, ..., n. There is the disadvantage
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in this formula however that every pair of stocks in the same market must be

positively correlated, a feature that contradicts some observations of real market

returns.

Suppose we use this form Σ = ββ0σ2m+∆, to estimate weights on individual

stocks, where ∆ is the diagonal matrix with the δi along the diagonal and β

is the column vector of individual stock betas. In this case Σ−1 = ∆−1 +

c∆−1ββ0∆−1 where

c =
−1

σ−2m +
P

i β
2
i /δi

= −σ2m
1

1 +
P

i β
2
i σ

2
m/δi

and consequently the conservative investor by (2.14) invests in stock i propor-

tionally to the components of Σ−11

or to
1

δi
+ cβi(

X
j

βj/δj)

or proportional to βi +
1

cδi(
P
j βj/δj)

The conditional variance of Ri given the market return Rm is δi. Let us call this

the excess volatility for stock i. Then the weights for the conservative portfolio

are linear in the beta for the stock and the reciprocal of the excess volatility.

The weights in the market portfolio are given by

wm = Σ
−1MA

⎡⎣ 1

ηp

⎤⎦ = (∆−1 + c∆−1ββ0∆−1)[ 1 µ ](M 0Σ−1M)−1

⎡⎣ 1

ηp

⎤⎦
Minimum Variance under Q.

Suppose we wish to find a portfolios of securities which has the smallest possible

variance under the risk neutral distribution Q. For example for a given set of

weights wi(t) representing the number of shares held in security i at time t,

define the portfolio Π(t) =
P
wi(t)Si(t). Recall from Section 2.1 that under

a risk neutral distribution, all stocks have exactly the same expected return

as the risk-free interest rate so the portfolio Π(t) will have exactly the same
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conditional expected rate of return under Q as all the constituent stocks,

EQ[Π(t+1)|Ht] =
X
i

wi(t)EQ[Si(t+1)|Ht] =
X
i

wi(t)
B(t+ 1)

B(t)
Si(t) =

B(t+ 1)

B(t)
Π(t).

Since all portfolios have the same conditional expected return under Q, we

might attempt to minimize the (conditional) variance of the portfolio return of

the portfolio. The natural constraint is that the cost of the portfolio is deter-

mined by the amount c(t) that we presently have to invest. We might assume

a constant investment over time, for example c(t) = 1 for all t. Alternatively,

we might wish to study a self-financing portfolio Π(t), one for which past gains

(or perish the thought, past losses) only are available to pay for the current

portfolio so we neither withdraw from nor add money to the portfolio over its

lifetime. I this case c(t) = Π(t). We wish to minimise

varQ[Π(t+ 1)|Ht] subject to the constraint
X
i

wi(t)Si(t) = c(t).

As before, the solution is quite easy to obtain, and in fact the weights are

given by the vector

w(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1(t)

w2(t)

.

.

.

wn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

c(t)

S0(t)Σ−1t S(t)
Σ−1t S(t).

where Σt = varQ(S(t + 1)|Ht) is the instantaneous conditional covariance

matrix of S(t) under the measureQ. If my objective were to minimize risk under

the Q measure, then this portfolio is optimal for fixed cost. The conditional

variance of this portfolio is given by

varQ(Π(t+ 1)|Ht) = w
0(t)Σtw(t) =

c2(t)

S0(t)Σ−1t S(t)
.
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In terms of the portfolio return RΠ(t + 1) =
Π(t+1)−Π(t)

Π(t) , if the portfolio is

self-financing so that c(t) = Π(t), the above relation states that the conditional

variance of the return RΠ(t+ 1) given the past is simply

varQ(RΠ(t+ 1)|Ht) =
1

S0(t)Σ−1t S(t)

which is similar to the form of the variance of the conservative portfolio (2.13).

Similarly, covariances between returns for individual stocks and the return

of the portfolio Π are given by exactly the same quantity, namely

cov(Ri(t+ 1), RΠ(t+ 1)|Ht) =
1

S0(t)Σ−1t S(t)
.

Let us summarize our findings so far. We assume that the conditional co-

variance matrix Σt of the vector of stock prices is non-singular. Under the risk

neutral measure, all stocks have exactly the same expected returns equal to the

risk-free rate. There is a unique self-financing minimum-variance portfolio Π(t)

and all stocks have exactly the same conditional covariance β with Π. All stocks

have exactly the same regression coefficient β when we regress on the minimum

variance portfolio.

Are other minimum variance portfolios conditionally uncorrelated with the

portfolio we obtained above. Suppose we define Π2(t) similarly to minimize the

variance subject to the condition that CovQ(Π2(t+ 1),Π(t+ 1)|Ht) = 0. It is

easy to see that this implies that the cost of such a portfolio at the beginning

of each period is 0. This means that in this new portfolio, there is a perfect

balance between long and short stocks, or that the value of the long and short

stocks are equal.

The above analysis assumes that our objective is minimizing the variance

of the portfolio under the risk-neutral distribution Q. Two objections could be

made. First we argued earlier that the performance of an investment should be

made through the returns , not through the stock prices. Since under the risk

neutral measure Q, the expected return from every stock is the risk-free rate of
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return, we are left with the problem of minimizing the variance of the portfolio

return. By our earlier analysis, this is achieved when the proportion of our

total investment at each time period in stock i is chosen as the corresponding

component of the vector Σ−1t 1

10Σ−1t 1
where now Σt is the conditional covariance

matrix of the stock returns. This may appear to be a different criterion and

hence a different solution, but because at each time step the stock price is a linear

function of the return Si(t+1) = Si(t)(1+Ri(t+1)) the variance minimizing

portfolios are essentially the same. There is another objection however to an

analysis in the risk-neutral world of Q. This is a distribution which determines

the value of options in order to avoid arbitrage in the system, not the actual

distribution of stock prices. It is not clear what the relationship is between

the covariance matrix of stock prices under the actual historical distribution

and the risk neutral distribution Q, but observations seem to indicate a very

considerable difference. Moreover, if this difference is large, there is very little

information available for estimating the parameters of the covariance matrix

under Q, since historical data on the fluctuations of stock prices will be of

doubtful relevance.

Entropy: choosing a Q measure

Maximum Entropy

In 1948 in a fundamental paper on the transmission of information, C. E. Shan-

non proposed the following idea of entropy. The entropy of a distribution at-

tempts to measure the expected number of steps required to determine a given

outcome of a random variable with a given distribution when using a simple

binary poll. For example suppose that a random variable X has distribution
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given by

x 0 1 2

P [X = x] .25 .25 .5

In this case, if we ask first whether the random variable is ≥ 2 and

then, provided the answer is no, if it is ≥ 1, the expected number of queries to

ascertain the value of the random variable is 1+1(1/2) = 1.5. There is no more

efficient scheme for designing this binary poll in this case so we will take 1.5 to

be a measure of entropy of the distribution of X. For a discrete distribution,

such that P [X = x] = p(x), the entropy may be defined to be

H(p) = E{− ln(p(X))} = −
X
x

p(x) ln(p(x)).

More generally we define the entropy of an arbitrary distribution through the

form for a discrete distribution. If P is a probability measure (see the appen-

dix),

H(P ) = sup{−
X

P (Ei) ln(P (Ei))}

where the supremum is taken over all finite partitions (Ei} of the space.

In the case of the above distribution, if we were to replace the natural log-

arithm by the log base 2, (ln and log2 differ only by a scale factor and are

therefore the corresponding measures of entropy are equivalent up a constant

multiple) notice that −
P

x p(x) log2(p(x)) = .5(1)+ .5(2) = 1.5, so this formula

correctly measures the difficulty in ascertaining a random variable from a se-

quence of questions with yes-no or binary answers. This is true in general. The

complexity of a distribution may be measured by the expected number of ques-

tions in a binary poll to determine the value of a random variable having that

distribution, and such a measure results in the entropy H(p) of the distribution.

Many statistical distributions have an interpretation in terms of maximizing

entropy and it is often remarkable how well the maximum entropy principle re-

produces observed distributions. For example, suppose we know that a discrete

random variable takes values on a certain set of n points. What distribution p
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on this set maximizes the entropy H(p)? First notice that if p is uniform on

n points, p(x) = 1/n for all x and so the entropy is −
P
x
1
n ln(

1
n) = ln(n).

Now consider the problem of maximizing the entropy H(p) for any distribution

on n points subject to the constraint that the probabilities add to one. As in

(2.10), the Lagrangian for this problem is −
P
x p(x) ln(p(x))− λ{

P
x p(x)− 1}

where λ is a Lagrange multiplier. Upon differentiating with respect to p(x) for

each x, we obtain − ln(p(x)) − 1 − λ = 0 or p(x) = e−(1+λ). The probabilities

evidently do not depend on x and the distribution is thus uniform. Applying

the constraint that the sum of the probabilities is one results in p(x) = 1/n

for all x. The discrete distribution on n points which has maximum entropy is

the uniform distribution. What if we repeat this analysis using additional con-

straints, for example on the moments of the distribution? Suppose for example

that we require that the mean of the distribution is some fixed constant µ and

the variance fixed at σ2. The problem is similar to that treated above but with

two more terms in the Lagrangian for each of the additional constraints. The

Lagrangian becomes

−
X
x

p(x) ln(p(x))−λ1{
X
x

p(x)−1}−λ2{
X
x

xp(x)−µ}−λ3{
X

x2p(x)−µ2−σ2}

whereupon setting the derivative with respect to p(x) equal to zero and ap-

plying the constraints we obtain

p(x) = exp{−λ1 − λ2x− λ3x
2},

with constants λ1,λ2,λ3 chosen to satisfy the three constraints. Since the ex-

ponent is a quadratic function of x, this is analogous to the normal distribution

except that we have required that it be supported on a discrete set of points x.

With more points, positioned more closely together, the distribution becomes

closer to the normal. Let us call such a distribution the discrete normal dis-

tribution. For a simple example, suppose that we wish to use the maximum

entropy principle to approximate the distribution of the sum of the values on
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Figure 2.5: A discrete analogue of the normal distribution compared with the

distribution of the sum of the values on two dice.

two dice. In this case the actual distribution is known to us as well as the mean

and variance E(X) = 7, var(X) = 35/6;

x 2 3 4 5 6 7 8 9 10 11 12

P (X = x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

The maximum entropy distribution on these same points constrained to have

the same mean and variance is very similar to this, the actual distribution. This

can been seen in Figure 2.5.

[FIGURE 2.5 ABOUT HERE]

In fact if we drop the requirement that the distribution is discrete, or equiv-

alently take a limit with an increasing number of discrete points closer and

closer together, the same kind of argument shows that the maximum entropy

distribution subject to a constraint on the mean and the variance is the normal

distribution. So at least two well-known distributions arise out of maximum
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entropy considerations. The maximum entropy distribution on a discrete set

of points is the uniform distribution. The maximum entropy subject to a con-

straint on the mean and the variance is a (discrete) normal distribution. There

are many other examples as well. In fact most common distributions in statis-

tics have an interpretation as a maximum entropy distribution subject to some

constraints.

Entropy has a number of properties that one would expect of a measure of

the information content in a random variable. It is non-negative, and can in

usual circumstances be infinite. We expect that the information in a function

of X , say g(X), is less than or equal to the information in X itself, equal if

the function is one to one (which means in effect we can determine X from

the value of g(X)). Entropy is a property of a distribution, not of a random

variable. Nevertheless it is useful to be able to abuse the notation used earlier

by referring to H(X) as the entropy of the distribution of X. Then we have the

following properties

Proposition 7 H(X) ≥ 0

Proposition 8 H(g(X)) · H(X) for any function g(x)..

The information or uncertainty in two random variables is clearly greater

than that in one. The definition of entropy is defined in the same fashion as

before, for discrete random variables (X,Y ),

H(X,Y ) = −E(ln p(X,Y ))

where p(x, y) is the joint probability function

p(x, y) = P [X = x, Y = y].

If the two random variables are independent, then we expect that the uncer-

tainty should add. If they are dependent, then the entropy of the pair (X,Y )

is less than the sum of the individual entropies.
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Proposition 9 H(X,Y ) · H(X)+H(Y ) with equality if and only if X and Y

are independent.

Let us now use the principle of maximum entropy to address an eminently

practical problem, one of altering a distribution to accommodate a known mean

value. Suppose we are interested in determining a risk-neutral distribution

for pricing options at maturity T. Theorem 1 tells us that if there is to be no

arbitrage, our distribution or measure Q must satisfy a relation of the form

EQ(e
−rTST ) = S0

where r is the continuously compounded interest rate, S0 is the initial (present)

value of the underlying stock, and ST is its value at maturity. Let us also

suppose that we constraint the variance of the future stock price under the

measure Q so that

varQ(ST ) = σ2T.

Then from our earlier discussion, the maximum entropy distribution under

constraints on the mean and variance is the normal distribution so that the

probability density function of ST is

f(s) =
1

σ
√
2πT

exp{−
(s− erTS0)2

2σ2T
}.

If we wished a maximum entropy distribution which is compatible with a

number of option prices, then we should impose these option prices as additional

constraints. Again suppose the current time t = 0 and we know the prices

Pi, i = 1, ..., n of n different call options available on the market, all on the same

security and with the same maturity T but with different strike prices Ki. The

distribution Q we assign to ST must satisfy the constraints

E(e−rT (ST −Ki)
+) = Pi, i = 1, ..., n (2.20)

as well as the martingale constraint

E(e−rTST ) = S0. (2.21)
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Once again introducing Lagrange multipliers, the probability density function

of ST will take the form

f(s) = k exp{e−rT
nX
i=1

λi(s−Ki)
+ + λ0s}

where the parameters λ0, ...,λn are chosen to satisfy the constraints (2.20) and

(2.21) and k so that the function integrates to 1. When fit to real option price

data, these distributions typically resemble a normal density, usually however

with some negative skewness and excess kurtosis. See for example Figure XXX.

There are also“sawtooth” like appendages with teeth corresponding to each of

the n options. Note too this density is strictly positive at the value s = 0,

a feature that we may or may not wish to have. Because of the ”teeth”, a

smoother version of the density is often used, one which may not perfectly

reproduce option prices but is nevertheless appears to be more natural.

Minimum Cross-Entropy

Normally market information does not completely determine the risk-neutral

measure Q . We will argue that while market data on derivative prices rather

than historical data should determine the Q measure, historical asset prices

can be used to fill in the information that is not dictated by no-arbitrage con-

siderations. In order to relate the real world to the risk-free world, we need

either sufficient market data to completely describe a risk-neutral measure Q

(such a model is called a complete market) or we need to limit our candidate

class of Q measures somewhat. We may either define the joint distributions of

the stock prices or their returns, since from one we can pass to the other. For

convenience, suppose we describe the joint distribution of the returns process.

The conditions we impose on the martingale measure are the following;

1. Under Q, each normalized stock price Sj(t)/Bt and derivative price

Vt/Bt forms a martingale. Equivalently, EQ[Si(t+1)|Ht] = Si(t)(1+r(t))
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where r(t) is the risk free interest rate over the interval (t, t+ 1). (Recall

that this risk-free interest rate r(t) is defined by the equation B(t+ 1) =

(1 + r(t))B(t).)

2. Q is a probability measure.

A slight revision of notation is necessary here. We will build our joint distri-

butions conditionally on the past and if P denotes the joint distribution stock

prices S(1), S(2), ...S(T ) over the whole period of observation 0 < t < T then

Pt+1 denotes the conditional distribution of S(t+ 1) given Ht. Let us denote

the conditional moment generating function of the vector S(t + 1) under the

measure Pt+1 by

mt(u) = EP [exp(u
0S(t+ 1)|Ht] = EP [exp(

X
i

uiSi(t+ 1))|Ht]

We implicitly assume, of course, that this moment generating function exists.

Suppose, for some vector of parameters η we choose Qt+1 to be the exponential

tilt of Pt+1, i.e.

dQt+1(s) =
exp(η0s)
mt(η)

dPt+1(s)

The division bymt(η) is necessary to ensure that Qt+1 is a probability measure.

Why transform a density by multiplying by an exponential in this way?

There are many reasons for such a transformation. Exponential families of dis-

tributions are built in exactly this fashion and enjoy properties of sufficiency,

completeness and ease of estimation. This exponential tilt resulted from maxi-

mizing entropy subject to certain constraints on the distribution. But we also

argue that the measure Q is the probability measure which is closest to P in

a certain sense while still satisfying the required moment constraint. We first

introduce cross-entropy which underlies considerable theory in Statistics and

elsewhere in Science.
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Cross Entropy

Consider two probability measures P and Q on the same space. Then the

cross entropy or Kullbach-Leibler “distance” between the two measures is given

by

H(Q,P ) = sup
{Ei}

X
Q(Ei) log

Q(Ei)

P (Ei)

where the supremum is over all finite partitions {Ei} of the probability space.

Various properties are immediate.

Proposition 10 H(Q,P ) ≥ 0 with equality if and only if P and Q are iden-

tical.

If Q is absolutely continuous with respect to P , that is if there is some

density function f(x) such that

Q(E) =

Z
E

f(x)dP for all E

then provided that f is smooth, we can also write

H(Q,P ) = EQ log(
dQ

dP
).

If Q is not absolutely continuous with respect to P then the cross entropy

H(Q,P ) is infinite. We should also remark that the cross entropy is not really

a distance in the usual sense (although we used the term “distance” in reference

to it) because in general H(Q,P ) 6= H(P |Q). For a finite probability space,

there is an easy relationship between entropy and cross entropy given by the

following proposition. In effect the result tells us that maximizing entropy H(Q)

is equivalent to minimizing the cross-entropy H(Q,P ) where P is the uniform

distribution.

Proposition 11 If the probability space has a finite number n points, and P

denotes the uniform distribution on these n points, then for any other probability

measure Q,

H(Q,P ) = n−H(Q)
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Now the following result asserts that the probability measure Q which is

closest to P in the sense of cross-entropy but satisfies a constraint on its mean

is generated by a so-called “exponential tilt” of the distribution of P.

Theorem 12 : Minimizing cross-entropy.

Let f(X) be a vector valued function f(X) = (f1(X), f2(X), ..., fn(X)) and

µ = (µ1, ..., µn). Consider the problem

min
Q
H(Q,P )

subject to the constraint EQ(fi(X)) = µi, i = 1, ..., n. Then the solution, if it

exists, is given by

dQ =
exp(η0f(X))

m(η)
dP =

exp(
Pn
i=1 ηifi(X))

m(η)

where m(η) = EP [exp(
Pn
i=1 ηifi(X))] and η is chosen so that ∂m

∂ηi
= µm(η).

The proof of this result, in the case of a discrete distribution P is a straight-

forward use of Lagrange multipliers (see Lemma 3). We leave it as a problem

at the end of the chapter.

Now let us return to the constraints on the vector of stock prices. In order

that the discounted stock price forms a martingale under the Q measure, we

require that EQ[S(t+ 1)|Ht] = (1 + r(t))S(t). This is achieved if we define Q

such that for any event A ∈ Ht,

Q(A) =

Z
A

ZtdP where

Zs = kt exp(
sX
t=1

η0t(St+1 − St)) (2.22)

where kt are Ht measurable random variables chosen so that Zt forms a mar-

tingale

E(Zt+1|Ht) = Zt.
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Theorem 9 shows that this exponentially tilted distribution has the property

of being the closest to the original measure P while satisfying the condition

that the normalized sequence of stock prices forms a martingale.

There is a considerable literature exploring the links between entropy and

risk-neutral valuation of derivatives. See for example Gerber and Shiu (1994),

Avellaneda et. al (1997), Gulko(1998), Samperi (1998). In a complete or

incomplete market, risk-neutral valuation may be carried out using a martingale

measure which maximizes entropy or minimizes cross-entropy subject to some

natural constraints including the martingale constraint. For example it is easy

to show that when interest rates r are constant, Q is the risk-neutral measure

for pricing derivatives on a stock with stock price process St, t = 0, 1, ... if

and only if it is the probability measure minimizing H(Q,P ) subject to the

martingale constraint

St = EQ[
1

1̄ + r
St+1]. (2.23)

There is a continuous time analogue of (2.22) as well which we can anticipate

by inspecting the form of the solution. Suppose that St denotes the stock price

at time t where we now allow t to vary continuously in time. which we will

discuss later but (2.22) can be used to anticipate it. Then an analogue of (2.22)

could be written formally as

Zs = exp(

Z t

0

η0tdSt − gt)

where both processes ηt and gt are “predictable” which loosely means that

they are determined in advance of observing the increment St, St+∆t. Then the

process Zs is the analogue of the Radon-Nikodym derivative
dQ
dP of the processes

restricted to the time interval 0 · t · s. For a more formal definition, as well as

an explanation of how we should interpret the integral, see the appendix. This

process Zs is, both in discrete and continuous time, a martingale.
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Figure 2.6: A sample path of the Wiener process

Models in Continuous Time

We begin with some oversimplified rules of stochastic calculus which can be

omitted by those with a background in Brownian motion and diffusion. First,

we define a stochastic process Wt called the standard Brownian motion or

Wiener process having the following properties;

1. For each h > 0, the increment W (t+h)−W (t) has a N(0, h) distribution

and is independent of all preceding increments W (u)−W (v), t > u > v >

0.

2. W (0 ) = 0 .

[FIGURE 2.6 ABOUT HERE]

The fact that such a process exists is by no means easy to see. It has been an

important part of the literature in Physics, Probability and Finance at least since

the papers of Bachelier and Einstein, about 100 years ago. A Brownian motion

process also has some interesting and remarkable theoretical properties; it is

continuous with probability one but the probability that the process has finite
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Figure 2.7: A sample path of a Random Walk

variation in any interval is 0. With probability one it is nowhere differentiable.

Of course one might ask how a process with such apparently bizarre properties

can be used to approximate real-world phenomena, where we expect functions

to be built either from continuous and differentiable segments or jumps in the

process. The answer is that a very wide class of functions constructed from those

that are quite well-behaved (e.g. step functions) and that have independent

increments converge as the scale on which they move is refined either to a

Brownian motion process or to a process defined as an integral with respect to a

Brownian motion process and so this is a useful approximation to a broad range

of continuous time processes. For example, consider a random walk process

Sn =
Pn
i=1Xi where the random variables Xi are independent identically

distributed with expected value E(Xi) = 0 and var(Xi) = 1. Suppose we plot

the graph of this random walk (n, Sn) as below. Notice that we have linearly

interpolated the graph so that the function is defined for all n, whether integer

or not.

[FIGURE 2.7 ABOUT HERE]
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Now if we increase the sample size and decrease the scale appropriately on

both axes, the result is, in the limit, a Brownian motion process. The vertical

scale is to be decreased by a factor 1/
√
n and the horizontal scale by a factor

n−1 . The theorem concludes that the sequence of processes

Yn(t) =
1
√
n
Snt

converges weakly to a standard Brownian motion process as n→∞. In practice

this means that a process with independent stationary increments tends to look

like a Brownian motion process. As we shall see, there is also a wide variety

of non-stationary processes that can be constructed from the Brownian motion

process by integration. Let us use the above limiting result to render some

of the properties of the Brownian motion more plausible, since a serious proof

is beyond our scope. Consider the question of continuity, for example. Since

|Yn(t + h) − Yn(t)| ≈ | 1√
n

Pn(t+h)
i=nt Xi | and this is the absolute value of an

asymptotically normally(0, h) random variable by the central limit theorem, it

is plausible that the limit as h → 0 is zero so the function is continuous at t.

On the other hand note that

Yn(t+ h)− Yn(t)

h
≈
1

h

1
√
n

n(t+h)X
i=nt

Xi

should by analogy behave like h−1 times a N(0, h) random variable which blows

up as h → 0 so it would appear that the derivative at t does not exist. To

obtain the total variation of the process in the interval [t, t + h] , consider the

lengths of the segments in this interval, i.e.

1
√
n

n(t+h)X
i=nt

|Xi|

and notice that since the law of large numbers implies that 1
nh

Pn(t+h)
i=nt |Xi|

converges to a positive constant, namely E|Xi|, if we multiply by
√
nh the

limit must be infinite, so the total variation of the Brownian motion process is

infinite.



70 CHAPTER 2. SOME BASIC THEORY OF FINANCE

Continuous time process are usually built one small increment at a time

and defined to be the limit as the size of the time increment is reduced to zero.

Let us consider for example how we might define a stochastic (Ito) integral of

the form
R T
0
h(t)dWt. An approximating sum takes the formZ T

0

h(t)dWt ≈
n−1X
i=0

h(ti)(W (ti+1)−W (ti)), 0 = t0 < t1 < ... < tn = T.

Note that the function h(t) is evaluated at the left hand end-point of the in-

tervals [ti, ti+1], and this is characteristic of the Ito calculus, and an important

feature distinguishing it from the usual Riemann calculus studied in undergrad-

uate mathematics courses. There are some simple reasons why evaluating the

function at the left hand end-point is necessary for stochastic models in finance.

For example let us suppose that the function h(t) measures how many shares

of a stock we possess and W (t) is the price of one share of stock at time t.

It is clear that we cannot predict precisely future stock prices and our decision

about investment over a possibly short time interval [ti, ti+1] must be made

at the beginning of this interval, not at the end or in the middle. Second, in

the case of a Brownian motion process W (t), it makes a difference where in

the interval [ti, ti+1] we evaluate the function h to approximate the integral,

whereas it makes no difference for Riemann integrals. As we refine the parti-

tion of the interval, the approximating sums
Pn−1
i=0 h(ti+1)(W (ti+1) −W (ti)),

for example, approach a completely different limit. This difference is essentially

due to the fact that W (t), unlike those functions studied before in calculus, is

of infinite variation. As a consequence, there are other important differences in

the Ito calculus. Let us suppose that the increment dW is used to denote

small increments W (ti+1)−W (ti) involved in the construction of the integral.

If we denote the interval of time ti+1 − ti by dt, we can loosely assert that dW

has the normal distribution with mean 0 and variance dt. If we add up a large

number of independent such increments, since the variances add, the sum has

variance the sum of the values dt and standard deviation the square root. Very
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roughly, we can assess the size of dW since its standard deviation is (dt)1/2.

Now consider defining a process as a function both of the Brownian motion and

of time, say Vt = g(Wt, t). If Wt represented the price of a stock or a bond,

Vt might be the price of a derivative on this stock or bond. Expanding the

increment dV using a Taylor series expansion gives

dVt =
∂

∂W
g(Wt, t)dW +

∂2

∂W 2
g(Wt, t)

dW 2

2
+

∂

∂t
g(Wt, t)dt (2.24)

+ (stuff) × (dW )3 + (more stuff) × (dt)(dW )2 + ....

Loosely, dW is normal with mean 0 and standard deviation (dt)1/2 and

so dW is non-negligible compared with dt as dt→ 0.We can define each of the

differentials dW and dt essentially by reference to the result when we integrate

both sides of the equation. If I were to write an equation in differential form

dXt = h(t)dWt

then this only has real meaning through its integrated version

Xt = X0 +

Z t

0

h(t)dWt.

What about the terms involving (dW )2 ? What meaning should we assign to a

term like
R
h(t)(dW )2? Consider the approximating function

P
h(ti)(W (ti+1)−

W (ti))
2. Notice that, at least in the case that the function h is non-random we

are adding up independent random variables h(ti)(W (ti+1)−W (ti))2 each with

expected value h(ti)(ti+1 − ti) and when we add up these quantities the limit

is
R
h(t)dt by the law of large numbers. Roughly speaking, as differentials, we

should interpret (dW )2 as dt because that is the way it acts in an integral.

Subsequent terms such as (dW )3 or (dt)(dW )2 are all o(dt), i.e. they all

approach 0 faster than does dt as dt→ 0. So finally substituting for (dW )2 in

2.24 and ignoring all terms that are o(dt), we obtain a simple version of Ito’s

lemma
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dg(Wt, t) =
∂

∂W
g(Wt, t)dW + {

1

2

∂2

∂W 2
g(Wt, t) +

∂

∂t
g(Wt, t)}dt.

This rule results, for example, when we put g(Wt, t) =W
2
t in

d(W 2
t ) = 2WtdWt + dt

or on integrating both sides and rearranging,Z b

a

WtdWt =
1

2
(W 2

b −W
2
a )−

1

2

Z b

a

dt.

The term
R b
a
dt above is what distinguishes the Ito calculus from the Riemann

calculus, and is a consequence of the nature of the Brownian motion process, a

continuous function of infinite variation.

There is one more property of the stochastic integral that makes it a valuable

tool in the construction of models in finance, and that is that a stochastic integral

with respect to a Brownian motion process is always a martingale. To see this,

note that in an approximating sumZ T

0

h(t)dWt ≈
n−1X
i=0

h(ti)(W (ti+1)−W (ti))

each of the summands has conditional expectation 0 given the past, i.e.

E[h(ti)(W (ti+1)−W (ti))|Hti ] = h(ti)E[(W (ti+1)−W (ti))|Hti ] = 0

since the Brownian increments have mean 0 given the past and since h(t) is

measurable with respect to Ht.

We begin with an attempt to construct the model for an Ito process or dif-

fusion process in continuous time. We construct the price process one increment

at a time and it seems reasonable to expect that both the mean and the vari-

ance of the increment in price may depend on the current price but does not

depend on the process before it arrived at that price. This is a loose description

of a Markov property. The conditional distribution of the future of the process
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depends only on the current time t and the current price of the process. Let us

suppose in addition that the increments in the process are, conditional on the

past, normally distributed. Thus we assume that for small values of h, con-

ditional on the current time t and the current value of the process Xt, the

increment Xt+h −Xt can be generated from a normal distribution with mean

a(Xt, t)h and with variance σ2(Xt, t)h for some functions a and σ2 called the

drift and diffusion coefficients respectively. Such a normal random variable can

be formally written as a(Xt, t )dt+ σ2(Xt, t)dWt. Since we could express XT as

an initial price X0 plus the sum of such increments, XT = X0+
P

i(Xti+1−Xti).

The single most important model of this type is called the Geometric Brown-

ian motion or Black-Scholes model. Since the actual value of stock, like the

value of a currency or virtually any other asset is largely artificial, depending on

such things as the number of shares issued, it is reasonable to suppose that the

changes in a stock price should be modeled relative to the current price. For

example rather than model the increments, it is perhaps more reasonable to

model the relative change in the process. The simplest such model of this type

is one in which both the mean and the standard deviation of the increment in

the price are linear multiples of price itself; viz. dXt is approximately nor-

mally distributed with mean aXtdt and variance σ2X2
t dt. In terms of stochastic

differentials, we assume that

dXt = aXtdt+ σXtdWt. (2.25)

Now consider the relative return from such a process over the increment dYt =

dXt/Xt. Putting Yt = g(Xt) = ln(Xt) note that analogous to our derivation of

Ito’s lemma

dg(Xt) = g
0(Xt)dXt +

1

2
g00(Xt)(dX)2 + ...

=
1

Xt
{aXtdt+ σXtdWt.}−

1

2X2
t

σ2X2
t dt

= (a−
σ2

2
)dt+ σdWt.



74 CHAPTER 2. SOME BASIC THEORY OF FINANCE

which is a description of a general Brownian motion process, a process with

increments dYt that are normally distributed with mean (a − σ2

2 )dt and with

variance σ2dt. This process satisfying dXt = aXtdt + σXtdWt is called the

Geometric Brownian motion process (because it can be written in the form

Xt = e
Yt for a Brownian motion process Yt) or a Black-Scholes model.

Many of the continuous time models used in finance are described as Markov

diffusions or Ito processes which permits the mean and the variance of the

increments to depend more generally on the present value of the process and

the time. The integral version of this relation is of the form

XT = X0 +

Z T

0

a(Xt, t)dt+

Z T

0

σ(Xt, t)dWt.

We often write such an equation with differential notation,

dXt = a(Xt, t)dt+ σ(Xt, t)dWt. (2.26)

but its meaning should always be sought in the above integral form. The co-

efficients a(Xt, t) and σ(Xt, t) vary with the choice of model. As usual, we

interpret 2.26 as meaning that a small increment in the process, say dXt =

Xt+h − Xt (h very small) is approximately distributed according to a normal

distribution with conditional mean a(Xt, t)dt and conditional variance given by

σ2(Xt, t)var(dWt) = σ2(Xt, t)dt. Here the mean and variance are conditional

on Ht, the history of the process Xt up to time t.

Various choices for the functions a(Xt, t),σ(Xt, t) are possible. For the

Black-Scholes model or geometric Brownian motion, a(Xt, t) = aXt and σ(Xt, t) =

σXt for constant drift and volatility parameters a,σ. The Cox-Ingersoll-Ross

model, used to model spot interest rates, corresponds to a(Xt, t) = A(b − Xt)

and σ(Xt, t) = c
√
Xt for constants A, b, c. The Vasicek model, also a model for

interest rates, has a(Xt, t) = A(b−Xt) and σ(Xt, t) = c. There is a large num-

ber of models for most continuous time processes observed in finance which can

be written in the form 2.26. So called multi-factor models are of similar form
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where Xt is a vector of financial time series and the coefficient functions a(Xt, t)

is vector valued, σ(Xt, t) is replaced by a matrix-valued function and dWt is

interpreted as a vector of independent Brownian motion processes. For techni-

cal conditions on the coefficients under which a solution to 2.26 is guaranteed

to exist and be unique, see Karatzas and Shreve, sections 5.2, 5.3.

As with any differential equation there may be initial or boundary condi-

tions applied to 2.26 that restrict the choice of possible solutions. Solutions

to the above equation are difficult to arrive at, and it is often even more diffi-

cult to obtain distributional properties of them. Among the key tools are the

Kolmogorov differential equations (see Cox and Miller, p. 215). Consider the

transition probability kernel

p(s, z, t, x) = P [Xt = x|Xs = z]

in the case of a discrete Markov Chain. If the Markov chain is continuous (as it

is in the case of diffusions), that is if the conditional distribution of Xt given Xs

is absolutely continuous with respect to Lebesgue measure, then we can define

p(s, z, t, x) to be the conditional probability density function of Xt given Xs = z.

The two equations, for a diffusion of the above form, are:

Kolmogorov’s backward equation

∂

∂s
p = −a(z, s)

∂

∂z
p−

1

2
σ2(z, s)

∂2

∂z2
p (2.27)

and the forward equation

∂

∂t
p = −

∂

∂x
(a(x, t)p) +

1

2

∂2

∂x2
(σ2(x, t)p) (2.28)

Note that if we were able to solve these equations, this would provide the

transition density function p, giving the conditional distribution of the process.

It does not immediately provide other characteristics of the diffusion, such as

the distribution of the maximum or the minimum, important for valuing various

exotic options such as look-back and barrier options. However for a European



76 CHAPTER 2. SOME BASIC THEORY OF FINANCE

option defined on this process, knowledge of the transition density would suffice

at least theoretically for valuing the option. Unfortunately these equations are

often very difficult to solve explicitly.

Besides the Kolmogorov equations, we can use simple ordinary differential

equations to arrive at some of the basic properties of a diffusion. To illustrate,

consider one of the simplest possible forms of a diffusion, where a(Xt, t) =

α(t)+β(t)Xt where the coefficients α(t),β(t) are deterministic (i.e. non-random)

functions of time. Note that the integral analogue of 2.26 is

Xt = X0 +

Z t

0

a(Xs, s)ds+

Z t

0

σ(Xs, s)dWs (2.29)

and by construction that last term
R t
0
σ(Xs, s)dWs is a zero-mean martingale.

For example its small increments σ(Xt, t)dWs are approximatelyN(0,σ(Xt, t)dt).

Therefore, taking expectations on both sides conditional on the value of X0, and

letting m(t) = E(Xt), we obtain:

m(t) = X0 +

Z t

0

[α(s) + β(s)m(s)]ds (2.30)

and therefore m(t)solves the ordinary differential equation

m0(t) = α(t) + β(t)m(t). (2.31)

m(0) = X0 (2.32)

Thus, in the case that the drift term a is a linear function of Xt, the mean or

expected value of a diffusion process can be found by solving a similar ordinary

differential equation, similar except that the diffusion term has been dropped.

These are only two of many reasons to wish to solve both ordinary and

partial differential equations in finance. The solution to the Kolmogorov partial

differential equations provides the conditional distribution of the increments of

a process. And when the drift term a(Xt, t ) is linear in Xt, the solution of an

ordinary differential equation will allow the calculation of the expected value of

the process and this is the first and most basic description of its behaviour. The
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appendix provides an elementary review of techniques for solving partial and

ordinary differential equations.

However, that the information about a stochastic process obtained from a

deterministic object such as a ordinary or partial differential equation is nec-

essarily limited. For example, while we can sometimes obtain the marginal

distribution of the process at time t it is more difficult to obtain quantities

such as the joint distribution of variables which depending on the path of the

process, and these are important in valuing certain types of exotic options such

as lookback and barrier options. For such problems, we often use Monte Carlo

methods.

The Black-Scholes Formula

Before discussing methods of solution in general, we develop the Black-Scholes

equation in a general context. Suppose that a security price is an Ito process

satisfying the equation

dSt = a(St, t ) dt + σ(St, t) dW t (2.33)

Assumed the market allows investment in the stock as well as a risk-free bond

whose price at time t is Bt. It is necessary to make various other assumptions

as well and strictly speaking all fail in the real world, but they are a reasonable

approximation to a real, highly liquid and nearly frictionless market:

1. partial shares may be purchased

2. there are no dividends paid on the stock

3. There are no commissions paid on purchase or sale of the stock or bond

4. There is no possibility of default for the bond

5. Investors can borrow at the risk free rate governing the bond.

6. All investments are liquid- they can be bought or sold instantaneously.
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Since bonds are assumed risk-free, they satisfy an equation

dBt = rtBtdt

where rt is the risk-free (spot) interest rate at time t.

We wish to determine V (St, t), the value of an option on this security when

the security price is St, at time t. Suppose the option has expiry date T and

a general payoff function which depends only on ST , the process at time T .

Ito’s lemma provides the ability to translate an a relation governing the

differential dSt into a relation governing the differential of the process dV (St, t).

In this sense it is the stochastic calculus analogue of the chain rule in ordinary

calculus. It is one of the most important single results of the twentieth century

in finance and in science. The stochastic calculus and this mathematical result

concerning it underlies the research leading to 1997 Nobel Prize to Merton and

Scholes for their work on hedging in financial models. We saw one version of it

at the beginning of this section and here we provide a more general version.

Ito’s lemma.

Suppose St is a diffusion process satisfying

dSt = a(St, t)dt+ σ(St, t)dWt

and suppose V (St, t) is a smooth function of both arguments. Then V (St, t)

also satisfies a diffusion equation of the form

dV = [a(St, t)
∂V

∂S
+
σ2(St, t)

2

∂2V

∂S2
+
∂V

∂t
]dt+ σ(St, t)

∂V

∂S
dWt. (2.34)

Proof. The proof of this result is technical but the ideas behind it are

simple. Suppose we expand an increment of the process V (St, t) ( we write V
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in place of V (St, t) omitting the arguments of the function and its derivatives.

We will sometimes do the same with the coefficients a and σ.)

V (St+h, t+ h) ≈ V +
∂V

∂S
(St+h − St) +

1

2

∂2V

∂S2
(St+h − St)

2 +
∂V

∂t
h (2.35)

where we have ignored remainder terms that are o(h). Note that substituting

from 2.33 into 2.35, the increment (St+h − St) is approximately normal with

mean a(St, t ) h and variance σ2(St, t ) h. Consider the term (St+h − St)2.

Note that it is the square of the above normal random variable and has expected

value σ2(St, t)h+ a2(St, t)h2. The variance of this random variable is O(h2) so

if we ignore all terms of order o(h) the increment V (St+h, t + h) − V (St, t) is

approximately normally distributed with mean

[a(St, t )
∂V

∂S
+

σ2(St, t)

2

∂2V

∂S2
+
∂V

∂t
]h

and standard deviation σ(St, t)∂V∂S
√
h justifying (but not proving!) the relation

2.34.

By Ito’s lemma, provided V is smooth, it also satisfies a diffusion equation of

the form 2.34. We should note that when V represents the price of an option,

some lack of smoothness in the function V is inevitable. For example for

a European call option with exercise price K, V (ST , T ) = max(ST − K, 0)

does not have a derivative with respect to ST at ST = K, the exercise price.

Fortunately, such exceptional points can be worked around in the argument,

since the derivative does exist at values of t < T.

The basic question in building a replicating portfolio is: for hedging pur-

poses, is it possible to find a self-financing portfolio consisting only of the se-

curity and the bond which exactly replicates the option price process V (St, t)?

The self-financing requirement is the analogue of the requirement that the net

cost of a portfolio is zero that we employed when we introduced the notion of
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arbitrage. The portfolio is such that no funds are needed to be added to (or re-

moved from) the portfolio during its life, so for example any additional amounts

required to purchase equity is obtained by borrowing at the risk free rate. Sup-

pose the self-financing portfolio has value at time t equal to Vt = utSt + wtBt

where the (predictable) functions ut, wt represent the number of shares of stock

and bonds respectively owned at time t. Since the portfolio is assumed to be

self-financing, all returns obtain from the changes in the value of the securities

and bonds held, i.e. it is assumed that dVt = utdSt +wtdBt. Substituting from

2.33,

dVt = utdSt + wtdBt = [uta(St, t) + wtrtBt]dt+ utσ(St, t)dWt (2.36)

If Vt is to be exactly equal to the price V (St, t ) of an option, it follows on

comparing the coefficients of dt and dWt in 2.34 and 2.36, that ut = ∂V
∂S , called

the delta corresponding to delta hedging. Consequently,

Vt =
∂V

∂S
St + wtBt

and solving for wt we obtain:

wt =
1

Bt
[V −

∂V

∂S
St].

The conclusion is that it is possible to dynamically choose a trading strategy, i.e.

the weights wt, ut so that our portfolio of stocks and bonds perfectly replicates the

value of the option. If we own the option, then by shorting (selling) delta= ∂V
∂S

units of stock, we are perfectly hedged in the sense that our portfolio replicates

a risk-free bond. Surprisingly, in this ideal word of continuous processes and

continuous time trading commission-free trading, the perfect hedge is possible.

In the real world, it is said to exist only in a Japanese garden. The equation we

obtained by equating both coefficients in 2.34 and 2.36 is;

−rtV + rtSt
∂V

∂S
+
∂V

∂t
+
σ2(St, t)

2

∂2V

∂S2
= 0. (2.37)
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Rewriting this allows an interpretation in terms of our hedged portfolio. If we

own an option and are short delta units of stock our net investment at time t

is given by (V −St ∂V∂S ) where V = Vt = V (St, t). Our return over the next time

increment dt if the portfolio were liquidated and the identical amount invested

in a risk-free bond would be rt(Vt−St ∂V∂S )dt. On the other hand if we keep this

hedged portfolio, the return over an increment of time dt is

d(V − St
∂V

∂S
) = dV − (

∂V

∂S
)dS

= (
∂V

∂t
+
σ2

2

∂2V

∂S2
+a

∂V

∂S
)dt+ σ

∂V

∂S
dWt

−
∂V

∂S
[adt+ σdWt]

= (
∂V

∂t
+
σ2

2

∂2V

∂S2
)dt

Therefore

rt(V − St
∂V

∂S
) =

∂V

∂t
+
σ2(St, t)

2

∂2V

∂S2
.

The left side rt(V − St ∂V∂S ) represents the amount made by the portion of our

portfolio devoted to risk-free bonds. The right hand side represents the return

on a hedged portfolio long one option and short delta stocks. Since these

investments are at least in theory identical, so is their return. This fundamental

equation is evidently satisfied by any option price process where the underlying

security satisfies a diffusion equation and the option value at expiry depends

only on the value of the security at that time. The type of option determines

the terminal conditions and usually uniquely determines the solution.

It is extraordinary that this equation in no way depends on the drift co-

efficient a(St, t). This is a remarkable feature of the arbitrage pricing theory.

Essentially, no matter what the drift term for the particular security is, in order

to avoid arbitrage, all securities and their derivatives are priced as if they had

as drift the spot interest rate. This is the effect of calculating the expected values

under the martingale measure Q.

This PDE governs most derivative products, European call options, puts,
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futures or forwards. However, the boundary conditions and hence the solution

depends on the particular derivative. The solution to such an equation is possi-

ble analytically in a few cases, while in many others, numerical techniques are

necessary. One special case of this equation deserves particular attention. In

the case of geometric Brownian motion, a(St, t) = µSt and σ(St, t) = σSt for

constants µ,σ. Assume that the spot interest rate is a constant rand that a

constant rate of dividends D0 is paid on the stock. In this case, the equation

specializes to

−rV +
∂V

∂t
+ (r −D0)S

∂V

∂S
+
σ2S2

2

∂2V

∂S2
= 0. (2.38)

Note that we have not used any of the properties of the particular derivative

product yet, nor does this differential equation involve the drift coefficient µ.

The assumption that there are no transaction costs is essential to this analysis,

as we have assumed that the portfolio is continually rebalanced.

We have now seen two derivations of parabolic partial differential equations,

so-called because like the equation of a parabola, they are first order (derivatives)

in one variable (t) and second order in the other (x). Usually the solution of such

an equation requires reducing it to one of the most common partial differential

equations, the heat or diffusion equation, which models the diffusion of heat

along a rod. This equation takes the form

∂

∂t
u = k

∂2

∂x2
u (2.39)

A solution of 2.39 with appropriate boundary conditions can sometime be found

by the separation of variables. We will later discuss in more detail the solution

of parabolic equations, both by analytic and numerical means. First, however,

when can we hope to find a solution of 2.39 of the form u(x, t) = g(x/
√
t).

By differentiating and substituting above, we obtain an ordinary differential

equation of the form

g00(ω) +
1

2k
ωg0(ω) = 0,ω = x/

√
t (2.40)
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Let us solve this using MAPLE.

eqn := diff(g(w),w,w)+(w/(2*k))*diff(g(w),w)=0;

dsolve(eqn,g(w));

and because the derivative of the solution is slightly easier (for a statistician)

to identify than the solution itself,

> diff(%,w);

giving
∂

∂w
g(ω) = C2 exp{−w

2/4k} = C2 exp{−x
2/4kt} (2.41)

showing that a constant plus a constant multiple of the Normal (0, 2kt) cumu-

lative distribution function or

u(x, t) = C1 + C2
1

2
√
πkt

Z x

−∞
exp{−z2/4kt}dz (2.42)

is a solution of this, the heat equation for t > 0. The role of the two constants is

simple. Clearly if a solution to 2.39 is found, then we may add a constant and/or

multiply by a constant to obtain another solution. The constant in general is

determined by initial and boundary conditions. Similarly the integral can be

removed with a change in the initial condition for if u solves 2.39 then so does

∂u
∂x . For example if we wish a solution for the half real x > 0 with initial condition

u(x, 0) = 0, u(0, t) = 1 all t > 1, we may use

u(x, t) = 2P (N(0, 2kt) > x) =
1

√
πkt

Z ∞
x

exp{−z2/4kt}dz, t > 0, x ≥ 0.

Let us consider a basic solution to 2.39:

u(x, t) =
1

2
√
πkt

exp{−x2/4kt} (2.43)

This connection between the heat equation and the normal distributions is fun-

damental and the wealth of solutions depending on the initial and boundary

conditions is considerable. We plot a fundamental solution of the equation as

follows with the plot in Figure 2.8:
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Figure 2.8: Fundamental solution of the heat equation

>u(x,t) := (.5/sqrt(Pi*t))*exp(-x^2/(4*t));

>plot3d(u(x,t),x=-4..4,t=.02..4,axes=boxed);

[FIGURE 2.8 ABOUT HERE]

As t → 0, the function approaches a spike at x = 0, usually referred to as

the “Dirac delta function” (although it is no function at all) and symbolically

representing the derivative of the “Heaviside function”. The Heaviside function

is defined as H(x) = 1, x ≥ 0 and is otherwise 0 and is the cumulative distrib-

ution function of a point mass at 0. Suppose we are given an initial condition

of the form u(x, 0) = u0(x). To this end, it is helpful to look at the solu-

tion u(x, t) and the initial condition u0(x) as a distribution or measure (in this

case described by a density) over the space variable x. For example the density

u(x, t) corresponds to a measure for fixed t of the form νt(A) =
R
A
u(x, t)dx.

Note that the initial condition compatible with the above solution 2.42 can be

described somewhat clumsily as “u(x, 0) corresponds to a measure placing all

mass at x = x0 = 0 ”.In fact as t → 0, we have in some sense the following

convergence u(x, t)→ δ(x) = dH(x), the Dirac delta function. We could just as

easily construct solve the heat equation with a more general initial condition of
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the form u(x, 0) = dH(x− x0) for arbitrary x0 and the solution takes the form

u(x, t) =
1

2
√
πkt

exp{−(x− x0)
2/4kt}. (1.22)

Indeed sums of such solutions over different values of x0, or weighted sums, or

their limits, integrals will continue to be solutions to 2.39. In order to achieve

the initial condition u0(x) we need only pick a suitable weight function. Note

that

u0(x) =

Z
u0(z)dH(z − x)

Note that the function

u(x, t) =
1

2
√
πkt

Z ∞
−∞

exp{−(z − x)2/4kt}u0(z)dz (1.22)

solves 2.39 subject to the required boundary condition.

Solution of the Diffusion Equation.

We now consider the general solution to the diffusion equation of the form 2.37,

rewritten as
∂V

∂t
= rtV − rtSt

∂V

∂S
−
σ2(St, t)

2

∂2V

∂S2
(2.44)

where Stis an asset price driven by a diffusion equation

dSt = a(St, t)dt+ σ(St, t)dWt, (2.45)

V (St, t) is the price of an option on that asset at time t, and rt = r(t) is the

spot interest rate at time t. We assume that the price of the option at expiry

T is a known function of the asset price

V (ST , T ) = V0(ST ). (2.46)

Somewhat strangely, the option is priced using a related but not identical process

(or, equivalently, the same process under a different measure). Recall from the
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backwards Kolmogorov equation 2.27 that if a related process Xtsatisfies the

stochastic differential equation

dXt = r(Xt, t)Xtdt+ σ(Xt, t)dWt (2.47)

then its transition kernel p(t, s, T, z) = ∂
∂zP [XT · z|Xt = s] satisfies a partial

differential equation similar to 2.44;

∂p

∂t
= −r(s, t)s

∂p

∂s
−
σ2(s, t)

2

∂2p

∂s2
(2.48)

For a given process Xtthis determines one solution. For simplicity, consider

the case (natural in finance applications) when the spot interest rate is a function

of time, not of the asset price; r(s, t) = r(t). To obtain the solution so that

terminal conditions is satisfied, consider a product

f(t, s, T, z) = p(t, s, T, z)q(t, T ) (2.49)

where

q(t, T ) = exp{−

Z T

t

r(v)dv}

is the discount function or the price of a zero-coupon bond at time t which pays

1$ at maturity.

Let us try an application of one of the most common methods in solving

PDE’s, the “lucky guess” method. Consider a linear combination of terms of

the form 2.49 with weight function w(z). i.e. try a solution of the form

V (s, t) =

Z
p(t, s, T, z)q(t, T )w(z)dz (2.50)

for suitable weight function w(z). In view of the definition of pas a transition

probability density, this integral can be rewritten as a conditional expectation:

V (t, s) = E[w(XT )q(t, T )|Xt = s] (2.51)

the discounted conditional expectation of the random variable w(XT ) given the

current state of the process, where the process is assumed to follow (2.18). Note



MODELS IN CONTINUOUS TIME 87

that in order to satisfy the terminal condition 2.46, we choose w(x) = V0(x).

Now

∂V

∂t
=

∂

∂t

Z
p(t, s, T, z)q(t, T )w(z)dz

=

Z
[−r(St, t)St

∂p

∂s
−
σ2(St, t)

2

∂2p

∂s
2]q(t, T )w(z)dz

+ r(St, t)

Z
p(t, St, T, z)q(t, T )w(z)dz by 2.48

= −r(St, t)St
∂V

∂S
−
σ2(St, t)

2

∂2V

∂S2
+ r(St, t)V (St, t)

where we have assumed that we can pass the derivatives under the integral

sign. Thus the process

V (t, s) = E[V0(XT )q(t, T )|Xt = s] (2.52)

satisfies both the partial differential equation 2.44 and the terminal conditions

2.46 and is hence the solution. Indeed it is the unique solution satisfying certain

regularity conditions. The result asserts that the value of any European option

is simply the conditional expected value of the discounted payoff (discounted to

the present) assuming that the distribution is that of the process 2.47. This

result is a special case when the spot interest rates are functions only of time of

the following more general theorem.

Theorem 13 ( Feynman-Kac)

Suppose the conditions for a unique solution to (2.44,2.46) (see for example

Duffie, appendix E) are satisfied. Then the general solution to (2.15) under the

terminal condition 2.46 is given by

V (S, t) = E[V0(XT )exp{−

Z T

t

r(Xv, v)dv}| Xt = S] (2.53)
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This represents the discounted return from the option under the distribution

of the process Xt. The distribution induced by the process Xt is referred to

as the equivalent martingale measure or risk neutral measure. Notice that when

the original process is a diffusion, the equivalent martingale measure shares the

same diffusion coefficient but has the drift replaced by r(Xt, t)Xt. The option

is priced as if the drift were the same as that of a risk-free bond i.e. as if the

instantaneous rate of return from the security if identical to that of bond. Of

course, in practice, it is not. A risk premium must be paid to the stock-holder

to compensate for the greater risk associated with the stock.

There are some cases in which the conditional expectation 2.53 can be deter-

mined explicitly. In general, these require that the process or a simple function

of the process is Gaussian.

For example, suppose that both r(t) and σ(t) are deterministic functions

of time only. Then we can solve the stochastic differential equation (2.22) to

obtain

XT =
Xt

q(t, T )
+

Z T

t

σ(u)

q(u, T )
dWu (2.54)

The first term above is the conditional expected value of XT given Xt. The

second is the random component, and since it is a weighted sum of the normally

distributed increments of a Brownian motion with weights that are non-random,

it is also a normal random variable. The mean is 0 and the (conditional) vari-

ance is
R T
t

σ2(u)
q2(u,T )du. Thus the conditional distribution ofXT givenXt is normal

with conditional expectation Xt

q(t,T ) and conditional variance
R T
t

σ2(u)
q2(u,T )du.

The special case of 2.53 of most common usage is the Black-Scholes model:

suppose that σ(S, t) = Sσ(t) for σ(t) some deterministic function of t. Then

the distribution of Xt is not Gaussian, but fortunately, its logarithm is. In this

case we say that the distribution of Xt is lognormal.
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Lognormal Distribution

Suppose Z is a normal random variable with mean µ and variance σ2. Then we

say that the distribution of X = eZ is lognormal with mean η = exp{µ+ σ2/2}

and volatility parameter σ. The lognormal probability density function with

mean η > 0 and volatility parameter σ > 0 is given by the probability density

function

g(x|η,σ) =
1

xσ
√
2π
exp{−(log x− log η − σ2/2)2/2σ2}. (2.55)

The solution to (2.18) with non-random functions σ(t), r(t) is now

XT = Xtexp{

Z T

t

(r(u)− σ2(u)/2)du+

Z T

t

σ(u)dWu}. (2.56)

Since the exponent is normal, the distribution of XT is lognormal with mean

log(Xt) +
R T
t
(r(u) − σ2(u)/2)du and variance

R T
t
σ2(u)du. It follows that the

conditional distribution is lognormal with mean η = Xtq(t, T ) and volatility

parameter
qR T

t
σ2(u)du.

We now derive the well-known Black-Scholes formula as a special case of

2.53. For a call option with exercise price E, the payoff function is V0(ST ) =

max(ST − E, 0). Now it is helpful to use the fact that for a standard normal

random variable Z and arbitrary σ > 0,−∞ < µ < ∞ we have the expected

value of max(eσZ+µ, 0) is

eµ+σ
2/2Φ(

µ

σ
+ σ)− Φ(

µ

σ
) (2.57)

where Φ(.) denotes the standard normal cumulative distribution function. As

a result, in the special case that r and σ are constants, (2.53) results in the

famous Black-Scholes formula which can be written in the form

V (S, t) = SΦ(d1)− Ee
−r(T−t)Φ(d2) (2.58)

where

d1 =
log(S/E) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t
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are the values ±σ2(T − t)/2 standardized by adding log(S/E) + r(T − t) and

dividing by σ
√
T − t. This may be derived by the following device; Assume (i.e.

pretend) that, given current information, the distribution of S(T ) at expiry is

lognormally distributed with the mean η = S(t)er(T−t).

The mean of the log-normal in the risk neutral world S(t)er(T−t) is exactly

the future value of our current stocks S(t) if we were to sell the stock and invest

the cash in a bank deposit. Then the future value of an option with payoff

function given by V0(ST ) is the expected value of this function against this

lognormal probability density function, then discounted to present value

e−r(T−t)
Z ∞
0

V0(x)g(x|S(t)e
r(T−t), σ

√
T − t)dx. (2.59)

Notice that the Black-Scholes derivation covers any diffusion process govern-

ing the underlying asset which is driven by a stochastic differential equation of

the form

dS = a(S)dt+ σSdWt (2.60)

regardless of the nature of the drift term a(S). For example a non-linear function

a(S) can lead to distributions that are not lognormal and yet the option price

is determined as if it were.

Example: Pricing Call and Put options.

Consider pricing an index option on the S&P 500 index an January 11, 2000 (the

index SPX closed at 1432.25 on this day). The option SXZ AE-A is a January

call option with strike price 1425. The option matures (as do equity options in

general) on the third Friday of the month or January 21, a total of 7 trading

days later. Suppose we wish to price such an option using the Black-Scholes

model. In this case, T − t measured in years is 7/252 = 0.027778. The annual

volatility of the Standard and Poor 500 index is around 19.5 percent or 0.195

and assume the very short term interest rates approximately 3%. In Matlab we

can value this option using
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[CALL,PUT] = BLSPRICE(1432.25,1425,0.03,7/252,0.195,0)

CALL = 23.0381

PUT = 14.6011

Arguments of the function BLSPRICE are, in order, the current equity price,

the strike price, the annual interest rate r, the time to maturity T − t in years,

the annual volatility σ and the last argument is the dividend yield in percent

which we assumed 0. Thus the Black-Scholes price for a call option on SPX

is around 23.03. Indeed this call option did sell on Jan 11 for $23.00. and

the put option for $14 5/8. From the put call parity relation (see for example

Wilmott, Howison, Dewynne, page 41) S + P − C = Ee−r(T−t) or in this

case 1432.25 + 14.625 − 23 = 1425e−r(7/252). We might solve this relation to

obtain the spot interest rate r. In order to confirm that a different interest rate

might apply over a longer term, we consider the September call and put options

(SXZ) on the same day with exercise price 1400 which sold for $152 and 71$

respectively. In this case there are171 trading days to expiry and so we need to

solve 1432.25 + 71 − 152 = 1400e−r(171/252), whose solution is r = 0.0522 .

This is close to the six month interest rates at the time, but 3% is low for the

very short term rates. The discrepancy with the actual interest rates is one of

several modest failures of the Black-Scholes model to be discussed further later.

The low implied interest rate is influenced by the cost of handling and executing

an option, which are non-negligible fractions of the option prices, particularly

with short term options such as this one. An analogous function to the Matlab

function above which provides the Black-Scholes price in Splus or R is given

below:

blsprice=function(So,strike,r,T,sigma,div){

d1<-(log(So/strike)+(r-div+(sigma^2)/2)*T)/(sigma*sqrt(T))

d2<-d1-sigma*sqrt(T)

call<-So*exp(-div*T)*pnorm(d1)-exp(-r*T)*strike*pnorm(d2)

put=call-So+strike*exp(-r*T)
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c(call,put)}

Problems

1. It is common for a stock whose price has reached a high level to split or

issue shares on a two-for-one or three-for-one basis. What is the effect of

a stock split on the price of an option?

2. If a stock issues a dividend of exactly D (known in advance) on a certain

date, provide a no-arbitrage argument for the change in price of the stock

at this date. Is there a difference between deterministic D and the case

when D is a random variable with known distribution but whose value is

declared on the dividend date?

3. Suppose Σ is a positive definite covariance matrix and η a column vector.

Show that the set of all possible pairs of standard deviation and mean

return (
√
wTΣw, ηTw) for weight vector w such that

P
iwi = 1 is a

convex region with a hyperbolic boundary.

4. The current rate of interest is 5% per annum and you are offered a random

bond which pays either $210 or $0 in one year. You believe that the

probability of the bond paying $210 is one half. How much would you

pay now for such a bond? Suppose this bond is publicly traded and a

large fraction of the population is risk averse so that it is selling now for

$80. Does your price offer an arbitrage to another trader? What is the

risk-neutral measure for this bond?

5. Which would you prefer, a gift of $100 or a 50-50 chance of making $200?

A fine of $100 or a 50-50 chance of losing $200? Are your preferences

self-consistent and consistent with the principle that individuals are risk-

averse?
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6. Compute the stochastic differential dXt (assumingWt is a Wiener process)

when

(a) Xt = exp(rt)

(b) Xt =
R t
0
h(t)dWt

(c) Xt = X0 exp{at+ bWt}

(d) Xt = exp(Yt) where dYt = µdt+ σdWt.

7. Show that if Xt is a geometric Brownian motion, so is X
β
t for any real

number β.

8. Suppose a stock price follows a geometric Brownian motion process

dSt = µStdt+ σStdWt

Find the diffusion equation satisfied by the processes (a) f(St) = Snt ,(b)

log(St), (c) 1/St . Find a combination of the processes St and 1/St that

does not depend on the drift parameter µ.How does this allow constructing

estimators of σ that do not require knowledge of the value of µ?

9. Consider an Ito process of the form

dSt = a(St)dt+ σ(St)dWt

Is it possible to find a function f(St) which is also an Ito process but with

zero drift?

10. Consider an Ito process of the form

dSt = a(St)dt+ σ(St)dWt

Is it possible to find a function f(St) which has constant diffusion term?

11. Consider approximating an integral of the form
R T
0
g(t)dWt ≈

P
g(t){W (t+

h)−W (t)} where g(t) is a non-random function and the sum is over val-

ues of t = nh, n = 0, 1, 2, ...T/h− 1. Show by considering the distribution
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of the sum and taking limits that the random variable
R T
0
g(t)dWt has a

normal distribution and find its mean and variance.

12. Consider two geometric Brownian motion processes Xt and Yt both driven

by the same Wiener process

dXt = aXtdt+ bXtdWt

dYt = µYtdt+ σYtdWt.

Derive a stochastic differential equation for the ratio Zt = Xt/Yt. Suppose

for example that Xt models the price of a commodity in $C and Yt is the

exchange rate ($C/$US) at time t. Then what is the process Zt? Repeat

in the more realistic situation in which

dXt = aXtdt+ bXtdW
(1)
t

dYt = µYtdt+ σYtdW
(2)
t

andW (1)
t ,W

(2)
t are correlated Brownian motion processes with correlation

ρ.

13. Prove the Shannon inequality that

H(Q,P ) =
X

qi log(
qi
pi
) ≥ 0

for any probability distributions P and Q with equality if and only if

all pi = qi.

14. Consider solving the problem

min
q
H(Q,P ) =

X
qi log(

qi
pi
)

subject to the constraints
P
i qi = 1 and EQf(X) =

P
qif(i) = µ. Show

that the solution, if it exists, is given by

qi =
exp(ηf(i))

m(η)
pi
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where m(η) =
P

i pi exp(ηf(i))] and η is chosen so that m
0(η)

m(η) = µ. (This

shows that the closest distribution to P which satisfies the constraint is

obtained by a simple “exponential tilt” or Esscher transform so that dQdP (x)

is proportional to exp(ηf(x)) for a suitable parameter η).

15. Let Q∗ minimize H(Q,P ) subject to a constraint

EQg(X) = c. (2.61)

Let Q be some other probability distribution satisfying the same con-

straint. Then prove that

H(Q,P ) = H(Q,Q∗) +H(Q∗, P ).

16. Let I1, I2 ,... be a set of constraints of the form

EQgi(X) = ci (2.62)

and suppose we define P ∗n as the solution of

max
P
H(P )

subject to the constraints I1 ∩ I2 ∩ ...In. Then prove that

H(P ∗n , P
∗
1 ) = H(P

∗
n , P

∗
n−1) +H(P

∗
n−1, P

∗
n−2) + ...+H(P

∗
2 , P

∗
1 ).

17. Consider a defaultable bond which pays a fraction of its face value Fp

on maturity in the event of default. Suppose the risk free interest rate

continuously compounded is r so that Bs = exp(sr). Suppose also that a

constant coupon $d is paid at the end of every period s = t+1, ..., T − 1.

Then show that the value of this bond at time t is

Pt = d
exp{−(r + k)}− exp{−(r + k){T − t)}

1− exp{−(r + k)}

+ pF exp{−r(T − t)}+ (1− p)F exp{−(r + k)(T − t)}
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18. (a) Show that entropy is always positive and if Y = g(X) is a function

of X then Y has smaller entropy than X, i.e. H(pY ) · H(pX).

(b) Show that if X has any discrete distribution over n values, then its

entropy is · log(n).



Chapter 3

Basic Monte Carlo Methods

Consider as an example the following very simple problem. We wish to price

a European call option with exercise price $22 and payoff function V (ST ) =

(ST−22)+. Assume for the present that the interest rate is 0% and ST can take

only the following five values with corresponding risk neutral (Q) probabilities

s 20 21 22 23 24

Q[ST = s] 1/16 4/16 6/16 4/16 1/16

In this case, since the distribution is very simple, we can price the call option

explicitly;

EQV (ST ) = EQ(ST − 22)
+ = (23− 22)

4

16
+ (24− 22)

1

16
=
3

8
.

However, the ability to value an option explicitly is a rare luxury. An alternative

would be to generate a large number (say n = 1000) independent simulations of

the stock price ST under the measureQ and average the returns from the option.

Say the simulations yielded values for ST of 22, 20, 23, 21, 22, 23, 20, 24, .... then

97
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the estimated value of the option is

V (ST ) =
1

1000
[(22− 22)+ + (20− 22)+ + (23− 22)+ + ....].

=
1

1000
[0 + 0 + 1 + ....]

The law of large numbers assures us for a large number of simulations n, the

average V (ST ) will approximate the true expectation EQV (ST ). Now while it

would be foolish to use simulation in a simple problem like this, there are many

models in which it is much easier to randomly generate values of the process ST

than it is to establish its exact distribution. In such a case, simulation is the

method of choice.

Randomly generating a value of ST for the discrete distribution above is easy,

provided that we can produce independent random uniform random numbers

on a computer. For example, if we were able to generate a random number Yi

which has a uniform distribution on the integers {0, 1, 2, ...., 15} then we could

define ST for the i0th simulation as follows:

If Yi is in set {0} {1, 2, 3, 4} {5, 6, 7, 8, 9, 10} {11, 12, 13, 14} {15}

define ST = 20 21 22 23 24

Of course, to get a reasonably accurate estimate of the price of a complex

derivative may well require a large number of simulations, but this is decreas-

ingly a problem with increasingly fast computer processors. The first ingredient

in a simulation is a stream of uniform random numbers Yi used above. In prac-

tice all other distributions are generated by processing discrete uniform random

numbers. Their generation is discussed in the next section.

Uniform Random Number Generation

The first requirement of a stochastic model is the ability to generate “random”

variables or something resembling them. Early such generators attached to

computers exploited physical phenomena such as the least significant digits in
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an accurate measure of time, or the amount of background cosmic radiation

as the basis for such a generator, but these suffer from a number of disadvan-

tages. They may well be “random” in some more general sense than are the

pseudo-random number generators that are presently used but their properties

are difficult to establish, and the sequences are impossible to reproduce. The

ability to reproduce a sequence of random numbers is important for debugging

a simulation program and for reducing its variance.

It is quite remarkable that some very simple recursion formulae define se-

quences that behave like sequences of independent random numbers and appear

to more or less obey the major laws of probability such as the law of large num-

bers, the central limit theorem, the Glivenko-Cantelli theorem, etc. Although

computer generated pseudo random numbers have become more and more like

independent random variables as the knowledge of these generators grows, the

main limit theorems in probability such as the law of large numbers and the

central limit theorem still do not have versions which directly apply to depen-

dent sequences such as those output by a random number generator. The fact

that certain pseudo-random sequences appear to share the properties of inde-

pendent sequences is still a matter of observation rather than proof, indicating

that many results in probability hold under much more general circumstances

than the relatively restrictive conditions under which these theorems have so far

been proven. One would intuitively expect an enormous difference between the

behaviour of independent random variables Xn and a deterministic (i.e. non-

random) sequence satisfying a recursion of the form xn = g(xn−1) for a simple

function g. Surprisingly, for many carefully selected such functions g it is quite

difficult to determine the difference between such a sequence and an indepen-

dent sequence. Of course, numbers generated from a simple recursion such as

this are neither random, nor are xn−1 and xn independent. We sometimes draw

attention to this by referring to such a sequence as pseudo-random numbers.

While they are in no case independent, we will nevertheless attempt to find
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simple functions g which provide behaviour similar to that of independent uni-

form random numbers. The search for a satisfactory random number generator

is largely a search for a suitable function g, possibly depending on more than one

of the earlier terms of the sequence, which imitates in many different respects

the behaviour of independent observations with a specified distribution.

Definition: reduction modulo m. For positive integers x andm, the value

amodm is the remainder (between 0 and m− 1 ) obtained when a is divided

by m. So for example 7mod 3 = 1 since 7 = 2 × 3 + 1.

The single most common class of random number generators are of the form

xn := (axn−1 + c) modm

for given integers a, c, and m which we select in advance. This generator is

initiated with a “seed” x0 and then run to produce a whole sequence of values.

When c = 0, these generators are referred to as multiplicative congruential

generators and in general as mixed or linear congruential generators. The

“seed”, x0, is usually updated by the generator with each call to it. There are

two common choices of m, either m prime or m = 2kfor some k (usually 31 for

32 bit machines).

Example: Mixed Congruential generator

Define xn = (5xn−1 + 3)mod 8 and the seed x0 = 3. Note that by this

recursion

x1 = (5 × 3 + 3)mod 8 = 18mod 8 = 2

x2 = 13mod 8 = 5

x3 = 28mod 8 = 4

and x4, x5, x6,x7, x8 = 7, 6, 1, 0, 3 respectively
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and after this point (for n > 8) the recursion will simply repeat again the

pattern already established, 3, 2, 5, 4, 7, 6, 1, 0, 3, 2, 5, 4, .......

The above repetition is inevitable for a linear congruential generator. There

are at most m possible numbers after reduction mod m and once we arrive

back at the seed the sequence is destined to repeat itself. In the example

above, the sequence cycles after 8 numbers. The length of one cycle, before the

sequence begins to repeat itself again, is called the period of the generator. For a

mixed generator, the period must be less than or equal to m. For multiplicative

generators, the period is shorter, and often considerably shorter.

Multiplicative Generators.

For multiplicative generators, c = 0. Consider for example the generator xn =

5xn−1 mod 8 and x0 = 3. This produces the sequence 3, 7, 3, 7, .... In this case,

the period is only 2, but for general m, it is clear that the maximum possible

period ism−1 because it generates values in the set {1, ...,m−1}. The generator

cannot generate the value 0 because if it did, all subsequent values generated

are identically 0. Therefore the maximum possible period corresponds to a cycle

through non-zero integers exactly once. But in the example above with m = 2k,

the period is far from attaining its theoretical maximum, m− 1. The following

Theorem shows that the period of a multiplicative generator is maximal when

m is a prime number and a satisfies some conditions.

Theorem 14 (period of multiplicative generator).

Ifm is prime, the multiplicative congruential generator xn = axn−1(modm), a 6=

0, has maximal period m − 1 if and only if ai 6= 1(mod m) for all i =

1, 2, ...,m− 1.

If m is a prime, and if the condition am−1 = 1(mod m) and ai 6= 1(mod m)

for all i < m − 1 holds, we say that a is a primitive root of m, which means
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that the powers of a generate all of the possible elements of the multiplicative

group of integers mod m. Consider the multiplicative congruential generator

xn = 2xn−1mod11. It is easy to check that 2imod11 = 2, 4, 8, 5, 10, 9, 7, 3, 6, 1

as i = 1, 2, ...10. Since the value i = m−1 is the first for which 2imod11 = 1, 2

is a primitive root of 11 and this is a maximal period generator having period

10. When m = 11, only the values a = 2, 6, 7, 8 are primitive roots and produce

full period (10) generators.

One of the more common moduli on 32 bit machines is the Mersenne prime

m = 231 − 1. In this case, the following values of a (among many others) all

produce full period generators:

a = 7, 16807, 39373, 48271, 69621, 630360016, 742938285, 950706376,

1226874159, 62089911, 1343714438

Let us suppose now that m is prime and a2 is the multiplicative inverse

(mod m) of a1 by which we mean (a1a2)modm = 1. When m is prime,

the set of integers {0, 1, 2, ...,m − 1} together with the operations of addition

and multiplication modm forms what is called a finite field. This is a finite

set of elements together with operations of addition and multiplication such as

those we enjoy in the real number system. For example for integers x1, a1, a2 ∈

{0, 1, 2, ...,m−1}, the product of a1 and x1 can be defined as (a1x1)modm = x2,

say. Just as non-zero numbers in the real number system have multiplicative

inverses, so too do non=zero elements of this field. Suppose for example a2 is

the muultiplicative inverse of a1 so that a2a1modm = 1. If we now multiply x2

by a2 we have

(a2x2)modm = (a2a1x1)modm = (a2a1modm)(x1modm) = x1.

This shows that x1 = (a2x2)modm is equivalent to x2 = (a1x1)modm. In

other words, using a2 the multiplicative inverse of a1mod m, the multiplicative

generator with multiplier a2 generates exactly the same sequence as that with
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multiplier a1 except in reverse order. Of course if a is a primitive root of m,

then so is its multiplicative inverse.

Theorem 15 (Period of Multiplicative Generators with m = 2k)

If m = 2k with k ≥ 3, and if amod8 = 3 or 5 and x0 is odd, then the

multiplicative congruential generator has maximal period = 2k−2.

For the proof of these results, see Ripley(1987), Chapter 2. The follow-

ing simple Matlab code allows us to compare linear congruential generators

with small values of m. It generates a total of n such values for user defined

a, c,m, x0 =seed. The efficient implementation of a generator for large values of

m depends very much on the architecture of the computer. We normally choose

m to be close to the machine precision (e.g. 232 for a 32 bit machine.

function x=lcg(x0,a,c,m,n)

y=x0; x=x0;

for i=1:n ; y=rem(a*y+c,m); x=[x y]; end

The period of a linear congruential generator varies both with the multiplier

a and the constant c. For example consider the generator

xn = (axn−1 + 1)mod 210

for various multipliers a.When we use an even multiplier such as a = 2, 4, ...(using

seed 1) we end up with a sequence that eventually locks into a specific value.

For example with a = 8 we obtain the sequence 1,9,73,585,585,....never changing

beyond that point. The periods for odd multipliers are listed below (all started

with seed 1)

a 1 3 5 7 9 11 13 15 17 19 21 23 25

Period 1024 512 1024 256 1024 512 1024 128 1024 512 1024 256 1024
The astute reader will notice that the only full-period multipliers a are those

which are multipliers of 4. This is a special case of the following theorem.
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Theorem 16 (Period of Mixed or Linear Congruential Generators.)

The Mixed Congruential Generator,

xn = (axn−1 + c)mod m (3.1)

has full period m if and only if

(i) c and m are relatively prime.

(ii) Each prime factor of m is also a factor of a− 1.

(iii) If 4 divides m it also divides a− 1.

When m is prime, (ii) together with the assumption that a < m implies that

m must divide a− 1 which implies a = 1. So for prime m the only full-period

generators correspond to a = 1. Prime numbers m are desirable for long periods

in the case of multiplicative generators, but in the case of mixed congruential

generators, only the trivial one xn = (xn−1 + c)(mod m) has maximal period

m when m is prime. This covers the popular Mersenne prime m = 231 − 1..

For the generators xn = (axn−1 + c)mod 2k where m = 2k, k ≥ 2, the

condition for full period 2k requires that c is odd, and a = 4j + 1 for some

integer j.

Some of the linear or multiplicative generators which have been suggested

are the following:
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m a c

231 − 1 75 = 16807 0 Lewis,Goodman, Miller (1969)IBM,

231 − 1 630360016 0 Fishman (Simscript II)

231 − 1 742938285 0 Fishman and Moore

231 65539 0 RANDU

232 69069 1 Super-Duper (Marsaglia)

232 3934873077 0 Fishman and Moore

232 3141592653 1 DERIVE

232 663608941 0 Ahrens (C-RAND )

232 134775813 1 Turbo-Pascal,Version 7(period= 232)

235 513 0 APPLE

1012 − 11 427419669081 0 MAPLE

259 1313 0 NAG

261 − 1 220 − 219 0 Wu (1997)

Table 3.1: Some Suggested Linear and Multiplicative Random

Number Generators

Other Random Number Generators.

A generalization of the linear congruential generators which use a k-dimensional

vectors X has been considered, specifically when we wish to generate correlation

among the components of X. Suppose the components of X are to be integers

between 0 and m−1 where m is a power of a prime number. If A is an arbitrary

k × k matrix with integral elements also in the range {0, 1, ...,m − 1} then we

begin with a vector-valued seed X0, a constant vector C and define recursively

Xn := (AXn−1 + C)modm

Such generators are more common when C is the zero vector and called matrix

multiplicative congruential generators. A related idea is to use a higher order
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recursion like

xn = (a1xn−1 + a2xn−2 + ..+ akxn−k)modm, (3.2)

called a multiple recursive generator. L’Ecuyer (1996,1999) combines a number

of such generators in order to achieve a period around 2319and good uniformity

properties. When a recursion such as (3.2) with m = 2 is used to generate

pseudo-random bits {0, 1}, and these bits are then mapped into uniform (0,1)

numbers, it is called a Tausworthe or Feedback Shift Register generators. The

coefficients ai are determined from primitive polynomials over the Galois Field.

In some cases, the uniform random number generator in proprietary packages

such as Splus and Matlab are not completely described in the package documen-

tation. This is a further recommendation of the transparency of packages like

R. Evidently in Splus, the multiplicative congruential generator is used, and

then the sequence is “ shuffled” using a Shift-register generator (a special case

of the matrix congruential generator described above). This secondary process-

ing of the sequence can increase the period but it is not always clear what other

effects it has. In general, shuffling is conducted according to the following steps

1. Generate a sequence of pseudo-random numbers xi using xi+1 = a1xi(modm1).

2. For fixed k put (T1, . . . , Tk) = (x1, . . . , xk).

3. Generate, using a different generator, a sequence yi+1 = a2yi(modm2).

4. Output the random number TI where I = dYik/m2e .

5. Increment i, replace TI by the next value of x, and return to step 3.

One generator is used to produce the sequence x, numbers needed to fill

k holes. The other generator is then used select which hole to draw the next

number from or to “shuffle” the x sequence.

Example: A shuffled generator

Consider a generator described by the above steps with k = 4, xn+1 = (5xn)(mod1 19)

and yn+1 = (5yn)(mod 29)
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xn = 3 15 18 14 13 8 2

yn = 3 15 17 27 19 8 11
We start by filling four pigeon-holes with the numbers produced by the first

generator so that (T1, . . . , T4) = (3, 15, 18, 14). Then use the second generator

to select a random index I telling us which pigeon-hole to draw the next number

from. Since these holes are numbered from 1 through 4, we use I = d4× 3/29e =

1. Then the first number in our random sequence is drawn from box 1, i.e.

z1 = T1 = 3, so z1 = 3. This element T1 is now replaced by 13, the next number

in the x sequence. Proceeding in this way, the next index is I = d4× 15/29e = 3

and so the next number drawn is z2 = T3 = 18. Of course, when we have

finished generating the values z1, z2, ... all of which lie between 1 and m1 = 18,

we will usually transform them in the usual way (e.g. zi/m1) to produce

something approximating continuous uniform random numbers on [0,1]. When

m1, is large, it is reasonable to expect the values zi/m1 to be approximately

continuous and uniform on the interval [0, 1]. One advantage of shuffling is that

the period of the generator is usually greatly extended. Whereas the original

x sequence had period 9 in this example, the shuffled generator has a larger

period or around 126.

There is another approach, summing pseudo-random numbers, which is also

used to extend the period of a generator. This is based on the following theo-

rem (see L’Ecuyer (1988)). For further discussion of the effect of taking linear

combinations of the output from two or more random number generators, see

Fishman (1995, Section 7.13).

Theorem 17 (Summing mod m)

If X is random variable uniform on the integers {0, . . . ,m − 1} and if Y is

any integer-valued random variable independent of X, then the random variable

W = (X + Y )(mod m) is uniform on the integers {0, . . . ,m− 1}.

Theorem 18 (Period of generator summed mod m1)
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If xi+1 = a1ximodm1 has period m1 − 1 and yi+1 = a2yimodm2 has period

m2 − 1, then (xi + yi)(modm1) has period the least common multiple of (m1 −

1,m2 − 1).

Example: summing two generators

If xi+1 = 16807ximod(2
31 − 1) and yi+1 = 40692yimod(2

31 − 249), then the

period of (xi + yi)mod(231 − 1) is

(231 − 2)(231 − 250)

2 × 31
≈ 7.4 × 1016

This is much greater than the period of either of the two constituent generators.

Other generators.

One such generator, the “Mersenne-Twister”, from Matsumoto and Nishimura

(1998) has been implemented in R and has a period of 219937 − 1. Others use a

non-linear function g in the recursion xn+1 = g(xn)(mod m) to replace a linear

one For example we might define xn+1 = x2n(modm) (called a quadratic residue

generator) or xn+1 = g(xn)modm for a quadratic function or some other non-

linear function g. Typically the function g is designed to result in large values

and thus more or less random low order bits. Inversive congruential generators

generate xn+1 using the (mod m) inverse of xn.

Other generators which have been implemented in R include: theWichmann-

Hill (1982,1984) generator which uses three multiplicative generators with prime

moduli 30269, 30307, 30323 and has a period of 14(30268× 30306× 30322). The

outputs from these three generators are converted to [0, 1] and then summed

mod 1. This is similar to the idea of Theorem 17, but the addition takes

place after the output is converted to [0,1]. See Applied Statistics (1984), 33,

123. Also implemented are Marsaglia’s Multicarry generator which has a pe-

riod of more than 260 and reportedly passed all tests (according to Marsaglia),

Marsaglia’s ”Super-Duper”, a linear congruential generator listed in Table 1,



APPARENTRANDOMNESS OF PSEUDO-RANDOMNUMBERGENERATORS109

and two generators developed by Knuth (1997,2002) the Knuth-TAOCP and

Knuth-TAOCP-2002.

Conversion to Uniform (0, 1) generators:

In general, random integers should be mapped into the unit interval in such a

way that the values 0 and 1, each of which have probability 0 for a continuous

distribution are avoided. For a multiplicative generator, since values lie between

1 andm−1, we may divide the random number bym. For a linear congruential

generator taking possible values x ∈ {0, 1, ...,m− 1}, it is suggested that we use

(x+ 0.5)/m.

Apparent Randomness of Pseudo-Random Num-

ber Generators

Knowing whether a sequence behaves in all respects like independent uniform

random variables is, for the statistician, pretty close to knowing the meaning of

life. At the very least, in order that one of the above generators be reasonable

approximations to independent uniform variates it should satisfy a number of

statistical tests. Suppose we reduce the uniform numbers on {0, 1, ...,m − 1}

to values approximately uniformly distributed on the unit interval [0, 1] as de-

scribed above either by dividing through by m or using (x+ 0.5)/m. There are

many tests that can be applied to determine whether the hypothesis of inde-

pendent uniform variates is credible (not, of course, whether the hypothesis is

true. We know by the nature of all of these pseudo-random number generators

that it is not!).



110 CHAPTER 3. BASIC MONTE CARLO METHODS

Runs Test

We wish to test the hypothesis H0 that a sequence{Ui, i = 1, 2, ..., n} consists

of n independent identically distributed random variables under the assump-

tion that they have a continuous distribution. The runs test measures runs,

either in the original sequence or in its differences. For example, suppose we

denote a positive difference between consecutive elements of the sequence by +

and a negative difference by −. Then we may regard a sequence of the form

.21, .24, .34, .37, .41, .49, .56, .51, .21, .25, .28, .56, .92,.96 as unlikely under inde-

pendence because the corresponding differences ++++++−−+++++ have

too few “runs” (the number of runs here is R = 3). Under the assumption that

the sequence {Ui, i = 1, 2, ..., n} is independent and continuous, it is possible

to show that E(R) = 2n−1
3 and var(R) = 3n−5

18 . The proof of this result is a

problem at the end of this chapter. We may also approximate the distribution of

R with the normal distribution for n ≥ 25. A test at a 0.1% level of significance

is therefore: reject the hypothesis of independence if¯̄̄̄
¯̄R− 2n−1

3q
3n−5
18

¯̄̄̄
¯̄ > 3.29,

where 3.29 is the corresponding N(0, 1) quantile. A more powerful test based

on runs compares the lengths of the runs of various lengths (in this case one

run up of length 7, one run down of length 3, and one run up of length 6) with

their theoretical distribution.

Another test of independence is the serial correlation test. The runs test

above is one way of checking that the pairs (Un, Un+1)are approximately uni-

formly distributed on the unit square. This could obviously be generalized to

pairs like (Ui, Ui+j). One could also use the sample correlation or covariance as

the basis for such a test. For example, for j ≥ 0,

Cj =
1

n
(U1U1+j + U2U2+j + ..Un−jUn + Un+1−jU1 + ....+ UnUj) (3.3)
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The test may be based on the normal approximation to the distribution of Cj

with mean E(C0) = 1/3 and E(Cj) = 1/4 for j ≥ 1. Also

var(Cj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
45n for j = 0

13
144n for j ≥ 1, j 6= n

2

7
72n for j = n

2

Such a test, again at a 0.1% level will take the form: reject the hypothesis of

independent uniform if ¯̄̄̄
¯̄Cj − 1

4q
13
144n

¯̄̄̄
¯̄ > 3.29.

for a particular preselected value of j (usually chosen to be small, such as j =

1, ...10).

Chi-squared test.

The chi-squared test can be applied to the sequence in any dimension, for ex-

ample k = 2. Suppose we have used a generator to produce a sequence of

uniform(0, 1) variables, Uj , j = 1, 2, ...2n, and then, for a partition {Ai; i =

1, ...,K} of the unit square, we count Ni, the number of pairs of the form

(U2j−1, U2j) ∈ Ai. See for example the points plotted in Figure 3.1. Clearly

this should be related to the area or probability P (Ai) of the set Ai. Pearson’s

chi-squared statistic is

χ2 =
KX
i=1

[Ni − nP (Ai)]2

nP (Ai)
(3.4)

which should be compared with a chi-squared distribution with degrees of free-

dom K−1 or one less than the number of sets in the partition. Observed values

of the statistic that are unusually large for this distribution should lead to re-

jection of the uniformity hypothesis. The partition usually consists of squares

of identical area but could, in general, be of arbitrary shape.
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Figure 3.1: The Chi-squared Test

Spectral Test

Consecutive values plotted as pairs (xn, xn+1), when generated from a multi-

plicative congruential generator xn+1 = axn(modm) fall on a lattice. A lattice is

a set of points of the form t1e1+t2e2 where t1, t2 range over all integers and e1, e2

are vectors, (here two dimensional vectors since we are viewing these points in

pairs of consecutive values (xn, xn+1)) called the “basis” for the lattice. A given

lattice, however, has many possible different bases, and in order to analyze the

lattice structure, we need to isolate the most “natural” basis, e.g. the one that

we tend to see in viewing a lattice in two dimensions. Consider, for example, the

lattice formed by the generator xn = 23xn−1mod97. A plot of adjacent pairs

(xn, xn+1) is given in Figure 3.2. For basis vectors we could use e1 = (1, 23) and

e2 = (4,−6), or we could replace e1 by (5, 18)or (9, 13) etc. Beginning at an

arbitrary point O on the lattice as origin (in this case, since the original point

(0,0) is on the lattice, we will leave it unchanged), we choose an unambiguous
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Figure 3.2: The Spectral Test

definition of e1 to be the shortest vector in the lattice, and then define e2 as the

shortest vector in the lattice which is not of the form te1 for integer t. Such a

basis will be called a natural basis. The best generators are those for which the

cells in the lattice generated by the 2 basis vectors e1, e2 or the parallelograms

with sides parallel to e1, e2 are as close as possible to squares so that e1 and

e2 are approximately the same length. As we change the multiplier a in such a

way that the random number generator still has period ' m, there are roughly

m points in a region above with area approximately m2 and so the area of a

parallelogram with sides e1 and e2 is approximately a constant (m) whatever

the multiplier a. In other words a longer e1 is associated with a shorter vector

e2 and therefore for an ideal generator, the two vectors of reasonably similar

length. A poor generator corresponds to a basis with e2 much longer than e1.

The spectral test statistic ν is the renormalized length of the first basis vector

||e1||. The extension to a lattice in k-dimensions is done similarly. All linear
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RANDU

congruential random number generators result in points which when plotted as

consecutive k-tuples lie on a lattice. In general, for k consecutive points, the

spectral test statistic is equal to min(b21 + b
2
2 + .+ .+ .+ b

2
k)
1/2 under the con-

straint b1 + b2a + ...bkak−1 = mq, q 6= 0. Large values of the statistic indicate

that the generator is adequate and Knuth suggests as a minimum threshold the

value π−1/2[(k/2)!m/10]1/k.

One of the generators that fails the spectral test most spectacularly with

k = 3 is the generator RANDU, xn+1 = 65539 xn(mod 231). This was used

commonly in simulations until the 1980’s and is now notorious for the fact

that a small number of hyperplanes fit through all of the points (see Marsaglia,

1968). For RANDU, successive triplets tend to remain on the plane xn =

6xn−1 − 9xn−2. This may be seen by rotating the 3-dimensional graph of the

sequence of triplets of the form {(xn−2, xn−1, xn);n = 2, 3, 4, ...N} as in Figure

3.3

As another example, in Figure 3.4 we plot 5000 consecutive triplets from

a linear congruential random number generator with a = 383, c = 263,m =
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Figure 3.4: The values (xi, xi+1, xi+2) generated by a linear congruential gen-

erator xn+1 = (383xn + 263)(mod 10000)

10, 000.

Linear planes are evident from some angles in this view, but not from others.

In many problems, particularly ones in which random numbers are processed in

groups of three or more, this phenomenon can lead to highly misleading results.

The spectral test is the most widely used test which attempts to insure against

lattice structure. tABLE 3.2 below is taken from Fishman(1996) and gives some

values of the spectral test statistic for some linear congruential random number

generators in dimension k · 7.
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m a c k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

231 − 1 75 0 0.34 0.44 0.58 0.74 0.65 0.57

231 − 1 630360016 0 0.82 0.43 0.78 0.80 0.57 0.68

231 − 1 742938285 0 0.87 0.86 0.86 0.83 0.83 0.62

231 65539 0 0.93 0.01 0.06 0.16 0.29 0.45

232 69069 0 0.46 0.31 0.46 0.55 0.38 0.50

232 3934873077 0 0.87 0.83 0.83 0.84 0.82 0.72

232 663608941 0 0.88 0.60 0.80 0.64 0.68 0.61

235 513 0 0.47 0.37 0.64 0.61 0.74 0.68

259 1313 0 0.84 0.73 0.74 0.58 0.64 0.52

TABLE 3.2. Selected Spectral Test Statistics

The unacceptably small values for RANDU in the case k = 3 and k = 4 are

highlighted. On the basis of these values of the spectral test, the multiplicative

generators

xn+1 = 742938285xn(mod 2
31 − 1)

xn+1 = 3934873077xn(mod 2
32)

seem to be recommended since their test statistics are all reasonably large for

k = 2, ..., 7.

Generating RandomNumbers fromNon-Uniform

Continuous Distributions

By far the simplest and most common method for generating non-uniform vari-

ates is based on the inverse cumulative distribution function. For arbitrary

cumulative distribution function F (x), define F−1(y) = min{x;F (x) ≥ y}.

This defines a pseudo-inverse function which is a real inverse (i.e. F (F−1(y)) =
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F−1(F (y)) = y) only in the case that the cumulative distribution function is con-

tinuous and strictly increasing. However, in the general case of a possibly discon-

tinuous non-decreasing cumulative distribution function the function continues

to enjoy some of the properties of an inverse. Notice that F−1(F (x)) · x and

F (F−1(y)) ≥ y but F−1(F (F−1(y))) = F−1(y) and F (F−1(F (x))) = F (x). In

the general case, when this pseudo-inverse is easily obtained, we may use the

following to generate a random variable with cumulative distribution function

F (x).

Theorem 19 (inverse transform) If F is an arbitrary cumulative distribution

function and U is uniform[0, 1] then X = F−1(U) has cumulative distribution

function F (x).

Proof. The proof is a simple consequence of the fact that

[U < F (x)] ⊂ [X · x] ⊂ [U · F (x)] for all x, (3.5)

evident from Figure 3.5. Taking probabilities throughout (3.5), and using the

continuity of the distribution of U so that P [U = F (x)] = 0, we obtain

F (x) · P [X · x] · F (x).

Examples of Inverse Transform

Exponential (θ)

This distribution, a special case of the gamma distributions, is common in most

applications of probability. For example in risk management, it is common to

model the time between defaults on a contract as exponential (so the default

times follow a Poisson process). In this case the probability density function is
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Figure 3.5: The Inverse Transform generator

f(x) = 1
θ e
−x/θ, x ≥ 0 and f(x) = 0 for x < 0. The cumulative distribution

function is F (x) = 1− e−x/θ, x ≥ 0. Then taking its inverse,

X = −θ ln(1− U) or equivalently

X = −θ lnU since U and 1− U have the same distribution.

In Matlab, the exponential random number generators is called exprnd and in

Splus or R it is rexp.

Cauchy (a, b)

This distribution is a member of the stable family of distributions which we

discuss later. It is similar to the normal only substantially more peaked in

the center and with more area in the extreme tails of the distribution. The

probability density function is

f(x) =
b

π(b2 + (x− a)2)
,−∞ < x <∞.

See the comparison of the probability density functions in Figure 3.6. Here

we have chosen the second (scale) parameter b for the Cauchy so that the two

densities would match at the point x = a = 0.
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Figure 3.6: The Normal and the Cauchy Probability Density Functions

The cumulative distribution function is F (x) = 1
2 +

1
π arctan(

x−a
b ). Then

the inverse transform generator is, for U uniform on [0,1],

X = a+ b tan{π(U −
1

2
)} or equivalently X = a+

b

tan(πU)

where the second expression follows from the fact that tan(π(x− 1
2)) = (tanπx)

−1.

Geometric (p)

This is a discrete distribution which describes the number of (independent) trials

necessary to achieve a single success when the probability of a success on each

trial is p. The probability function is

f(x) = p(1− p)x, x = 1, 2, 3, ....

and the cumulative distribution function is

F (x) = P [X · x] = 1− (1− p)[x], x ≥ 0
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where [x] denotes the integer part of x. To invert the cumulative distribution

function of a discrete distribution like this one, we need to refer to a graph of the

cumulative distribution function analogous to Figure 3.5. We wish to output

an integer value of x which satisfies the inequalities

F (x− 1) < U · F (x).

Solving these inequalities for integer x,we obtain

1− (1− p)x−1 < U · 1− (1− p)x

(1− p)x−1 > 1− U ≥ (1− p)x

(x− 1) ln(1− p) > ln(1− U) ≥ x ln(1− p)

(x− 1) <
ln(1− U)

ln(1− p)
· x

Note that changes of direction of the inequality occurred each time we multiplied

or divided by negative quantity. We should therefore choose the smallest integer

for X which is greater than or equal to ln(1−U)
ln(1−p) or equivalently,

X = 1 + [
log(1− U)

log(1− p)
] or1 + [

−E

log(1− p)
]

where we write − log(1−U) = E, an exponential(1) random variable. InMatlab,

the geometric random number generators is called geornd and in R or Splus

it is called rgeom.

Pareto (a, b)

This is one of the simpler families of distributions used in econometrics for

modeling quantities with lower bound b.

F (x) = 1− (
b

x
)
a

, for x ≥ b > 0.

Then the probability density function is

f(x) =
aba

xa+1



GENERATINGRANDOMNUMBERS FROMNON-UNIFORMCONTINUOUS DISTRIBUTIONS121

and the mean is E(X) = . The inverse transform in this case results in

X =
b

(1− U)1/a
or

b

U1/a

The special case b = 1 is often considered in which case the cumulative distrib-

ution function takes the form

F (x) = 1−
1

xa

and the inverse

X = (1− U)1/a.

Logistic

This is again a distribution with shape similar to the normal but closer than is

the Cauchy. Indeed as can be seen in Figure 3.7, the two densities are almost

indistinguishable, except that the logistic is very slightly more peaked in the

center and has slightly more weight in the tails. Again in this graph, parameters

have been chosen so that the densities match at the center.

The logistic cumulative distribution function is

F (x) =
1

1 + exp{−(x− a)/b}
.

and on taking its inverse, the logistic generator is

X = a+ b ln(U/(1− U)).

Extreme Value

This is one of three possible distributions for modelling extreme statistics such as

the largest observation in a very large random sample. As a result it is relevant

to risk management. The cumulative distribution function is for parameters

−∞ < a <∞ and b > 0,

F (x) = 1− exp{− exp(
x− a

b
)}.
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Figure 3.7: Comparison of the Standard Normal and Logistic(0.625) Probability

density functions.

The corresponding inverse is

X = a+ b ln(ln(U)).

Weibull Distribution

In this case the parameters a, b are both positive and the cumulative distribution

function is

F (x) = 1− exp{−axb} for x ≥ 0.

The corresponding probability density function is

f(x) = abxb−1 exp{−axb}.

Then using inverse transform we may generate X as

X =

½
− ln(1− U)

a

¾1/b
.
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Student’s t.

The Student t distribution is used to construct confidence intervals and tests for

the mean of normal populations. It also serves as a wider-tailed alternative to

the normal, useful for modelling returns which have moderately large outliers.

The probability density function takes the form

f(x) =
Γ((v + 1)/2)
√
vπΓ(v/2)

(1 +
x2

v
)−(v+1)/2,−∞ < x <∞.

The case v = 1 corresponds to the Cauchy distribution. There are specialized

methods of generating random variables with the Student t distribution we will

return to later. In MATLAB, the student’s t generator is called trnd. In general,

trnd(v,m,n) generates an m × n matrix of student’s t random variables having

v degrees of freedom.

The generators of certain distributions are as described below. In each case

a vector of length n with the associated parameter values is generated.

DISTRIBUTION R and SPLUS MATLAB

normal rnorm(n, µ,σ) normrnd(µ,σ, 1, n) or randn(1, n) if µ = 1,σ = 1

Student’s t rt(n, ν) trnd(ν, 1, n)

exponential rexp(n,λ) exprnd(λ, 1, n)

uniform runif(n, a, b) unifrnd(a, b, 1, n) or rand(1, n) if a = 0, b = 1

Weibull rweibull(n, a, b) weibrnd(a, b, 1, n)

gamma rgamma(n, a, b) gamrnd(a, b, 1, n)

Cauchy rcauchy(n, a, b) a+b*trnd(1, 1, n)

binomial rbinom(n,m, p) binornd(m, p, 1, n)

Poisson rpois(n,λ) poissrnd(λ, 1, n)

TABLE 3.3: Some Random Number Generators in R, SPLUS and MATLAB

Inversion performs reasonably well for any distribution for which both the
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cumulative distribution function and its inverse can be found in closed form

and computed reasonably efficiently. This includes the Weibull, the logistic

distribution and most discrete distributions with a small number possible val-

ues. However, for other distributions such as the Normal, Student’s t, the

chi-squared, the Poisson or Binomial with large parameter values, other more

specialized methods are usually used, some of which we discuss later.

When the cumulative distribution function is known but not easily inverted,

we might attempt to invert it by numerical methods. For example, using the

Newton-Ralphson method, we would iterate until convergence the equation

X = X −
F (X)− U

f(X)
(3.6)

with f(X) = F 0(X), beginning with a good approximation to X. For example

we might choose the initial value of X = X(U) by using an easily inverted

approximation to the true function F (X). The disadvantage of this approach

is that for each X generated, we require an iterative solution to an equation

and this is computationally very expensive.

The Acceptance-Rejection Method

Suppose F (x) is a cumulative distribution function and f(x) is the corresponding

probability density function. In this case F is continuous and strictly increasing

wherever f is positive and so it has a well-defined inverse F−1. Consider the

transformation of a point (u, v) in the unit square defined by

x(u, v) = F−1(u)

y(u, v) = vf(F−1(u)) = vf(x)

for 0 < u < 1, 0 < v < 1

This maps a random point (U, V ) uniformly distributed on the unit square into

a point (X,Y ) uniformly distributed under the graph of the probability density



GENERATINGRANDOMNUMBERS FROMNON-UNIFORMCONTINUOUS DISTRIBUTIONS125

f . The fact that X has cumulative distribution function F follows from its def-

inition as X = F−1(U) and the inverse transform theorem. By the definition of

Y = V f(X) with V uniform on [0, 1] we see that the conditional distribution of

Y given the value of X, is uniform on the interval [0, f(X)]. Suppose we seek a

random number generator for the distribution of X but we are unable to easily

invert the cumulative distribution function We can nevertheless use the result

that the point (X,Y ) is uniform under the density as the basis for one of the

simplest yet most useful methods of generating non-uniform variates, the rejec-

tion or acceptance-rejection method. It is based on the following very simple

relationship governing random points under probability density functions.

Theorem 20 (Acceptance-Rejection) (X,Y ) is uniformly distributed in the

region between the probability density function y = f(x) and the axis y = 0 if

and only if the marginal distribution of X has density f(x) and the conditional

distribution of Y given X is uniform on [0, f(X)].

Proof. If a point (X,Y ) is uniformly distributed under the graph of f(x)

notice that the probability P [a < X < b] is proportional to the area under the

graph between vertical lines at x = a and x = b. In other words P [a < X <

b] is proportional to
R b
a
f(x)dx. This implies that f(x) is proportional to the

probability density function of X and provided that
R∞
−∞ f(x)dx = 1, f(x) is

the probability density function of X. The converse and the rest of the proof is

similar.

Even if the scaling constant for a probability density function is unavailable,

in other words if we know f(x) only up to some unknown scale multiple, we

can still use Theorem 19 to generate a random variable with probability density

f because the X coordinate of a random point uniform under the graph of

a constant× f(x) is the same as that of a random point uniformly distributed

under the graph of f(x). The acceptance-rejection method works as follows. We

wish to generate a random variable from the probability density function f(x).
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We need the following ingredients:

• A probability density function g(x) with the properties that

1. the corresponding cumulative distribution function G(x) =
R x
−∞ g(z)dz

is easily inverted to obtain G−1(u).

2.

sup{
f(x)

g(x)
;−∞ < x <∞} <∞. (3.7)

For reasonable efficiency we would like the supremum in (3.7) to be as close

as possible to one (it is always greater or equal to one).

The condition (3.7) allows us to find a constant c > 1 such that f(x) ·

cg(x) for all x. Suppose we are able to generate a point (X,Y ) uniformly

distributed under the graph of cg(x). This is easy to do using Theorem

19. Indeed we can define X = G−1(U) and Y = V × cg(X) where U

and V are independent U [0, 1]. Can we now find a point (X,Y ) which is

uniformly distributed under the graph of f(x)? Since this is a subset of

the original region, this is easy. We simple test the point we have already

generated to see if it is in this smaller region and if so we use it. If not start

over generating a new pair (X,Y ), and repeating this until the condition

Y · f(X) is eventually satisfied, (see Figure ??).The simplest version of

this algorithm corresponds to the case when g(x) is a uniform density on

an interval [a, b]. In algorithmic form, the acceptance-rejection method is;

1. Generate a random variables X = G−1(U), where U where U is uniform

on [0, 1].

2. Generate independent V ∼ U [0, 1]

3. If V · f(X)
cg(X) , then return X and exit

4. ELSE go to step 1.
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Figure 3.8: The acceptance-Rejection Method

The rejection method is useful if the density g is considerably simpler than

f both to evaluate and to generate distributions from and if the constant c is

close to 1. The number of iterations through the above loop until we exit at

step 3 has a geometric distribution with parameter p = 1/c and mean c so when

c is large, the rejection method is not very effective.

Most schemes for generating non-uniform variates are based on a transfor-

mation of uniform with or without some rejection step. The rejection algorithm

is a special case. Suppose, for example, that T = (u(x, y), v(x, y)) is a one-one

area-preserving transformation of the region −∞ < x <∞, 0 < y < f(x) into a

subset A of a square in R2 as is shown in Figure 3.9.

Notice that any such transformation defines a random number generator for

the density f(x). We need only generate a point (U, V ) uniformly distributed

in the set A by acceptance-rejection and then apply the inverse transformation

T−1 to this point, defining (X,Y ) = T−1(U, V ). Since the transformation is

area-preserving, the point (X,Y ) is uniformly distributed under the probability

density function f(x) and so the first coordinate X will then have density f . We

can think of inversion as a mapping on [0, 1] and acceptance-rejection algorithms
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Figure 3.9: T (x, y) is an area Preserving invertible map f(x, y) from the region

under the graph of f into the set A, a subset of a rectangle.

as an area preserving mapping on [0, 1]2.

The most common distribution required for simulations in finance and else-

where is the normal distribution. The following theorem provides the simple

connections between the normal distribution in Cartesian and in polar coordi-

nates.

Theorem 21 If (X,Y ) are independent standard normal variates, then ex-

pressed in polar coordinates,

(R,Θ) = (
p
X2 + Y 2, arctan(Y/X)) (3.8)

are independent random variables. R =
√
X2 + Y 2 has the distribution of the

square root of a chi-squared(2) or exponential(2) variable. Θ = arctan(Y/X))

has the uniform distribution on [0, 2π].

It is easy to show that if (X,Y ) are independent standard normal variates,

then
√
X2 + Y 2 has the distribution of the square root of a chi-squared(2) (i.e.

exponential(2)) variable and arctan(Y/X)) is uniform on [0, 2π]. The proof of

this result is left as a problem.

This observation is the basis of two related popular normal pseudo-random

number generators. The Box-Muller algorithm uses two uniform[0, 1] variates
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U, V to generate R and Θ with the above distributions as

R = {−2 ln(U)}1/2,Θ = 2πV (3.9)

and then defines two independent normal(0,1) variates as

(X,Y ) = R(cosΘ, sinΘ) (3.10)

Note that normal variates must be generated in pairs, which makes simulations

involving an even number of normal variates convenient. If an odd number are

required, we will generate one more than required and discard one.

Theorem 22 (Box-Muller Normal Random Number generator)

Suppose (R,Θ) are independent random variables such that R2 has an ex-

ponential distribution with mean 2 and Θ has a Uniform[0, 2π] distribution.

Then (X,Y ) = (R cosΘ, R sinΘ) is distributed as a pair of independent normal

variates.

Proof. Since R2 has an exponential distribution, R has probability density

function

fR(r) =
d

dr
P [R · r]

=
d

dr
P [R2 · r2]

=
d

dr
(1− e−r

2/2)

= re−r
2/2, for r > 0.

and Θ has probability density function fΘ(θ) = 1
2π for 0 < θ < 2π. Since

r = r(x, y) =
p
x2 + y2 and θ(x, y) = arctan(y/x), the Jacobian of the trans-
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formation is

|
∂(r, θ)

∂(x, y)
| =

¯̄̄̄
¯̄ ∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄̄ x√

x2+y2
y√
x2+y2

−y
x2+y2

x
x2+y2

¯̄̄̄
¯̄̄

=
1p

x2 + y2

Consequently the joint probability density function of (X,Y ) is given by

fΘ(arctan(y/x))fR(
p
x2 + y2)|

∂(r, θ)

∂(x, y)
| =

1

2π
×
p
x2 + y2e−(x

2+y2)/2 ×
1p

x2 + y2

=
1

2π
e−(x

2+y2)/2

=
1
√
2π
e−x

2/2 1
√
2π
e−y

2/2

and this is joint probability density function of two independent standard nor-

mal random variables.

The tails of the distribution of the pseudo-random numbers produced by the

Box-Muller method are quite sensitive to the granularity of the uniform gener-

ator. For this reason although the Box-Muller is the simplest normal generator

it is not the method of choice in most software. A related alternative algorithm

for generating standard normal variates is the Marsaglia polar method. This

is a modification of the Box-Muller generator designed to avoid the calculation

of sin or cos. Here we generate a point (Z1, Z2)from the uniform distribution

on the unit circle by rejection, generating the point initially from the square

−1 · z1 · 1,−1 · z2 · 1 and accepting it when it falls in the unit circle or

if z21 + z
2
2 · 1. Now suppose that the points (Z1, Z2) is uniformly distributed
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inside the unit circle. Then for r > 0,

P [
q
−2 log(Z21 + Z

2
2) · r] = P [Z

2
1 + Z

2
2 ≥ exp(−r

2/2)]

1− area of a circle of radius exp(−r2/2)
area of a circle of radius 1

= 1− e−r
2/2.

This is exactly the same cumulative distribution function as that of the random

variable R in Theorem 21. It follows that we can replace R2 by −2log(Z21+Z
2
2).

Similarly, if (Z1, Z2) is uniformly distributed inside the unit circle then the

angle subtended at the origin by a line to the point (X,Y ) is random and

uniformly[0, 2π] distributed and so we can replace cosΘ, and sinΘ by Z1√
Z21+Z

2
2

and Z2√
Z21+Z

2
2

respectively. The following theorem is therefore proved.

Theorem 23 If the point (Z1, Z2) is uniformly distributed in the unit circle

Z21 + Z
2
2 · 1, then the pair of random variables defined by

X =
q
−2log(Z21 + Z

2
2 )

Z1p
Z21 + Z

2
2

Y =
q
−2log(Z21 + Z

2
2 )

Z2p
Z21 + Z

2
2

are independent standard normal variables.

If we use acceptance-rejection to generate uniform random variables Z1, Z2

inside the unit circle, the probability that a point generated inside the square

falls inside the unit circle is π/4,so that on average around 4/π ≈ 1.27 pairs of

uniforms are needed to generate a pair of normal variates.

The speed of the Marsaglia polar algorithm compared to that of the Box-

Muller algorithm depends on the relative speeds of generating uniform variates

versus the sine and cosine transformations. The Box-Muller and Marsaglia polar

method are illustrated in Figure 3.10:

Unfortunately the speed of these normal generators is not the only con-

sideration. If we run a linear congruential generator through a full period we
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Figure 3.10: Marsaglia’s Method for Generating Normal Random Numbers

have seen that the points lie on a lattice, doing a reasonable job of filling the

two dimensional rectangle. Transformations like (3.10) are highly non-linear

functions of (U, V ) stretching the space in some places and compressing it in

others. It would not be too surprising if, when we apply this transformation to

our points on a lattice, they do not provide the same kind of uniform coverage

of the space. In Figure 3.11 we see that the lattice structure in the output

from the linear congruential generator results in an interesting but alarmingly

non-normal pattern, particularly sparse in the tails of the distribution. Indeed,

if we use the full-period generator xn = 16807xn−1mod (231 − 1) the smallest

possible value generated for y is around −4.476 although in theory there should

be around 8,000 normal variates generated below this.

The normal random number generator in Matlab is called normrnd or for

standard normal randn. For example normrnd(µ,σ,m, n) generates a matrix of

m × n pseudo-independent normal variates with mean µ and standard devia-
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Figure 3.11: Box Muller transformation applied to the output to xn =

97xn−1mod 217

tion σ and rand(m,n) generates an m × n matrix of standard normal random

numbers. A more precise algorithm is to use inverse transform and a highly

refined rational approximation to normal inverse cumulative distribution func-

tion available from P.J. Acklam (2003). The Matlab implementation of this

inverse c.d.f. is called ltqnorm after application of a refinement, achieves full

machine precision. In R or Splus, the normal random number generator is called

rnorm. The inverse random number function in Excel has been problematic in

many versions. These problems appear to have been largely corrected in Excel

2002, although there is still significant error (roughly in the third decimal) in

the estimation of lower and upper tail quantiles. The following table provides

a comparison of the normsinv function in Excel and the Matlab inverse nor-

mal norminv. The “exact” values agree with the values generated by Matlab

norminv to the number of decimals shown.
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p Excel 2002 Exact

10−1 -1.281551939 -1.281551566

10−2 -2.326347 -2.326347874

10−3 -3.090252582 -3.090232306

10−4 -3.719090272 -3.719016485

10−5 -4.265043367 -4.264890794

10−6 -4.753672555 -4.753424309

10−7 -5.199691841 -5.199337582

10−8 -5.612467211 -5.612001244

10−9 -5.998387182 -5.997807015

10−10 -6.362035677 -6.361340902

The Lognormal Distribution

If Z is a normal random variable with mean µ and variance σ2, then we say that

the distribution ofX = eZ is lognormal with mean E(X) = η = exp{µ+σ2/2} >

0 and parameter σ > 0. Because a lognormal random variable is obtained by

exponentiating a normal random variable it is strictly positive, making it a

reasonable candidate for modelling quantities such as stock prices, exchange

rates, lifetimes, though in a fools paradise in which stock prices and lifetimes

are never zero. To determine the lognormal probability density function, notice

that

P (X · x] = P [eZ · x]

= P [Z · ln(x)]

= Φ(
ln(x)− µ

σ
) with Φ the standard normal c.d.f.
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and differentiating to obtain the probability density function g(x|η,σ) of X, we

obtain

g(x|η,σ) =
d

dx
Φ(
ln(x)− µ

σ
)

=
1

xσ
√
2π
exp{−(ln(x)− µ)2/2σ2}

=
1

xσ
√
2π
exp{−(ln(x)− ln(η) + σ2/2)2/2σ2}

A random variable with a lognormal distribution is easily generated by gen-

erating an appropriate normal random variable Z and then exponentiating. We

may use either the parameter µ, the mean of the random variable Z in the expo-

nent or the parameter η, the expected value of the lognormal. The relationship

is not as simple as a naive first impression might indicate since

E(eZ) 6= eE(Z).

Now is a good time to accommodate to this correction factor of σ2/2 in the

exponent

η = E(eZ) = eE(Z)+σ
2/2 = eµ+σ

2/2 or,

E(eZ−µ−σ
2/2) = 1

since a similar factor appears throughout the study of stochastic integrals and

mathematical finance. Since the lognormal distribution is the one most often

used in models of stock prices, it is worth here recording some of its conditional

moments used in the valuation of options. In particular if X has a lognormal

distribution with mean η = eµ+σ
2/2 and volatility parameter σ, then for any p
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and l > 0,

E[XpI(X > l)] =
1

σ
√
2π

Z ∞
l

xp−1 exp{−(ln(x)− µ)2/2σ2}dx

=
1

σ
√
2π

Z ∞
ln(l)

ezp exp{−(z − µ)2/2σ2}dz

=
1

σ
√
2π
e
pµ+p2σ2/2 Z ∞

ln(l)

exp{−(z − ξ)2/2σ2}dz where ξ = µ+ σ2p

= epµ+p
2σ2/2Φ(

ξ − ln(l)

σ
)

= ηpexp{−
σ2

2
p(1− p)}Φ(σ−1 ln(η/l) + σ(p−

1

2
)) (3.11)

where Φ is the standard normal cumulative distribution function.

Application: A Discrete Time Black-Scholes Model

Suppose that a stock price St, t = 1, 2, 3, ... is generated from an independent

sequence of returns Z1, Z2 over non-overlapping time intervals. If the value of

the stock at the end of day t = 0 is S0, and the return on day 1 is Z1 then the

value of the stock at the end of day 1 is S1 = S0eZ1 . There is some justice in the

use of the term “return” for Z1 since for small values Z1, S0eZ1 ' S0(1 + Z1)

and so Z1 is roughly S1−S0
S1

. Assume similarly that the stock at the end of day

i has value Si = Si−1 exp(Zi). In general for a total of j such periods (suppose

there are n such periods in a year) we assume that Sj = S0 exp{
Pj
i=1 Zi} for

independent random variables Zi all have the same normal distribution. Note

that in this model the returns over non-overlapping independent periods of time

are independent. Denote var(Zi) = σ2/N so that

var(
NX
i=1

Zi) = σ2

represents the squared annual volatility parameter of the stock returns. Assume

that the annual interest rate on a risk-free bond is r so that the interest rate

per period is r/N .
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Recall that the risk-neutral measure Q is a measure under which the stock

price, discounted to the present, forms a martingale. In general there may be

many such measures but in this case there is only one under which the stock

price process has a similar lognormal representation Sj = S0 exp{
Pj

i=1 Zi} for

independent normal random variables Zi. Of course under the risk neutral

measure, the normal random variables Zi may have a different mean. Full

justification of this model and the uniqueness of the risk-neutral distribution

really relies on the continuous time version of the Black Scholes described in

Section 2.6. Note that if the process

e−rt/NSj = S0 exp{
jX
i=1

(Zi −
r

N
)}

is to form a martingale under Q, it is necessary that

EQ[Sj+1|Ht] = Sj or

EQ[Sj exp{Zj+1 −
r

N
}|Hj] = SjEQ[exp{Zj+1 −

r

N
}]

= Sj

and so exp{Zj+1 − r
N } must have a lognormal distribution with expected value

1. Recall that, from the properties of the lognormal distribution,

EQ[exp{Zt+1 −
r

N
}] = exp{EQ(Zt+1)−

r

N
+

σ2

2N
}

since varQ(Zt+1) = σ2

N . In other words, for each i the expected value of Zi is,

under Q, equal to r
N − σ2

2N . So under Q, Sj has a lognormal distribution with

mean

S0e
rj/N

and volatility parameter σ
p
j/N.

Rather than use the Black-Scholes formula of Section 2.6, we could price a

call option with maturity j = NT periods from now by generating the random

path Si, i = 1, 2, ...j using the lognormal distribution for Sj and then averaging
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the returns discounted to the present. The value at time j = 0 of a call option

with exercise price K is an average of simulated values of

e−rj/N (Sj −K)+ = e−rj/N(S0 exp{
TX
i=1

Zi}−K)
+,

with the simulations conducted under the risk-neutral measure Q with initial

stock price the current price S0. Thus the random variables Zi are independent

N( rN − σ2

2N ,
σ2

N ). The following Matlab function simulates the stock price over

the whole period until maturity and then values a European call option on the

stock by averaging the discounted returns.

Example 24 (simulating the return from a call option)

Consider simulating a call option on a stock whose current value is S0 =

$1.00. The option expires in j days and the strike price is K = $1.00. We

assume constant spot (annual) interest rate r and the stock price follows a

lognormal distribution with annual volatility parameter σ. The following Matlab

function provides a simple simulation and graph of the path of the stock over

the life of the option and then outputs the discounted payoff from the option.

function z=plotlogn(r,sigma,T, K)

% outputs the discounted simulated return on expiry of a call option (per dollar

pv of stock).

% Expiry =T years from now, (T = j/N)

% current stock price=$1. (= S0), r = annual spot interest rate, sigma=annual

volatility (=σ),

% K= strike price.

N=250 ; % N is the assumed number of business days in a

year.

j=N*T; % the number of days to expiry

s = sigma/sqrt(N); % s is volatility per period



GENERATINGRANDOMNUMBERS FROMNON-UNIFORMCONTINUOUS DISTRIBUTIONS139

mn = r/N - s^2/2; % mn= mean of the normal increments per period

y=exp(cumsum(normrnd(mn,s,j,1)));

y=[1 y’]; % the value of the stock at times 0,...,

x = (0:j)/N; % the time points i

plot(x,y,’-’,x,K*ones(1,j+1),’y’)

xlabel(’time (in years)’)

ylabel(’value of stock’)

title(’SIMULATED RETURN FROM CALL OPTION’)

z = exp(-r*T)*max(y(j+1)-K, 0); % payoff from option discounted to

present

Figure 3.12 resulted from one simulation run with r = .05, j = 63 (about 3

months), σ = .20,K = 1.

Figure 3.12: One simulation of the return from a call option with strike price

$1.00
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The return on this run was the discounted difference between the terminal

value of the stock and the strike price or around 0.113. We may repeat this

many times, averaging the discounted returns to estimate the present value of

the option.

For example to value an at the money call option with exercise price=the

initial price of the stock=$1, 5% annual interest rate, 20% annual volatility

and maturity 0.25 years from the present, we ran this function 100 times and

averaged the returns to estimate the option price as 0.044978. If we repeat the

identical statement, the output is different, for example option val= 0.049117

because each is an average obtained from only 100 simulations. Averaging over

more simulations would result in greater precision, but this function is not

written with computational efficiency in mind. We will provide more efficient

simulations for this problem later. For the moment we can compare the price of

this option as determined by simulation with the exact price according to the

Black-Scholes formula. This formula was developed in Section 2.6. The price of

a call option at time t = 0 given by

V (ST , T ) = STΦ(d1)−Ke
−rT/NΦ(d2)

where

d1 =
log(ST /K) + (r +

σ2

2 )T/N

σ
p
T/N

and d2 =
log(ST /K) + (r −

σ2

2 )T/N

σ
p
T/N

and the Matlab function which evaluates this is the function blsprice which gives,

in this example, and exact price on entering [CALL,PUT] =BLSPRICE(1,1,.05,63/250,.2,0)

which returns the value CALL=0.0464. With these parameters, 4.6 cents on

the dollar allows us to lock in any anticipated profit on the price of a stock (or

commodity if the lognormal model fits) for a period of about three months. The

fact that this can be done cheaply and with ease is part of the explanation for

the popularity of derivatives as tools for hedging.
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Algorithms for Generating the Gamma and Beta Distribu-

tions

We turn now to algorithms for generating the Gamma distribution with density

f(x|a, b) =
xa−1e−x/b

Γ(a)ba
, for x > 0, a > 0, b > 0. (3.12)

The exponential distribution (a = 1) and the chi-squared (corresponding to

a = ν/2, b = 2, for ν integer) are special cases of the Gamma distribution.

The gamma family of distributions permits a wide variety of shapes of density

functions and is a reasonable alternative to the lognormal model for positive

quantities such as asset prices. In fact for certain parameter values the gamma

density function is very close to the lognormal. Consider for example a typical

lognormal random variable with mean η = 1.1 and volatility σ = 0.40.

Figure 3.13: Comparison between the Lognormal and the Gamma densities

The probability density functions can be quite close as in Figure 3.13. Of

course the lognormal, unlike the gamma distribution, has the additional attrac-

tive feature that a product of independent lognormal random variables also has

a lognormal distribution.
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Another common distribution closely related to the gamma is the Beta dis-

tribution with probability density function defined for parameters a, b > 0,

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, 0 · x · 1. (3.13)

The beta density obtains for example as the distribution of order statistics in

a sample from independent uniform [0, 1] variates. This is easy to see. For

example if U1, ..., Un are independent uniform random variables on the interval

[0, 1] and if U(k) denotes the k0th largest of these n values, then

P [U(k) < x] = P [there are k or more values less than x]

=
nX
j=k

µ
n

j

¶
xj(1− x)n−j .

Differentiating we find the probability density function of U(k) to be

d

dx

nX
j=k

µ
n

j

¶
xj(1− x)n−j =

nX
j=k

µ
n

j

¶
{jxj−1(1− x)n−j + (n− j)xj(1− x)n−j−1}

= k

µ
n

k

¶
xk−1(1− x)n−k

=
Γ(n+ 1)

Γ(k)Γ(n− k + 1)
xk−1(1− x)n−k

and this is the beta density with parameters a = k − 1, b = n− k + 1. Order

statistics from a Uniform sample therefore have a beta distribution with the

k’th order statistic having the Beta(k − 1, n− k + 1) distribution. This means

that order statistics from more general continuous distributions can be easily

generated using the inverse transform and a beta random variable. For example

suppose we wish to simulate the largest observation in a normal(µ,σ2) sample of

size 100. Rather than generate a sample of 100 normal observations and take the

largest, we can simulate the value of the largest uniform order statistic U(100) ∼

Beta(99, 1) and then µ+ σΦ−1(U(100)) (with Φ−1 the standard normal inverse

cumulative distribution function) is the required simulated value. This may be

used to render simulations connected with risk management more efficient.
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The following result lists some important relationships between the Gamma

and Beta distributions. For example it allows us to generate a Beta random

variable from two independent Gamma random variables.

Theorem 25 (Gamma distribution) If X1,X2 are independent Gamma (a1, b)

and Gamma (a2, b) random variables, then Z = X1

X1+X2
and Y = X1 + X2

are independent random variables with Beta (a1, a2) and Gamma (a1 + a2, b)

distributions respectively. Conversely, if (Z, Y ) are independent variates with

Beta (a1, a2) and the Gamma (a1 + a2, b) distributions respectively, then X1 =

Y Z, and X2 = Y (1 − Z) are independent and have the Gamma (a1, b) and

Gamma (a2, b) distributions respectively.

Proof. Assume that X1, X2 are independent Gamma (a1, b) and Gamma

(a2, b) variates. Then their joint probability density function is

fX1X2 (x1, x2) =
1

Γ(a1)Γ(a2)
xa1−11 xa2−12 e−(x1+x2)/b, for x1 > 0, x2 > 0.

Consider the change of variables x1(z, y) = zy, x2(z, y) = (1 − z)y. Then the

Jacobian of this transformation is given by¯̄̄̄
¯̄ ∂x1

∂z
∂x1
∂y

∂x2
∂z

∂x2
∂y

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ y z

−y 1− z

¯̄̄̄
¯̄

= y.

Therefore the joint probability density function of (z, y) is given by

fz,y(z, y) = fX1X2 (zy, (1− z)y)

¯̄̄̄
¯̄ ∂x1

∂z
∂x1
∂y

∂x2
∂z

∂x2
∂y

¯̄̄̄
¯̄

=
1

Γ(a1)Γ(a2)
za1−1(1− z)a2−1ya1+a2−1e−y/b, for 0 < z < 1, y > 0

=
Γ(a1 + a2)

Γ(a1)Γ(a2)
za1−1(1− z)a2−1 ×

1

Γ(a1 + a2)
ya1+a2−1e−y/b, for 0 < z < 1, y > 0

and this is the product of two probability density functions, the Beta(a1, a2)

density for Z and the Gamma( a1 + a2, b) probability density function for Y.

The converse holds similarly.



144 CHAPTER 3. BASIC MONTE CARLO METHODS

This result is a basis for generating gamma variates with integer value of the

parameter a (sometimes referred to as the shape parameter). According to the

theorem, if a is integer and we sum a independent Gamma(1,b) random vari-

ables the resultant sum has a Gamma(a, b) distribution. Notice that −b log(Ui)

for uniform[0, 1] random variable Ui is an exponential or a Gamma(1, b) random

variable. Thus−b log(
Qn
i=1 Ui) generates a gamma (n, b) variate for independent

uniform Ui. The computation required for this algorithm, however, increases

linearly in the parameter a = n, and therefore alternatives are required, es-

pecially for large a. Observe that the scale parameter b is easily handled in

general: simply generate a random variable with scale parameter 1 and then

multiply by b. Most algorithms below, therefore, are only indicated for b = 1.

For large a Cheng (1977) uses acceptance-rejection from a density of the

form

g(x) = λµ
xλ−1

(µ+ xλ)2
dx , x > 0 (3.14)

called the Burr XII distribution. The two parameters µ and λ of this den-

sity (µ is not the mean) are chosen so that it is as close as possible to the

gamma distribution. We can generate a random variable from (3.14) by inverse

transform as G−1(U) = { µU
1−U }

1/λ.

A much simpler function for dominating the gamma densities is a minor

extension of that proposed by Ahrens and Dieter (1974). It corresponds to

using as a dominating probability density function

g(x) =

⎧⎪⎨⎪⎩
xa−1

ka−1( ka+exp(−k))
0 · x · k

ka−1e−x

ka−1( ka+exp(−k))
x > k

, x > k (3.15)

Other distributions that have been used as dominating functions for the

Gamma are the Cauchy (Ahrens and Dieter), the Laplace (Tadakamalla), the

exponential (Fishman), the Weibull, the relocated and scaled t distribution

with 2 degrees of freedom (Best), a combination of normal density (left part)

and exponential density (right part) (Ahrens and Dieter), and a mixture of two
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Erlang distributions (Gamma with integral shape parameter α).

Best’s algorithm generates a Student’s t2 variate as

Y =

√
2(U − 1/2)p
U(1− U

(3.16)

where U ∼ U [0, 1]. Then Y has the Students t distribution with 2 degrees of

freedom having probability density function

g(y) =
1

(2 + y2)3/2
. (3.17)

We then generate a random variable X = (a− 1) + Y
p
3a/2− 3/8 and apply

a rejection step to X to produce a Gamma random variable. See Devroye (p.

408) for details.

Most of the above algorithms are reasonably efficient only for a > 1 with

the one main exception being the combination of power of x and exponential

density suggested by Ahrens and Dieter above. Cheng and Feast (1979) also

suggest a ratio of uniforms algorithm for the gamma distribution, a > 1.

A final fast and simple procedure for generating a gamma variate with a > 1

is due to Marsaglia and Tsang (2000) and generates a gamma variate as the cube

of a suitably scaled normal. Given a fast generator of the Normal to machine

precision, this is a highly efficient rejection technique. We put d = a − 1
3 and

generate a standard normal random variable X and a uniform variate U until,

with V = (1 + X√
9d
)3, the following inequality holds:

ln(U) <
X2

2
+ d− dV + d ln(V ).

When this inequality is satisfied, we accept the value d × V as obtained

from the Gamma(a, 1) distribution. As usual multiplication by b results in

a Gamma(a, b) random variable. The efficiency of this algorithm appears to be

very high (above 96% for a > 1).

In the case 0 < a < 1, Stuart’s theorem below allows us to modify a Gamma

variate with a > 1 to one with a < 1. We leave the proof of the theorem as an

exercise.
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Theorem 26 (Stuart) Suppose U is uniform [0, 1] and X is Gamma (a+ 1, 1)

independent of U . Then XU1/a has a gamma (a, 1) distribution

The Matlab function gamrnd uses Best’s algorithm and acceptance rejection

for α > 1. For α < 1, it uses Johnk’s generator, which is based on the following

theorem.

Theorem 27 (Johnk) Let U and V be independent Uniform[0,1] random

variables. Then the conditional distribution of

X =
U1/α

U1/α + V 1/(1−α)

given that the denominator U1/α + V 1/(1−α) < 1 is Beta(α, 1− α).

Multiplying this beta random variable by an independent exponential (1)

results in a Gamma(α, 1) random variable.

Toward generating the beta distribution, use of Theorem 24 and the variable

Z = X1

X1+X2
with X1,X2 independent gamma variates is one method of using

a gamma generator to produce beta variates, and this is highly competitive as

long as the gamma generator is reasonably fast. The MATLAB generator is

betarnd(a,b,1,n) Alternatives are, as with the gamma density, rejection from a

Burr XII density (Cheng, 1978) and use of the following theorem as a generator

(due to Johnk). This a more general version of the theorem above.

Theorem 28 (Beta distribution)

Suppose U, V are independent uniform[0, 1] variates. Then the conditional

distribution of

X =
U1/a

U1/a + V 1/b
(3.18)

given that U1/a+V 1/b · 1 is Beta (a, b). Similarly the conditional distribution

of U1/a given that U1/a + V 1/b · 1 is Beta (a+ 1, b).
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Proof. Define a change of variables

X =
U1/a

U1/a + V 1/b
, Y =U1/a + V 1/b

or U = (Y X)a and V = [(1−X)Y ]b

so that the joint probability density function of (X,Y ) is given by

fX,Y (x, y) = fU,V ((yx)
a, [(1− x)y]b)

¯̄̄̄
¯̄ ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

¯̄̄̄
¯̄

= abya+b−1xa−1(1− x)b−1

provided either (0 < x < 1 and y < 1) or (1 − 1
y < x <

1
y and 1 < y < 2).

Notice that in the case y < 1, the range of values of x is the unit interval

and does not depend on y and so the conditional probability density function of

X given Y = y is a constant times xa−1(1 − x)b−1, i.e. is the Beta(a, b)

probability density function. The rest of the proof is similar.

A generator exploiting this theorem produces pairs (U, V ) until the condi-

tion is satisfied and then transforms to the variable X. However, the probability

that the condition is satisfied is Γ(a+1)Γ(b+1)Γ(a+b+1) which is close to 0 unless a, b are

small, so this procedure should be used only for small values of both parame-

ters. Theorems 24 and 25 together provide an algorithm for generating Gamma

variates with non-integral a from variates with integral ones. For example if X

is Gamma(4, 1)and Z is independent Beta (3.4, .6)then XZ is Gamma (3.4, 1).

There are various other continuous distributions commonly associated with

statistical problems. For example the Student’s t-distribution with ν degrees

of freedom is defined as a ratio
q

2ν
X Z where Z is standard normal and X is

gamma (ν2 , 2). Alternatively, we may use
√
ν X−1/2√

X(1−X)where X is generated as

a symmetric beta(ν/2, ν/2) variate.

Example 29 (some alternatives to lognormal distribution)

The assumption that stock prices, interest rates, or exchange rates follow a

lognormal distribution is a common exercise in wishful thinking. The lognormal
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distribution provides a crude approximation to many financial time series, but

other less theoretically convenient families of distributions sometimes provide a

better approximation. There are many possible alternatives, including the stu-

dents t distribution and the stable family of distributions discussed later. Sup-

pose, for the present, we modify the usual normal assumption for stock returns

slightly by assuming that the log of the stock price has a distribution “close”

to the normal but with somewhat more weight in the tails of the distribution.

Specifically assume that under the Q measure, ST = S0 exp{µ+ cX} where X

has cumulative distribution function F (x). Some constraint is to be placed on

the constant c if we are to compare the resulting prices with the Black-Scholes

model and it is natural to require that both models have identical volatility,

or identical variance of returns. Since the variance of the return in the Black

Scholes model over a period of length T is σ2T where σ is the annual volatility,

we therefore require that

var(cX) = σ2T or c =

s
σ2T

var(X)
.

The remaining constraint is required of all option pricing measures is the martin-

gale constraint and this implies that the discounted asset price is a martingale,

and in consequence

e−rTEQST = S0. (3.19)

Letting the moment generating function of X be

m(s) = EesX ,

the constraint (3.19) becomes

eµ−rTm(c) = 1

and solving for µ, we obtain

µ = rT − ln(m(c)).
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Provided that we can generate from the cumulative distribution function of X,

the price of a call option with strike price K under this returns distribution

can be estimated from N simulations by the average discounted return from N

options,

e−rT
1

N

NX
i=1

(STi −K)
+ = e−rT

1

N

NX
i=1

(S0e
µ+cXi −K)+

= e−rT
1

N

NX
i=1

(S0e
rT−ln(m(c))+cXi −K)+

=
1

N

NX
i=1

(S0
ecXi

m(c)
− e−rTK)+

A more precise calculation is the difference between the option price in this

case and the comparable case of normally distributed returns. Suppose we use

inverse transform together with a uniform[0,1] variate to generate both the

random variable Xi = F−1(Ui) and the corresponding normal return Zi =

rT + σ
√
TΦ−1(Ui). Then the difference is estimated by

option price under F − option price under Φ

'
1

N

NX
i=1

{(S0
ecF

−1(Ui)

m(c)
− e−rTK)+ − (S0eσ

√
TΦ−1(Ui)−σ2T/2 − e−rTK)+}

If necessary, in case the moment generating function of X is unknown, we can

estimate it and the variance of X using sample analogues over a large number

N of simulations. In this case c is estimated bys
σ2Tdvar(X)

withdvar representing the sample variance and m(c) estimated by
1

N

NX
i=1

ecF
−1(Ui).

To consider a specific example, the logistic(0, 0.522) distribution is close to the

normal, except with slightly more weight in the tails. The scale parameter in
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this case was chosen so that the logistic has approximate unit variance. The

cumulative distribution function is F (x) = 1
1+exp{−x/b} and its inverse is X =

b ln(U/(1 − U)). The moment generating function is m(s) = Γ(1 − bs)Γ(1 +

bs), s < 1/b. The following function was used to compare the price of a call

option when stock returns have the logistic distribution(i.e. stock prices have

the “loglogistic” distribution) with the prices in the Black-Scholes model.

function [re,op1,opbs]=diffoptionprice(n,So,strike,r,sigma,T)

%estimates the relative error in the BS option price and price under

% logistic returns distribution . Runs n simulations.

u=rand(1,n);

x=log(u./(1-u)); % generates standard

logistic*

z=sigma*sqrt(T)*norminv(u)-sigma^2*T/2;

c=sigma*sqrt(T/var(x));

mc=mean(exp(c*x));

re=[]; op1=[]; opbs=[];

for i=1:length(strike)

op1=[op1 mean(max(exp(c*x)*So/mc-exp(-r*T)*strike(i),0))]; % price under F

opbs=[opbs mean(max(So*exp(z)-exp(-r*T)*strike(i),0))]; % price under BS

end

dif=op1-opbs;

re=[re dif./(dif+BLSPRICE(So,strike,r,T,sigma,0))];

plot(strike/So,re)

xlabel(’Strike price/initial price’)

ylabel(’relative error in Black Scholes formula’)

The relative error in the Black-Scholes formula obtained from a simulation of

100,000 is graphed in Figure 3.14. The logistic distribution differs only slightly
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Figure 3.14: Relative Error in Black-Scholes price when asset prices are loglo-

gistic, σ = .4, T = .75, r = .05

from the standard normal, and the primary difference is in the larger kurtosis

or weight in the tails. Indeed virtually any large financial data set will differ

from the normal in this fashion; there may be some skewness in the distribution

but there is often substantial kurtosis. How much difference does this slightly

increased weight in the tails make in the price of an option? Note that the

Black-Scholes formula overprices all of the options considered by up to around

3%. The differences are quite small, however and there seems to be considerable

robustness to the Black-Scholes formula at least for this type of departure in

the distribution of stock prices.

A change in the single line x=log(u./(1-u)) in the above function permits

revising the returns distribution to another alternative. For example we might
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choose the double exponential or Laplace density

f(x) =
1

2
exp(−|x|)

for returns, by replacing this line by x = (u < .5) log(2∗u)− (u > .5) log(2∗(1−

u)). The resulting Figure 3.15 shows a similar behaviour but more substantial

pricing error, in this case nearly 10% for an at-the-money option.

Figure 3.15: Relative pricing error in Black Scholes formula when returns follow

the Laplace distribution

Another possible distribution of stock returns which can be used to introduce

some skewness to the returns distribution is the loggamma or extreme value

distribution whose probability density function takes the form

f(x) =
1

Γ(a)
exp{−e(x−c) + (x− c)a},−∞ < x <∞.

We can generate such a distribution as follows. Suppose Y is a random

variable with gamma(a, ec) distribution and probability density function

g(y) =
ya−1e−ca

Γ(a)
e−ye

−c
.
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and define X = ln(Y ). Then X has probability density function

f(x) = g(ex)|
d

dx
ex| =

1

Γ(a)
exp{(x(a− 1)− ca− ex−c}ex

=
1

Γ(a)
exp{−ex−c + (x− c)a},−∞ < x <∞.

As an example in Figure 3.16 we plot this density in the case a = 2, c = 0 This

distribution is negatively skewed, a typical characteristic of risk-neutral distri-

butions of returns. The large left tail in the risk-neutral distribution of returns

reflects the fact that investors have an aversion to large losses and consequently

the risk-neutral distribution inflates the left tail.

Figure 3.16: The probability density function e−e
x+2x

Introducing a scale parameter ν, the probability density function of ν ln(Y ) =

ln(Y ν) where Y has a Gamma(2,1) distribution is

f(x) = νe−e
(νx−c)+2(νx−c).

The mean is approximately 0 and variance approximately σ2 when we choose

c = −.42278 and ν = .80308/σ and so this distribution is analogous to the
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standard normal. However, the skewness is −0.78 and this negative skewness is

more typical of risk neutral distributions of stock returns. We might ask whether

the Black-Scholes formula is as robust to the introduction of skewness in the

returns distribution as to the somewhat heavier tails of the logistic distribution.

For comparison with the Black-Scholes model we permitted adding a constant

and multiplying the returns by a constant which, in this case, is equivalent to

assuming under the risk neutral distribution that

ST = S0e
αY ν , Y is Gamma(2,1)

where the constants α and ν are chosen so that the martingale condition is

satisfied and the variance of returns matches that in the lognormal case. With

some integration we can show that this results in the equations

α = − ln(E(Y ν)) = − ln(Γ(2 + ν))

ν2var(ln(Y )) = ν2ψ0(2) = σ2T

where ψ0(α) is the trigamma function defined as the second derivative of

ln(Γ(α)), and evaluated fairly easily using the series ψ0(α) =
P∞

k=0
1

(k+α)2 .

For the special cases required here, ψ0(2) ≈ .6449 so ν ≈ σ
√
T/.8031 and

α = − log(Γ(2 + σ
√
T/.8031)). Once again replacing the one line marked with

a * in the function diffoptionprice by x=log(gaminf(u,2,1); permits determining

the relative error in the Black-Scholes formula. There is a more significant pric-

ing error in the Black-Scholes formula now, more typical of the relative pricing

error that is observed in practice. Although the graph can be shifted and tilted

somewhat by choosing different variance parameters, the shape appears to be a

consequence of assuming a symmetric normal distribution for returns when the

actual risk-neutral distribution is skewed. It should be noted that the practice

of obtaining implied volatility parameters from options with similar strike prices

and maturities is a partial, though not a compete, remedy to the substantial

pricing errors caused by using a formula derived from a frequently ill-fitting
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Figure 3.17: Relative Error in Black-Scholes formula when Asset returns follow

extreme value

Black_Scholes model.

The Symmetric Stable Laws

A final family of distributions of increasing importance in modelling is the stable

family of distributions. The stable cumulative distribution functions F are

such that if two random variables X1 and X2 are independent with cumulative

distribution function F (x) then so too does the sum X1 +X2 after a change

in location and scale. More generally the cumulative distribution function F

of independent random variables X1,X2 is said to be stable if for each pair of

constants a and b, there exist constants c and m such that

aX1 + bX2 −m

c
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has the same cumulative distribution function F. A stable random variable X

is most easily characterized through its characteristic function

EeiuX =

⎧⎨⎩ exp(iuθ − |u|αcα(1− iβ(sign u) tan πα
2 ) for α 6= 1

exp(iuθ − |u|c(1 + iβ(sign u) ln |u|) 2π ) if α = 1

where i is the complex number i2 = −1, θ is a location parameter of the

distribution, and c is a scale parameter. The parameter 0 < α · 2 is the index

of the stable distribution and governs the tail behavior and β ∈ [−1, 1] governs

the skewness of the distribution. In the case β = 0, we obtain the symmetric

stable family of distributions, all unimodal densities, symmetric about their

mode, and roughly similar in shape to the normal or Cauchy distribution (both

special cases). They are of considerable importance in finance as an alternative

to the normal distribution, in part because they tend to fit observations better in

the tail of the distribution than does the normal, and in part because they enjoy

theoretical properties similar to those of the normal family: sums of independent

stable random variables are stable. Unfortunately, this is a more complicated

family of densities to work with; neither the density function nor the cumulative

distribution function can be expressed in a simple closed form. Both require a

series expansion. The parameter 0 < α · 2 indicates what moments exist.

Except in the special case α = 2 (the normal distribution) or the case β = −1,

moments of order less than α exist while moments of order α or more do not.

This is easily seen because the tail behaviour is, when α < 2,

lim
x→∞x

αP [X > x] = Kα
1 + β

2
cα

lim
x→∞x

αP [X < −x] = Kα
1− β

2
cα

for constant Kα depending only on α. Of course, for the normal distribution,

moments of all orders exist. The stable laws are useful for modelling in situ-

ations in which variates are thought to be approximately normalized sums of

independent identically distributed random variables. To determine robustness
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against heavy-tailed departures from the normal distribution, tests and estima-

tors can be computed with data simulated from a symmetric stable law with

α near 2. The probability density function does not have a simple closed form

except in the case α = 1 (Cauchy) and α = 2 (Normal) but can be expressed

as a series expansion of the form

fc(x) =
1

π α c

∞X
k=0

(−1)k
Γ
¡
2k+1
α

¢
(2k)!

(
x

c
)k

where c is the scale parameter (and we have assumed the mode is at 0). Espe-

cially for large values of x, this probability density function converges extremely

slowly. However, Small (2003) suggests using an Euler transformation to accel-

erate the convergence of this series, and this appears to provide enough of an

improvement in the convergence to meet a region in which a similar tail formula

(valid for large x) provides a good approximation. According to Chambers,

Mallows and Stuck, (1976), when 1 < α < 2, such a variate can be generated as

X = c sin(αU)

�
cos(U(1− α))

E

¸ 1
α−1

(cosU)−1/α (3.20)

where U is uniform [−π/2,π/2] and E, standard exponential are independent.

The case α = 1 and X = tan(U) is the Cauchy. It is easy to see that the

Cauchy distribution can also be obtained by taking the ratio of two independent

standard normal random variables and tan(U) may be replaced by Z1/Z2 for

independent standard normal random variables Z1, Z2 produced by Marsaglia’s

polar algorithm. Equivalently, we generate X = V1/V2 where Vi ∼ U [−1, 1]

conditional on V 21 + V
2
2 · 1 to produce a standard Cauchy variate X.

Example: Stable random walk.

A stable random walk may be used to model a stock price but the closest analogy

to the Black Scholes model would be a logstable process St under which the

distribution of ln(St) has a symmetric stable distribution. Unfortunately, this

specification renders impotent many of our tools of analysis, since except in
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the case α = 2 or the case β = −1, such a stock price process St has no

finite moments at all. Nevertheless, we may attempt to fit stable laws to the

distribution of ln(St) for a variety of stocks and except in the extreme tails,

symmetric stable laws with index α ' 1.7 often provide a reasonably good fit.

To see what such a returns process looks like, we generate a random walk with

10,000 time steps where each increment is distributed as independent stable

random variables having parameter 1.7. The following Matlab function was

used

function s=stabrnd(a,n)

u=(unifrnd(0,1,n,1)*pi)-.5*pi;

e = exprnd(1,n,1);

s=sin(a*u).*(cos((1-a)*u)./e).^(1/a-1).*(cos(u)).^(-1/a)

Then the command

plot(1:10000, cumsum(stabrnd(1.7,10000)));

resulted in the Figure 3.18. Note the occasional very large jump(s) which dom-

inates the history of the process up to that point, typical of random walks

generated from the stable distributions with α < 2.

The Normal Inverse Gaussian Distribution

There is a very substantial body of literature that indicates that the normal

distribution assumption for returns is a poor fit to data, in part because the

observed area in the tails of the distribution is much greater than the normal

distribution permits. One possible remedy is to assume an alternative distribu-

tion for these returns which, like the normal distribution, is infinitely divisible,

but which has more area in the tails. A good fit to some stock and interest rate

data has been achieved using the Normal Inverse Gaussian (NIG) distribution

(see for example Prausse, 1999). To motivate this family of distributions, let us
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Figure 3.18: A Symmetric Stable Random Walk with index α = 1.7

suppose that stock returns follow a Brownian motion process but with respect

to a random time scale possibly dependent on volume traded and other exter-

nal factors independent of the Brownian motion itself. After one day, say, the

return on the stock is the value of the Brownian motion process at a random

time, τ, independent of the Brownian motion. Assume that this random time

has the Inverse Gaussian distribution having probability density function

g(t) =
θ

c
√
2πt3

exp{−
(θ − t)2

2c2t
} (3.21)

for parameters θ > 0, c > 0. This is the distribution of a first passage time

for Brownian motion. In particular consider a Brownian motion process B(t)

having drift 1 and diffusion coefficient c. Such a process is the solution to the

stochastic differential equation

dB(t) = dt+ cdW (t), B(0) = 0.

Then the first passage of the Brownian motion to the level θ is T = inf(t;B(t) =

θ} and this random variable has probability density function (3.21). The mean
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of such a random variable is θ and with variance θc2. These can be obtained

from the moment generating function of the distribution with probability density

function (3.21),

g∗(s) = exp{−θ(
−1 +

√
1− 2sc

c2
)}.

Expanding this locally around c = 0 we obtain

g∗(s) = exp{θs+
1

2
θs2c2 +O(c4)}

and by comparing this with the moment generating function of the normal

distribution, as c→ 0, the distribution of

T − θ

c
√
θ

approaches the standard normal or, more loosely, the distribution (3.21) ap-

proaches Normal(θ, θc2).

Lemma 30 Suppose X(t) is a Brownian motion process with drift β and dif-

fusion coefficient 1, hence satisfying

dXt = βdt+ dWt, X(0) = µ.

Suppose a random variable T has probability density function (3.21) and is in-

dependent of Xt. Then the probability density function of the randomly stopped

Brownian motion process is given by

f(x;α,β, δ, µ) =
αδ

π
exp(δ

p
α2 − β2 + β(x− µ))

K1(α
p
δ2 + (x− µ)2)p

δ2 + (x− µ)2
(3.22)

with

δ =
θ

c
, and α =

r
β2 +

1

c2

and the functionKλ(x) is the modified Bessel function of the second kind defined

by

Kλ(x) =
1

2

Z ∞
0

yλ−1 exp(−
x

2
(y + y−1))dy, for x > 0.
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Proof. The distribution of the randomly stopped variable X(T ) is the same

as that of the random variable

X = µ+ βT +
√
TZ

where Z is N(0, 1) independent of T. Conditional on the value of T the prob-

ability density function of X is

f(x|T ) =
1

√
2πT

exp(−
1

2T
(x− µ− βT )2)

and so the unconditional distribution of X is given byZ ∞
0

1
√
2πt

exp(−
1

2t
(x− µ− βt)2)

θ

c
√
2πt3

exp(−
(θ − t)2

2c2t
)dt

=
θ

2πc

Z ∞
0

t−2 exp(−
1

2t
(x− µ− βt)2 −

(θ − t)2

2c2t
)dt

=
θ

2πc

Z ∞
0

t−2 exp(−
1

2t
(x2 − 2xµ+ µ2 + θ2) + (β(x− µ) +

θ

c2
)−

t

2
(β2 +

1

c2
))dt

=
θ

2πc
exp(β(x− µ) +

θ

c2
)

Z ∞
0

t−2 exp(−
1

2t
((x− µ)2 + θ2)−

t

2
(β2 +

1

c2
))dt

=
αδ

π
exp(δ

p
α2 − β2 + β(x− µ))

K1(α
p
δ2 + (x− µ)2)p

δ2 + (x− µ)2
.

The modified Bessel function of the second kind Kλ(x) is given in MATLAB

by besselk( ν, x) and in R by besselK(x,ν,expon.scaled=FALSE). The distri-

bution with probability density function given by (3.22) is called the normal

inverse Gaussian distribution with real-valued parameters x, µ, 0 · δ and

α ≥ |β|. The tails of the normal inverse Gaussian density are substantially

heavier than those of the normal distribution. In fact up to a constant

f(x;α,β, δ, µ) ∼ |x|−3/2 exp((∓α+ β)x) as x→ ±∞.

The moments of this distribution can be obtained from the moment gener-

ating function

M(s) = eµs
�
α2 − (β + s)2

α2 − β2

¸1/4
exp{δ(α2−β2)1/2−δ(α2−(s+β)2)1/2} for |β+s| < α.

(3.23)
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These moments are:

E(X) = µ+ δβ(α2 − β2)−1/2

var(X) = δα2(α2 − β2)−3/2

and the skewness and kurtosis:

skew = 3βα−1δ−1/2(α2 − β2)−1/4

kurtosis = 3δ−1α−2(α2 + 4β2)(α2 − β2)−1/2.

One of the particularly attractive features of this family of distributions,

shared by the normal and the stable family of distributions, is that it is closed

under convolutions. This is apparent from the moment generating function

(3.23) since

MN (s)

gives a moment generating function of the same form but with µ replaced by

µN and δ by δN. In Figure 3.19 we plot the probability density function of a

member of this family of distributions.

Note the similarity to the normal density but with a modest amount of

skewness and increased weight in the tails. We can generate random variables

from this distribution as follows:

Sample T from an inverse Gaussian distribution (3.21)

Return X = µ+ βT +N(0, T )

where N(0, T ) is a normal random variable with mean 0 and variance T.

We sample from the inverse Gaussian by using a property of the distribution

that if T has density of the form (3.21) then

(T − θ)2

c2T
(3.24)
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Figure 3.19: Normal Inverse Gaussian probability density function with α =

δ = 1, β = 1
2 , µ = 0
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has a chi-squared distribution with one degree of freedom (easily generated

as the square of a standard normal random variable). The algorithm is (see

Michael, Shucany, Hass (1976));

1. For

c =
1p

α2 − β2
, and θ = δc,

generate G1 from the Gamma(12 ,
c
δ ) distribution. Define

Y1 = 1 +G1(1−

r
1 +

2

G1
)}.

2. Generate U2 ∼ U [0, 1]. If U2 · 1
1+Y1

then output T = θY1

3. Otherwise output T = θY −11 .

The two values θY1, and θY
−1
1 are the two roots of the equation obtained by

setting (3.24) equal to a chi-squared variate with one degree of freedom and the

relative values of the probability density function at these two roots are 1
1+Y1

and 1− 1
1+Y1

.

Finally to generate from the normal inverse Gaussian distribution (3.22) we

generate an inverse gamma random variable above and then set X = µ+ βT +

N(0, T ). Prause (1999) provides a statistical evidence that the Normal Inverse

Gaussian provides a better fit than does the normal itself. For example we fit the

normal inverse gamma distribution to the S&P500 index returns over the period

Jan 1, 1997-Sept 27, 2002. There were a total of 1442 values over this period.

Figure 3.20 shows a histogram of the daily returns together with the normal

and the NIG fit to the data. The mean return over this period is 8 × 10−5 and

the standard deviation of returns 0.013. If we fit the normal inverse Gaussian

distribution to these returns we obtain parameter estimates

α = 95.23,β = −4.72, δ = 0.016, µ = 0.0009

and the Q-Q plots in Figure 3.21 . Both
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Figure 3.20: The Normal and the Normal inverse Gaussian fit to the S&P500

Returns

Figure 3.21: QQ plots showing the Normal Inverse Gaussian and the Normal fit

to S&P 500 data, 1997-2002
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indicate that the normal approximation fails to properly fit the tails of the

distribution but that the NIG distribution is a much better fit. This is similar to

the conclusion in Prause using observations on the Dow Jones Industrial Index.

Generating Random Numbers from Discrete Dis-

tributions

Many of the methods described above such as inversion and acceptance-rejection

for generating continuous distributions work as well for discrete random vari-

ables. Suppose for example X is a discrete distribution taking values on the

integers with probability function P [X = x] = f(x), for x = 0, 1, 2, ... Suppose

we can find a continuous random variable Y which has exactly the same value

of its cumulative distribution function at these integers so that FY (j) = FX(j)

for all j = 1, 2, .... Then we may generate the continuous random variable Y,

say by inversion or acceptance-rejection and then set X = bY c the integer part

of Y . Clearly X takes integer values and since P [X · j] = P [Y · j] = FX(j)

for all j = 0, 1, ..., then X has the desired distribution. The continuous ex-

ponential distribution and the geometric distribution are linked in this way. If

X has a geometric(p) distribution and Y has the exponential distribution with

parameter λ = − ln(1− p), then X has the same distribution as dY e or bY c+1.

Using the inverse transform method for generating discrete random vari-

ables is usually feasible but for random variables with a wide range of values

of reasonably high probability, it often requires some setup costs to achieve

reasonable efficiency. For example if X has cumulative distribution function

F (x), x = 0, 1, ...inversion requires that we output an integer X = F−1(U),an

integer X satisfying F (X − 1) < U · F (X). The most obvious technique for

finding such a value of X is to search sequentially through the potential values

x = 0, 1, 2, .... Figure 3.22 is the search tree for inversion for the distribution on



GENERATINGRANDOMNUMBERS FROMDISCRETEDISTRIBUTIONS167

.11

.41
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Figure 3.22: Sequential Search tree for Inverse Transform with root at x = 0

the integers 0, . . . 4 given by

x 0 1 2 3 4

f(x) 0.11 0.30 0.25 0.21 0.13

We generate an integer by repeatedly comparing a uniform [0,1] variate

U with the value at each node, taking the right branch if it is greater than

this threshold value, the left if it is smaller. If X takes positive integer values

{1, 2, ..., N},the number of values searched will average to E(X) which for many

discrete distributions can be unacceptably large.

An easy alternative is to begin the search at a value m which is near the

median (or mode or mean) of the distribution. For example we choose m = 2

and search to the left or right depending on the value of U in Figure 3.23.

If we assume for example that we root the tree at m then this results in

searching roughly an average of E[|X −m+ 1|] before obtaining the generated

variable. This is often substantially smaller than E(X) especially when E(X)
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Figure 3.23: Search tree rooted near the median

is large but still unacceptably large when the distribution has large variance.

An optimal binary search tree for this distribution is graphed in Figure

3.24. This tree has been constructed from the bottom up as follows. We begin

by joining the two smallest probabilities f(4) and f(0) to form a new node

with weight f(0) + f(4) = 0.24. Since we take the left path (towards X =

0 rather than towards X = 4) if U is smaller than the value .11 labelling

the node at the intersection of these two branches. We now regard this pair

of values as a unit and continue to work up the tree from the leaves to the

root. The next smallest pair of probabilities are {0, 1} and {3} which have

probabilities 0.24 and 0.21 respectively so these are the next to be joined hence

working from the leaves to the root of the tree. This optimal binary search

tree provides the minimum expected number of comparisons and is equivalent

to sorting the values in order of largest to smallest probability, in this case

1, 2, 3, 4, 0 , relabelling them or coding them {0, 1, 2, 3, 4} and then applying the

inverse transform method starting at 0.
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Figure 3.24: Optimal Binary Search Tree

The leaves of the tree are the individual probabilities f(j) and the internal

nodes are sums of the weights or probabilities of the “children”, the values f(j)

for j on paths below this node. LetDi represents the depth of the i0th leaf so for

example the depth of leaf 0 in Figure 3.24 is D0 = 3. Then the average number

of comparisons to generate a single random variable Xstarting at the root isP
i f(i)Di. The procedure for constructing the last tree provides an optimal

algorithm in the sense that this quantity is minimized. It is possible to show that

an optimal binary search tree will reduce the average number of comparisons

from E(X) for ordinary inversion to less than 1 + 4 [log2(1 +E(X))].

Another general method for producing variates from a discrete distribution

was suggested by Walker (1974, 1977) and is called the alias method. This is

based on the fact that every discrete distribution is a uniform mixture of two-

point distributions. Apart from the time required to set up an initial table of

aliases and aliasing probabilities, the time required to generate values from a dis-

crete distribution with K supporting points is bounded in K, whereas methods
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such as inverse transform have computational time which increase proportion-

ally with E(X).

Consider a discrete distribution of the form with probability function f(j)

on K integers j = 1, 2, ...K. We seek a table of values of A(i) and associated

“alias” probabilities q(i) so that the desired discrete random variable can be

generated in two steps, first generate one of the integers {1, 2, ...,K} at random

and uniformly, then if we generated the value I, say, replace it by an “alias” value

A(I) with alias probability q(I). These values A(I) and q(I) are determined

below. The algorithm is:

GENERATE I UNIFORM ON {1, ...K}.

WITH PROBABILITY q(I), OUTPUT X = I, OTHERWISE, X = A(I).

An algorithm for producing these values of (A(i), q(i)), i = 1, ...,K} is sug-

gested by Walker(1977) and proceeds by reducing the number of non-zero prob-

abilities one at a time.

1. Put q(i) = Kf(i) for all i = 1, ...,K.

2. LET m be the index so that q(m) = min{q(i); q(i) > 0} and let q(M) =

max{q(i); q(i) > 0}.

3. SET A(m) =M and fix q(m) ( it is no longer is subject to change).

4. Replace q(M) by q(M)− (1− q(m))

5. Replace (q(1), ...q(K))by (q(1), ..., q(m− 1), q(m+1), .q(M) (so the com-

ponent with index m is removed).

6. Return to 2 unless all remaining qi = 1 or the vector of qi’s is empty.

Note that on each iteration of the steps above, we fix one of components

q(m) and remove it from the vector and adjust one other, namely q(M). Since

we always fix the smallest q(m) and since the average q(i) is one, we always
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obtain a probability, i.e. fix a value 0 < q(m) · 1. Figure 3.25 shows the way

in which this algorithm proceeds for the distribution

x = 1 2 3 4

f(x) = .1 .2 .3 .4

We begin with q(i) = 4 × f(i) = .4, .8, 1.2, 1.6 for i = 1, 2, 3, 4. Then since

m = 1 and M = 4 these are the first to be adjusted. We assign A(1) = 4 and

q(1) = 0.4. Now since we have reassigned mass 1 − q(1) to M = 4 we replace

q(4) by 1.6 − (1 − 0.4) = 1. We now fix and remove q(1) and continue with

q(i) = .8, 1.2, 1.0 for i = 2, 3, 4. The next step results in fixing q(2) = 0.8,

A(2) = 3 and changing q(3) to q(3) − (1 − q(2)) = 1. After this iteration,

the remaining q(3), q(4) are both equal to 1, so according to step 6 we may

terminate the algorithm. Notice that we terminated without assigning a value

to A(3) and A(4). This assignment is unnecessary since the probability the alias

A(i) is used is (1 − q(i)) which is zero in these two cases. The algorithm

therefore results in aliases A(i) = 4, 3, i = 1, 2 and q(i) = .4, .8, 1, 1, respectively

for i = 1, 2, 3, 4. Geometrically, this method iteratively adjusts a probability

histogram to form a rectangle with base K as in Figure 3.25.

Suppose I now wish to generate random variables from this discrete distrib-

ution. We simply generate a random variable uniform on the set {1, 2, 3, 4} and

if 1 is selected, we replace it by A(1) = 4 with probability 1 − q(1) = 0.6. If 2

is selected it is replaced by A(2) = 3 with probability 1− q(2) = 0.2.

Acceptance-Rejection for Discrete Random Variables

The acceptance-rejection algorithm can be used both for generating discrete and

continuous random variables and the geometric interpretation in both cases is

essentially the same. Suppose for example we wish to generate a discrete random

variable X having probability function f(x) using as a dominating function

a multiple of g(x) the probability density function of a continuous random

variable. Take for example the probability function
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1.6

1 2 3 4

.4 .8
1.2 1.6

1 2 3 4

A(1)=

4

A(2)
=3

distribution aliased:   .1  .2  .3  .4

1

Figure 3.25: The alias method for generating from the distribution 0.1 0.2 0.3

0.4

x = 1 2 3 4

f(x) = .1 .3 .4 .2

using the dominating function 2g(x) = 0.1 + 0.2(x − 0.5) for 0.5 < x < 4.5. It

is easy to generate a continuous random variable from the probability density

function g(x) by inverse transform. Suppose we generate the value X. Then if

this value is under the probability histogram graphed in Figure 3.26 we accept

the value (after rounding it to the nearest integer to conform the discreteness

of the output distribution) and otherwise we reject and repeat.

We may also dominate a discrete distribution with another discrete distrib-

ution in which case the algorithm proceeds as in the continuous case but with

the probability density functions replaced by probability functions.



GENERATINGRANDOMNUMBERS FROMDISCRETEDISTRIBUTIONS173

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X

Accept

Reject

Figure 3.26: Acceptance-Rejection with for Discrete Distribution with continu-

ous dominating function.

The Poisson Distribution.

Consider the probability function for a Poisson distribution with parameter λ

f(x) =
λxe−λ

x!
, x = 0, 1, ... (3.25)

The simplest generator is to use the Poisson process. Recall that a Poisson

process with rate 1 on the real line can be described in two equivalent ways:

1. Points are distributed on the line in such a way that the spacings be-

tween consecutive points are independent exponential(λ) random vari-

ables. Then the resulting process is a Poisson process with rate λ.

2. The number of points in an interval of length h has a Poisson (λh) distri-

bution. Moreover the numbers of points in non-overlapping intervals are

independent random variables.

The simplest generator stems from this equivalence. Suppose we use the

first specification to construct a Poisson process with rate parameter 1 and

then examine X = the number of points occurring in the interval [0,λ]. This

is the number of partial sums of exponential(1) random variables that are less
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than or equal to λ

X = inf{n;
n+1X
i=1

(−lnUi) > λ}

or equivalently

X = inf{n;
n+1Y
i=1

Ui < e
−λ} (3.26)

This generator requires CPU time which grows linearly with λ since the

number of exponential random variables generated and summed grows linearly

with λ and so an alternative for large λ is required. Various possibilities of

acceptance-rejection algorithms have been suggested including dominating the

Poisson probability function with multiples of the logistic probability density

function (Atkinson (1979)), the normal density with exponential right tail (cf.

Devroye, lemma 3.8, page 509). A simple all-purpose dominating function is the

so-called table-mountain function (cf. Stadlober (1989)), essentially a function

with a flat top and tails that decrease as 1/x2. Another simple alternative for

generating Poisson variates that is less efficient but simpler to implement is to

use the Lorentzian, or truncated Cauchy distribution with probability density

function

g(x|a, b) =
c0

b2 + (x− a)2
, x > 0 (3.27)

where c0 is the normalizing constant. A random variable is generated from this

distribution using the inverse transform method; X = a + b tan(πU),, where

U ∼ U [0, 1]. Provided that we match the modes of the distribution a = λ and

put b =
√
2λ, this function may be used to dominate the Poisson distribution

and provide a simple rejection generator. The Matlab Poisson random number

generator is poissrnd(λ,m, n) which generates an m × n matrix of Poisson(λ)

variables. This uses the simple generator (3.26) and is not computationally

efficient for large values of λ.In R the command rpois(n,λ) generates a vector

of n Poisson variates.
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The Binomial Distribution

For the Binomial distribution, we may use any one of the following alternatives:

(1) X =
Pn

i=1 I(Ui < p), Ui ∼ independent uniform[0, 1]

(2) X = inf{x;
Px+1
i=1 Gi > n}, where Gi ∼independent Geometric(p)

(3) X = inf{x;
Px+1
i=1

Ei
n−i+1 > −log(1−p)}, whereEi ∼independent Exponential(1).

Method (1) obtains from the definition of the sum of independent Bernoulli

random variables since each of the random variables I(Ui < p) are independent,

have values 0 and 1 with probabilities 1 − p and p respectively. The event

(Ui < p) having probability p is typically referred to as a “success”. Obviously

this method will be slow if n is large. For method (2), recall that the number of

trials necessary to obtain the first success, G1, say, has a geometric distribution.

Similarly, G2 represents the number of additional trials to obtain the second

success. So if X = j, the number of trials required to obtain j + 1 successes

was greater than n and to obtain j successes, less than or equal to n. In other

words there were exactly j successes in the first n trials. When n is large but np

fairly small, method (2) is more efficient since it is proportional to the number

os successes rather than the total number of trials. Of course for large n and

np sufficiently small (e.g. <1), we can also replace the Binomial distribution

by its Poisson (λ = np) approximation. Method (3) is clearly more efficient if

−log(1− p) is not too large so that p is not too close to 1, because in this case

we need to add fewer exponential random variables.

For large mean np and small n(1 − p) we can simply reverse the role of

successes and failures and use method (2) or (3) above. But if both np and

n(1 − p) are large, a rejection method is required. Again we may use rejection

beginning with a Lorentzian distribution, choosing a = np, and b =
p
2np(1− p)

in the case p < 1/2. When p > 1/2, we simply reverse the roles of “failures”

and “successes”. Alternatively, a dominating table-mountain function may be
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used (Stadlober (1989)). The binomial generator in Matlab is the function

binornd(n,p,j,k) which generates an n × k matrix of binomial(n, p) random

variables. This uses the simplest form (1) of the binomial generator and is not

computationally efficient for large n. In R, rbinom(m,n,p) will generate a vector

of length m of Binomial(n, p) variates.

Random Samples Associated withMarkov Chains

Consider a finite state Markov Chain, a sequence of (discrete) random variables

X1, X2, . . .each of which takes integer values 1, 2, . . . N (called states). The

number of states of a Markov chain may be large or even infinite and it is not

always convenient to label them with the positive integers and so it is common

to define the state space as the set of all possible states of a Markov chain, but

we will give some examples of this later. For the present we restrict attention to

the case of a finite state space. The transition probability matrix is a matrix P

describing the conditional probability of moving between possible states of the

chain, so that

P [Xn+1 = j|Xn = i] = Pij , i = 1, . . . N, j = 1, . . .N.

where Pij ≥ 0 for all i, j and
P
j Pij = 1 for all i. A limiting distribution

of a Markov chain is a vector (π say) of long run probabilities of the individual

states with the property that

πi = limt→∞P [Xt = i].

A stationary distribution of a Markov chain is the column vector (π say) of

probabilities of the individual states such that

π0P = π0. (3.28)
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π0P = π0. For a Markov chain, every limiting distribution is in fact a station-

ary distribution. For the basic theory of Markov Chains, see the Appendix.

Roughly, a Markov chain which eventually “forgets” the states that were occu-

pied in the distant path, in other words for which the probability of the current

states does not vary much as we condition on different states in the distant

past, is called ergodic. A Markov chain which simply cycles through three

states 1 → 2 → 3 → 1 → ... is an example of a periodic chain, and is not

ergodic.

It is often the case that we wish to simulate from a finite ergodic Markov

chain when it has reached equilibrium or stationarity, which is equivalent to

sampling from the distribution of Xn assuming that the distribution of X0

is given by the stationary distribution π. In a few cases, we can obtain this

stationary distribution directly from (3.28) but when N is large this system of

equations is usually not feasible to solve and we need to find another way to

sample from the probability vector π. Of course we can always begin the Markov

chain in some arbitrary initial state and run it waiting for Hele to freeze over (it

does happen since Helle is in Devon) until we are quite sure that the chain has

essentially reachedequilibrium, and then use a subsequent portion of this chain,

discarding this initial period, sometimes referred to as the “initial transient”.

Clearly this is often not a very efficient method, particularly in cases in

which the chain mixes or forgets its past very slowly for in this case the required

initial transient is long. On the other hand if we shortened it, we run the risk of

introducing bias into our simulations because the distribution generated is too

far from the equilibrium distribution π. There are a number of solutions to this

problem proposed in a burgeoning literature. Here we limit ourselves to a few

of the simpler methods.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm is a method for generating random variables

from a distribution π that applies even in the case of an infinite number of

states or a continuous distribution π. It is assumed that π is known up to some

multiplicative constant. Roughly, the method consists of using a convenient

“proposal” Markov chain with transition matrix Q to generate transitions, but

then only “accept” the move to these new states with probability that depends

on the distribution π. The idea resembles that behind importance sampling.

The basic result on which the Metropolis-Hastings algorithm is pinned is the

following theorem.

Theorem 31 Suppose Qij is the transition matrix of a Markov chain. Assume

that g is a vector of non-negative values such that
PN
i=1 gi = G and

|
gj
Qij

| · K <∞ for all i, j

for some finite value K. Define

ρij = min(1,
gjQji
giQij

)

Then the Markov Chain with transition probability matrix

Pij = Qijρij , for i 6= j (3.29)

has stationary distribution πi =
gi
G .

Proof. The proof consists of showing that the so-called “detailed balance

condition” is satisfied, i.e. with πi =
gi
G , that

πiPij = πjPji, for all i, j. (3.30)

This condition implies that when the chain is operating in equilibrium,

P [Xn = i,Xn+1 = j] = P [Xn = j,Xn+1 = i]
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reflecting a cavalier attitude to the direction in which time flows or reversibility

of the chain. Of course (3.30) is true automatically if i = j and for i 6= j,

πiPij =
gi
G
Qij min(1,

gjQji
giQij

)

=
1

G
min(giQij , gjQji)

= πjPji

by the symmetry of the function 1
G min(giQij , gjQji). Now the detailed balance

condition (3.30) implies that π is a stationary distribution for this Markov chain

since
NX
i=1

πiPij =
NX
i=1

πjPji

= πj

NX
i=1

Pji

= πj for each j = 1, ..., N.

Provided that we are able to generate transitions for the Markov Chain with

transition matrix Q, it is easy to generate a chain with transition matrix P in

(3.29). If we are currently in state i, generate the next state with probability

Qij . If j = i then we stay in state i. If j 6= i, then we “accept” the move to state

j with probability ρij , otherwise we stay in state i. Notice that the Markov

Chain with transition matrix P tends to favour moves which increase the value

of π. For example if the proposal chain is as likely to jump from i to j as it

is to jump back so that Qij = Qji, then if πj > πi the move to j is always

accepted whereas if πj < πi the move is only accepted with probability
πj
πi
. The

assumption Qij = Qji is a common and natural one, since in applications of

the Metropolis-Hastings algorithm, it is common to choose j “at random” (i.e.

uniformly distributed) from a suitable neighborhood of i.

The above proof only provides that π is a stationary distribution of the

Markov Chain associated with P, not that it is necessarily the limiting distrib-
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ution of this Markov chain. For this to follow we need to know that the chain

is ergodic. Various conditions for ergodicity are given in the literature. See for

example Robert and Casella (1999, Chapter 6) for more detail.

Gibbs Sampling

There is one simple special case of the Metropolis-Hastings algorithm that is

particularly simple, common and compelling. To keep the discussion simple,

suppose the possible states of our Markov Chain are points in two-dimensional

space (x, y).We may assume both components are discrete or continuous. Sup-

pose we wish to generate observations from a stationary distribution which is

proportional to g(x, y) so

π(x, y) =
g(x, y)P

x

P
y g(x, y)

(3.31)

defined on this space but that the form of the distribution is such that directly

generating from this distribution is difficult, perhaps because it is difficult to

obtain the denominator of (3.31). However there are many circumstances where

it is much easier to obtain the value of the conditional distributions

π(x|y) =
π(x, y)P
z π(z, y)

and

π(y|x) =
π(x, y)P
z π(x, z)

Now consider the following algorithm: begin with an arbitrary value of y0

and generated x1 from the distribution π(x|y0) followed by generating y1 from

the distribution π(y|x1). It is hard to imagine a universe in which iteratively

generating values xn+1 from the distribution π(x|yn) and then yn+1 from the

distribution π(y|xn+1) does not, at least asymptotically as n → ∞, eventually

lead to a draw from the joint distribution π(x, y). Indeed that is the case since

the transition probabilities for this chain are given by

P (xn+1, yn+1|xn, yn) = π(xn+1|yn)π(yn+1|xn+1)
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and it is easy to show directly from these transition probabilities thatX
(x,y)

P (x1, y1|x, y)π(x, y)

= π(y1|x1)
X
y

π(x1|y)
X
x

π(x, y)

= π(y1|x1)
X
y

π(x1, y)

= π(x1, y1).

Of course the real power of Gibbs Sampling is achieved in problems that are

not two-dimensional such as the example above, but have dimension sufficiently

high that calculating the sums or integrals in the denominator of expressions

like (3.31) is not computationally feasible.

Coupling From the Past: Sampling from the stationary dis-

tribution of a Markov Chain

All of the above methods assume that we generate from the stationary distri-

bution of a Markov chain by the “until Hele freezes over” method, i.e. wait

until run the chain from an arbitrary starting value and then delete the initial

transient. An alternative elegant method that is feasible at least for some finite

state Markov chains is the method of “coupling from the past” due to Propp

and Wilson (1996).

We assume that we are able to generate transitions in the Markov Chain. In

other words if the chain is presently in state i at time n we are able to generate

a random variable Xn+1 from the distribution proportional to Pij , j = 1, ...K.

Suppose F (x|i) is the cumulative distribution function P (Xn+1 · x|Xn = i)

and let us denote its inverse by F−1(y|i). So if we wish to generate a random

variable Xn+1 conditional on Xn, we can use the inverse transform Xn+1 =

F−1(Un+1|Xn) applied to the Uniform[0,1] random variable Un+1. Notice that

a starting value say X−100 together with the sequence of uniform[0,1] variables
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(U−99, ..., U0) determines the chain completely over the period −100 · t · 0.

If we wish to generated the value of Xt given Xs, s < t, then we can work this

expression backwards

Xt = F
−1(Ut−1|Xt−1)

= F−1(Ut−1|F−1(Ut−2|Xt−2))

= F−1(Ut−1|F−1(Ut−2|...F−1(Ut−1|F−1(Us|i))))

= F ts(Xs), say.

Now imagine an infinite sequence {Ut, t = ...,−3,−2,−1} of independent uni-

form[0,1] random variables that was used to generate the state X0 of a chain

at time 0. Let us imagine for the moment that there is a value of M such that

F 0−M (i) is a constant function of i. This means that for this particular draw

of uniform random numbers, whatever the state i of the system at time −M,

the same state X0 = F 0−M (i) is generated to time 0. All chains, possibly with

different behaviour prior to time −M are ”coupled” at time −M and identical

from then on. In this case we say that coalescence has occurred in the interval

[−M, 0]. No matter where we start the chain at time −M it ends up in the

same state at time 0, so it is quite unnecessary to simulate the chain over the

whole infinite time interval −∞ < t · 0. No matter what state is occupied

at time t = −M, the chain ends up in the same state at time t = 0. When

coalescence has occurred, we can safely consider the common value of the chain

at time 0 to be generated from the stationary distribution since it is exactly

the same value as if we had run the chain from t = −∞.

There is sometimes an easy way to check whether coalescence has occurred

in an interval, if the state space of the Markov chain is suitably ordered. For

example suppose the states are numbered 1, 2, ..., N. Then it is sometimes

possible to relabel the states so that the conditional distribution functions F (x|i)

are stochastically ordered, or equivalently that F−1(U |i) is monotonic (say

monotonically increasing) in i for each value of U. This is the case for example
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provided that the partial sums
Pj

l=1 Pil are increasing functions of i for each

j = 1, 2, ..., N. If follows that the functions F 0−M (i) are all monotonic functions

of i and so

F 0−M (1) · F
0
−M (2) · ...F

0
−M (N).

Therefore, if F 0−M (1) = F 0−M (N), then F
0
−M (i) must be a constant function.

Notice also that if there is any time in an interval [s, t] at which coalescence

occurs so that F ts(i) is a constant function of i, then for any interval [S, T ]

containing it [S, T ] ⊃ [s, t], FTS (i) is also a constant function of i.

It is easy to prove that coalescence occurs in the interval [−M, 0] for suf-

ficiently large M. For an ergodic finite Markov chain, there is some step size

τ such that every transition has positive probability P [Xt+τ = j|Xt = i] > ²

for all i, j. Consider two independent chains, one beginning in state i and the

other in state i0 at time t = 0. Then the probability that they occupy the same

state j at time t = τ is at least ²2. It is easy to see that if we use inverse

transform to generate the transitions and if they are driven by common random

numbers then this can only increase the probability of being in the same state,

so the probability these two chains are coupled at time τ is at least ²2. Similarly

for N possible states, the probability of coalescence in an interval of length τ

is at least εN > 0. Since there are infinitely many intervals disjoint of length

τ in [−∞, 0] and the events that there is a coalescence in each interval are

independent, the probability that coalescence occurs somewhere in [−∞, 0] is

1.

We now detail the Propp Wilson algorithm

1. Set M = 1, XU = N,XL = 1

2. Generate U−M ....U−M/2+1 all independent Uniform[0, 1].

3. For t = −M to −1 repeat

(a) obtain XL = F−1(Ut−1|XL) and XU = F−1(Ut−1|XU ).
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(b) If XL = XU stop and output X(0) = XL

4. Otherwise, set M = 2M and go to step 2.

This algorithm tests for coalescence repeatedly by starting on the intervals

[−1, 0], [−2,−1], [−4,−2], [−8,−4].

We are assured that with probability one, the process will terminate with co-

alescence after a finite number of steps. Moreover, in this algorithm that the

random variable Ut once generated is NOT generated again on a subsequent

pass when M is doubled. The generated Ut is reused at each pass until coales-

cence occurs. If Ut were regenerated on subseuqent passes, this would lead to

bias in the algorithm.

It may well be that this algorithm needs to run for a very long time before

achieving coalescence and an impatient observer who interrupts the algorithm

prior to coalescence and starts over will bias the results. Varous modifications

have been made to speed up the algorithm (e.g. Fill, 1998).

Sampling from the Stationary Distribution of a Diffusion

Process

A basic Ito process of the form

dXt = a(Xt)dt+ σ(Xt)dWt

is perhaps the simplest extension of a Markov chain to continuous time, contin-

uous state-space. It is well-known that under fairly simple conditions, there is

a unique (strong) solution to this equation and that the limiting distribution of

XT as T →∞ has stationary distribution with probability density function

f(x) = c
1

σ2(x)
exp{2

Z x

0

a(z)

σ2(z)
dz}
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where the constant c is chosen so that the integral of the density is 1. To be

able to do this we need to assume thatZ ∞
−∞

1

σ2(x)
exp{2

Z x

0

a(z)

σ2(z)
dz}dx <∞. (3.32)

In order to generate from this stationary distribution, we can now start the

process at some arbitrary value X0 and run it for a very long time T , hoping

that this is sufficiently long that the process is essentially in its stationary

state, or try to generate X0 more directly from (3.32) in which case the process

is beginning (and subsequently running) with its stationary distribution.

For an example, let us return to the CIR process

dXt = k(b−Xt)dt+ σX
1/2
t dWt. (3.33)

In this case

a(x) = k(b− x), for x > 0,

σ2(x) = σ2x, for x > 0.

Notice that

1

σ2x
exp{2

Z x

ε

k(b− z)

σ2z
dz} =

1

σ2
x−1 exp{

2kb

σ2
ln(x/ε)−

k

σ2
(x− ε)}

is proportional to

x2kb/σ
2−1 exp{−kx/σ2}

and the integral of this function, a Gamma function, will fail to converge unless

2kb/σ2 − 1 > −1 or 2kb > σ2. Under this condition the stationary distribution

of the CIR process is Gamma(2kb/σ2, σ
2

k ). If this condition fails and 2kb < σ2,

then the process Xt is absorbed at 0. If we wished to simulate a CIR process in

equilibrium, we should generate starting values of X0 from the Gamma distrib-

ution. More generally for a CEV process satisfying

dXt = k(b−Xt)dt+ σX
γ/2
t dWt (3.34)
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a similar calculation shows that the stationary density is proportional to

x−γ exp{−
2kb

σ2
1

xγ−1(γ − 1)
−

k

σ2γ
xγ}, for γ > 1.

Simulating Stochastic Partial Differential Equa-

tions.

Consider a derivative product whose underlying asset has price Xt which follows

some model. Suppose the derivative pays an amount V0(XT ) on the maturity

date T. Suppose that the value of the derivative depends only on the current time

t and the current value of the asset S, then its current value is the discounted

future payoff, an expectation of the form

V (S, t) = E[V0(XT )exp{−

Z T

t

r(Xv, v)dv}|Xt = S] (3.35)

where r(Xt, t) is the current spot interest rate at time t. In most cases, this ex-

pectation is impossible to evaluate analytically and so we need to resort to

numerical methods. If the spot interest rate is function of both arguments

(Xv, v) and not just a function of time, then this integral is over the whole

joint distribution of the process Xv, 0 < v < T and simple one-dimensional

methods of numerical integration do not suffice. In such cases, we will usu-

ally resort to a Monte-Carlo method. The simplest version requires simulating

a number of sample paths for the process Xv starting at Xt = S, evaluating

V0(XT )exp{−
R T
t
r(Xv, v)dv} and averaging the results over all simulations. We

begin by discussing the simulation of the process Xv required for integrations

such as this.

Many of the stochastic models in finance reduce to simple diffusion equation

(which may have more than one factor or dimension). Most of the models

in finance are Markovian in the sense that at any point t in time, the future

evolution of the process depends only on the current state Xt and not on the
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past behaviour of the process Xs, s < t. Consequently we restrict to a “Markov

diffusion model” of the form

dXt = a(Xt, t)dt+ σ(Xt, t)dWt (3.36)

with some initial valueX0 forXt at t = 0. HereWt is a driving standard Brown-

ian motion process. Solving deterministic differential equations can sometimes

provide a solution to a specific problem such as finding the arbitrage-free price of

a derivative. In general, for more complex features of the derivative such as the

distribution of return, important for considerations such as the Value at Risk,

we need to obtain a solution {Xt, 0 < t < T}to an equation of the above form

which is a stochastic process. Typically this can only be done by simulation.

One of the simplest methods of simulating such a process is motivated through

a crude interpretation of the above equation in terms of discrete time steps, that

is that a small increment Xt+h − Xtin the process is approximately normally

distributed with mean given by a(Xt, t)hand variance given by σ2(Xt, t)h. We

generate these increments sequentially, beginning with an assumed value for

X0, and then adding to obtain an approximation to the value of the process

at discrete times t = 0, h, 2h, 3h, . . .. Between these discrete points, we can

linearly interpolate the values. Approximating the process by assuming that

the conditional distribution of Xt+h − Xt is N(a(Xt, t)h,σ2(Xt, t)h) is called

Euler’s method by analogy to a simple method by the same name for solving or-

dinary differential equations. Given simulations of the process satisfying (3.36)

together with some initial conditions, we might average the returns on a given

derivative for many such simulations, (provided the process is expressed with

respect to the risk-neutral distribution), to arrive at an arbitrage-free return for

the derivative.

In this section we will discuss the numerical solution, or simulation of the

solution to stochastic differential equations.
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Letting ti = i∆x, Equation (3.36) in integral form implies

Xti+1 = Xti +

Z ti+1

ti

a(Xs, s)ds+

Z ti+1

ti

σ(Xs, s)dWs (3.37)

For the following lemma we need to introduce Op or “order in probability”,

notation common in mathematics and probability. A sequence indexed by ∆t,

say Y∆t = Op(∆t)
k means that when we divide this term by (∆t)k and then

let ∆t→ 0, the resulting sequence is bounded in probability or that for each ε

there exists K <∞ so that

P [|
Y∆t
∆tk

| > K] < ε

whenever |∆t| < ε. As an example, if W is a Brownian motion, then ∆Wt =

W (t+∆t)−W (t) has a Normal distribution with mean 0 and standard deviation
√
∆t and is therefore Op(∆t)1/2. Similarly Then we have two very common

and useful approximations to a diffusion given by the following lemma.

Lemma 32 If Xt satisfies a diffusion equation of the form (3.36) then

Xti+1 = Xti + a(Xti , ti)∆t+ σ(Xti , ti)∆Wt +Op(∆t) (Euler approximation)

Xti+1 = Xti + a(Xti , ti)∆t+ σ(Xti , ti)∆Wt +
σ(Xti , ti)

∂
∂xσ(Xti , ti)

2
[(∆Wt)

2 −∆t] +Op(∆t)
3/2 (Milstei

Proof. Ito’s lemma can be written in terms of two operators on functions

f for which the derivatives below exist;

df(Xt, t) = L
ofdt+ L1fdWt where

L0 = a
∂

∂x
+
1

2
σ2

∂2

∂x2
+

∂

∂t
, and

L1 = σ
∂

∂x
.
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Integrating, this and applying to twice differentiable functions a and σ and

s > ti,

a(Xs, s) = a(Xti , ti) +

Z s

ti

L0a(Xu, u)du+

Z s

ti

L1a(Xu, u)dWu

σ(Xs, s) = σ(Xti , ti) +

Z s

ti

L0σ(Xu, u)du+

Z s

ti

L1σ(Xu, u)dWu.

By substituting in each of the integrands in 3.37 using the above identity and

iterating this process we arrive at the Ito-Taylor expansions (e.g. Kloeden and

Platen, 1992). For example,Z ti+1

ti

a(Xs, s)ds =

Z ti+1

ti

{a(Xti , ti) +

Z s

ti

L0a(Xu, u)du+

Z s

ti

L1a(Xu, u)dWu}ds

≈ a(Xti , ti)∆t+ L
0a(Xti , ti)

Z ti+1

ti

Z s

ti

duds+ L1a(Xti , ti)

Z ti+1

ti

Z s

ti

dWuds

The first term a(Xti , ti)∆t, is an initial approximation to the desired inte-

gral and the rest is a lower order correction that we may regard as an er-

ror term for the moment. For example it is easy to see that the second term

L0a(Xti , ti)
R ti+1
ti

R s
ti
duds isOp(∆t)2 because the integral

R ti+1
ti

R s
ti
duds= (∆t)2/2

and L0a(Xti , ti) is bounded in probability. The third term L1a(Xti , ti)
R ti+1
ti

R s
ti
dWuds

is Op(∆t)3/2 since
R ti+1
ti

R s
ti
dWuds =

R ti+1
ti

(ti+1−u)dWu and this is a normal

random variable with mean 0 and variance
R ti+1
ti

(ti+1 − u)2du = (∆t)3/3. We

can write such a normal random variable as 3−1/2(∆t)3/2Z for Z a standard

normal random variable and so this is obviously Op(∆t)3/2. Thus the simplest

Euler approximation to the distribution of the increment assumes that ∆X has

conditional mean a(Xti , ti)∆t. SimilarlyZ ti+1

ti

σ(Xs, s)dWs =

Z ti+1

ti

{σ(Xti , ti) +

Z s

ti

L0σ(Xu, u)du+

Z s

ti

L1σ(Xu, u)dWu}dWs

≈ σ(Xti , ti)∆Wt + L
0σ(Xti , ti)

Z ti+1

ti

Z s

ti

dudWs + L
1σ(Xti , ti)

Z ti+1

ti

Z s

ti

dWudWs

= σ(Xti , ti)∆Wt +
σ(Xti , ti)

∂
∂xσ(Xti , ti)

2
[(∆Wt)

2 −∆t] +Op(∆t)
3/2

since
R ti+1
ti

R s
ti
dWudWs =

1
2 [(∆Wt)

2−∆t], L0σ(Xu, u) = σ(Xti , ti)+Op(∆t)
1/2,

L1σ(Xu, u) = σ(Xu, u)
∂
∂xσ(Xu, u) and

R ti+1
ti

R s
ti
dudWs = Op(∆t)

3/2. Putting
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these terms together, we arrive at an approximation to the increment of the

form

∆Xt = a(Xti , ti)∆t+σ(Xti , ti)∆Wt+
σ(Xti , ti)

∂
∂xσ(Xti , ti)

2
[(∆Wt)

2−∆t]+Op(∆t)
3/2

(3.38)

which allow an explicit representation of the increment in the processX in terms

of the increment of a Brownian motion process ∆Wt ∼ N(0,∆t).

The approximation (3.38) is called the Milstein approximation, a refinement

of the first, the Euler approximation. It is the second Ito-Taylor approximation

to a diffusion process. Obviously, the increments of the process are quadratic

functions of a normal random variable and are no longer normal. The error

approaches 0 at the rate Op(∆t)3/2 in probability only. This does not mean

that the trajectory is approximated to this order but that the difference between

the Milstein approximation to a diffusion and the diffusion itself is bounded in

probability when divided by (∆t)3/2 and as we let ∆t→ 0. Higher order Taylor

approximations are also possible, although they grow excessively complicated

very quickly. See the book by Kloeden and Platten(1992) for details.

There remains the question of how much difference it makes which of these

approximations we employ for a particular diffusion. Certainly there is no dif-

ference at all between the two approximations in the case that the diffusion

coefficient σ(Xt, t) does not depend at all on Xt. In general, the difference is

hard to assess but in particular cases we can at least compare the performance of

the two methods. The approximations turn out to be very close in most simple

cases. For example consider the stock price path in Figure 3.27. The dashed

line corresponds to a Milstein approximation whereas the piecewise continuous

line corresponds to the Euler approximation. In this case the Milstein appears

to be a little better, but if I run a number of simulations and compare the sum

of the squared errors (i.e. squared differences between the approximate value

of Xt and the true value of Xt) we find that the improvement is only about
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Figure 3.27: Comparison of Milstein and Euler approximation to stock with

∆t = 1/12 year.

two percent of the difference. The same is true even if I change the value of

∆t from 1/12 (i.e. one month) to 1/52 (i.e. one week). Unlike the behaviour

of higher order approximations to deterministic functions, there appears to be

little advantage in using a higher order approximation, at least in the case of

diffusions with smooth drift and diffusion coefficients.

We can compare using Milstein approximation on the original process and

using Euler’s approximation on a transformation of the process in the case that

the diffusion term depends only on the state of the process (not time). In other
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words, suppose we have an Ito process of the form

dXt = a(Xt, t)dt+ σ(Xt)dWt (3.39)

where Wt is an ordinary Wiener measure. A simple transformation reduces this

to a problem with constant diffusion term. Suppose σ(x) > 0 for all x and let

s(x) =

Z x

0

1

σ(z)
dz, for x ≥ 0

s(x) = −

Z 0

x

1

σ(z)
dz for x < 0

where we assume these integrals are well defined. Let g be the inverse function of

s. This inverse exists since the function is continuous monotonically increasing.

Suppose we apply Ito’s lemma to the transformed process Yt = s(Xt).We obtain

dYt = {a(Xt, t)s
0(Xt) +

1

2
σ2(Xt)s

00(Xt)}dt+ σ(Xt)s
0(Xt)dWt

= {
a(Xt, t)

σ(Xt)
−
1

2
σ2(Xt)

σ0(Xt)
σ2(Xt)

}dt+ dWt

= µ(Yt, t)dt+ dWt

where

µ(Yt, t) =
a(g(Yt), t)

σ(g(Yt))
−
1

2
σ0(g(Yt)).

In other words, Y t satisfies an Ito equation with constant diffusion term.

Suppose we generate an increment in Yt using Euler’s method and then solve

for the corresponding increment in Xt.Then using the first two terms in the

Taylor series expansion of g,

∆Xt = g
0(Yt)∆Yt +

1

2
g00(Yt)(∆Yt)2

= g0(Yt)(µ(Yti , ti)∆t+∆Wt) +
1

2
σ0(g(Yt))σ(g(Yt))(∆Yt)2

= {a(g(Yt), t)−
1

2
σ(g(Yt))σ

0(g(Yt))}∆t+ σ(g(Yt))∆Wt +
1

2
σ0(g(Yt))σ(g(Yt))(∆Yt)2
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since

g0(Yt) =
1

s0(g(Yt))
= σ(g(Yt)) and

g00(Yt) = σ0(g(Yt))σ(g(Yt)).

But since (∆Yt)2 = (∆Wt)
2 + o(∆t) it follows that

∆Xt = {a(Xt, t)−
1

2
σ(Xt)σ

0(Xt)}∆t+σ(Xt)∆Wt+
1

2
σ0(Xt)σ(Xt)(∆Wt)

2+o(∆t)

and so the approximation to this increment is identical, up to the order con-

sidered, to the Milstein approximation. For most processes, it is preferable

to apply a diffusion stabilizing transformation as we have here, prior to dis-

cretizing the process. For the geometric Brownian motion process, for example,

the diffusion-stabilizing transformation is a multiple of the logarithm, and this

transforms to a Brownian motion, for which the Euler approximation gives the

exact distribution.

Example: Down-and-out-Call.

Consider an asset whose price under the risk-neutral measure Q follows a con-

stant elasticity of variance (CEV) process

dSt = rStdt+ σSγt dWt (3.40)

for a standard Brownian motion process Wt. A down-and-out call option with

exercise price K provides the usual payment (ST − K)+ of a European call

option on maturity T if the asset never falls below a given out barrier b. The

parameter γ > 0 governs the change in the diffusion term as the asset price

changes. We wish to use simulation to price such an option with current asset

price S0, time to maturity T , out barrier b < S0 and constant interest rate r

and compare with the Black-Scholes formula as b→ 0.

A geometric Brownian motion is most easily simulated by taking logarithms.
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For example if St satisfies the risk-neutral specification

dSt = rStdt+ σStdWt (3.41)

then Yt = log(St) satisfies

dYt = (r − σ2/2)dt+ σdWt. (3.42)

This is a Brownian motion and is simulated with a normal random walk. In-

dependent normal increments are generated ∆Yt ∼ N((r− σ2/2)∆t,σ2∆t) and

their partial sums used to simulate the process Yt. The return for those options

that are in the money is the average of the values of (eYT − E)+ over those

paths for which min{Ys; t < s < T} ≥ ln(b). Similarly the transformation of

the CEV process which provides a constant diffusion term is determined by

s(x) =

Z x

0

1

σ(z)
dz

=

Z x

0

z−γdz =

⎧⎨⎩ x1−γ
1−γ if γ 6= 1

ln(x) if γ = 1
.

Assuming γ 6= 1, the inverse function is

g(y) = cy1/(1−γ)

for constant c and the process Yt = (1 − γ)−1S1−γt satisfies an Ito equation

with constant diffusion coefficient;

dYt = {
r

σ
S1−γt −

1

2
γσSγ−1t }dt+ dWt

dYt = {
r

σ
(1− γ)Yt −

γσ

2(1− γ)Yt
}dt+ dWt. (3.43)

After simulating the process Yt we invert the relation to obtain St = ((1 −

γ)Yt)
1/(1−γ). There is one fine point related to simulating the process (3.43)

that we implemented in the code below. The equation (3.40) is a model for

a non-negative asset price St but when we simulate the values Yt from (3.43)

there is nothing to prevent the process from going negative. Generally if γ ≥ 1/2
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and if we increment time in sufficiently small steps ∆t, then it is unlikely that

a negative value of Yt will obtain, but when it does, we assume absorption at 0

(analogous to default or bankruptcy). The following Matlab function was used

to simulate sample paths from the CEV process over the interval [0, T ].

function s=simcev(n,r,sigma,So,T,gam)

% simulates n sample paths of a CEV process on the interval [0,T] all with

% the same starting value So. assume gamma != 1.

Yt=ones(n,1)*(So^(1-gam))/(1-gam); y=Yt;

dt=T/1000; c1=r*(1-gam)/sigma; c2=gam*sigma/(2*(1-gam));

dw=normrnd(0,sqrt(dt),n,1000);

for i=1:1000

v=find(Yt); % selects positive components of Yt for update

Yt=max(0,Yt(v)+(c1.*Yt(v)-c2./Yt(v))*dt+dw(v,i));

y=[y Yt];

end

s=((1-gam)*max(y,0)).^(1/(1-gam)); %transforms to St

For example when r = .05,σ = .2,∆t = .00025, T = .25, γ = 0.8 we can

generate 1000 sample paths with the command

s=simcev(1000,.05,.2,10,.25,.8);

In order to estimate the price of a barrier option with a down-and-out barrier

at b and exercise price K, capture the last column of s,

ST=s(:,1001);

then value a European call option based on these sample paths

v=exp(-r*T)*max(ST-K,0);
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finally setting the values equal to zero for those paths which breached the

lower barrier and then averaging the return from these 1000 replications;

v(min(s’)<=9)=0;

mean(v);

which results in an estimated value for the call option of around $0.86. Al-

though the standard error is still quite large (0.06), we can compare this with the

Black-Scholes price with similar parameters. [CALL,PUT] = BLSPRICE(10,10,.05,.25,.2,0)

which gives a call option price of $0.4615. Why such a considerable difference?

Clearly the down-and-out barrier can only reduce the value of a call option.

Indeed if we remove the down-and-out feature, the European option is valued

closer to $1.28 so the increase must be due to the differences betwen the CEV

process and the geometric Brownian motion. We can confirm this by simulating

the value of a barrier option in the Black_Scholes model later on.

Problems

1. Consider the mixed generator xn = (axn−1 + 1)mod(m) with m = 64.

What values of a results in the maximum possible period. Can you indicate

which generators appears more and less random?

2. Consider a shuffled generator described in Section 3.2 with k = 3,m1 =

7,m2 = 11.

Determine the period of the shuffled random number generator above and

compare with the periods of the two constituent generators.

3. Consider the quadratic residue generator xn+1 = x2nmodm with m =

4783 × 4027. Write a program to generate pseudo-random numbers from

this generator. Use this to determine the period of the generator starting

with seed x0 = 196, and with seed x0 = 400.



PROBLEMS 197

4. Consider a sequence of independent U [0, 1] random variables U1, ..., Un.

Define indicator random variables

Si = 1 if Ui−1 < Ui and Ui > Ui+1 for i = 2, 3, ..., n− 1, otherwise Si = 0,

Ti = 1 if Ui−1 > Ui and Ui < Ui+1 for i = 2, 3, ..., n− 1, otherwise Ti = 0.

Verify the following:

(a)

R = 1 +
X
(Si + Ti)

(b)

E(Ti) = E(Si) =
1

3
and E(R) =

2n− 1

3

(c) cov(Ti, Tj) = cov(Si, Sj) = − 1
9 if |i−j| = 1 and it equals 0 if |i−j| >

1.

(d) cov(Si, Tj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5
24 −

1
9 =

7
72 if |i− j| = 1

− 1
9 if i = j

0 if |i− j| > 1

.

(e) var(R) = 2(n−2) 13(
2
3)+4(n−3)(−

1
9)+4(n−3)(

7
72)+2(n−2)(−

1
9) =

3n−5
18 .

(f) Confirm these formulae for mean and variance of R in the case n =

3, 4.

5. Generate 1000 daily “returns” Xi, i = 1, 2, ..., 1000 from each of the two

distributions, the Cauchy and the logistic. Choose the parameters so that

the median is zero and P [|Xi| < .06] = .95. Graph the total return over an

n day period versus n. Is there a qualitative difference in the two graphs?

Repeat with a graph of the daily return averaged over days 1, 2, ..., n.

6. Consider the linear congruential generator

xn+1 = (axn + c)mod 2
8
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What is the maximal period that this generator can achieve when c = 1

and for what values of a does this seem to be achieved? Repeat when

c = 0.

7. Let U be a uniform random variable on the interval [0,1]. Find a function

of U which is uniformly distributed on the interval [0,2]. Repeat for the

interval [a, b].

8. Evaluate the following integral by simulation:Z 2

0

x3/4(4− x)1/3dx.

9. Evaluate the following integral by simulation:Z ∞
−∞

e−x
4

dx.

(Hint: Rewrite this integral in the form 2
R∞
0
e−x

4

dx and then change

variables to y = x/(1 + x))

10. Evaluate the following integral by simulation:Z 1

0

Z 1

0

e(x+y)
4

dxdy.

(Hint: Note that if U1, U2 are independent Uniform[0,1] random variables,

E[g(U1, U2)] =
R 1
0

R 1
0
g(x, y)dxdy for any function g).

11. Find the covariance cov(eU , e−U ) by simulation where U is uniform[0,1]

and compare the simulated value to the true value. Compare the actual

error with the standard error of your estimator.

12. For independent uniform random numbers U1, U2,.... define the random

variable N = min{n;
Pn
i=1 Ui > 1}.

Estimate E(N) by simulation. Repeat for larger and larger numbers of

simulations. Guess on the basis of these simulations what is the value of

E(N). Can you prove your hypothesis concerning the value of E(N)?
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13. Give an algorithm for generating observations from a distribution which

has cumulative distribution function F (x) = x+x3+x5

3 , 0 < x < 1. Record

the time necessary to generate the sample mean of 100,000 random vari-

ables with this distribution. (Hint: Suppose we generate X1 with cumu-

lative distribution function F1(x) and X2 with cumulative distribution

function F2(x) , X3 with cumulative distribution function F3(x)We then

generate J = 1, 2, or 3 such that P [J = j] = pj and output the value

XJ . What is the cumulative distribution function of the random variable

output?)

14. Consider independent random variables Xi i = 1, 2, 3 with cumulative

distribution function

Fi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x3, i = 1

ex−1
e−1 i = 2

xex−1, i = 3

for 0 < x < 1. Explain how to obtain random variables with cumulative

distribution functionG(x) = Π3i=1Fi(x) andG(X) = 1−Π3i=1(1−Fi(x)).

(Hint: consider the cumulative distribution function of the minimum and

maximum).

15. Suppose we wish to estimate a random variable X having cumulative

distribution function F (x) using the inverse transform theorem, but the

exact cumulative distribution function is not available. We do, however,

have an unbiased estimator bF (x) of F (x) so that 0 · bF (x) · 1 and EbF (x) = F (x) for all x. Show that provided the uniform variate U is

independent of bF (x), the random variable X = bF−1(U) has cumulative
distribution function F (x).
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16. Develop an algorithm for generating variates from the density:

f(x) = 2/
√
πe2a−x

2−a2/x2 , x > 0

17. Develop an algorithm for generating variates from the density:

f(x) =
2

eπx + e−πx
, for −∞ < x <∞

18. Obtain generators for the following distributions:

(a) Rayleigh

f(x) =
x

σ2
e−x

2/2σ2 , x ≥ 0 (3.44)

(b) Triangular

f(x) =
2

a
(1−

x

a
), 0 · x · a (3.45)

19. Show that if (X,Y ) are independent standard normal variates, then
√
X2 + Y 2

has the distribution of the square root of a chi-squared(2) (i.e. exponen-

tial(2)) variable and arctan(Y/X) is uniform on [0, 2π].

20. Generate the pair of random variables (X,Y )

(X,Y ) = R(cosΘ, sinΘ) (3.46)

where we use a random number generator with poor lattice properties such

as the generator xn+1 = (383xn+263)mod 10000 to generate our uniform

random numbers. Use this generator together with the Box-Mueller al-

gorithm to generate 5,000 pairs of independent random normal numbers.

Plot the results. Do they appear independent?

21. (Log-normal generator) Describe an algorithm for generating log-normal

random variables with probability density function given by

g(x|η,σ) =
1

xσ
√
2π
exp{−(logx− logη + σ2/2)2/2σ2}. (3.47)
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22. (Multivariate Normal generator) Suppose we want to generate a mul-

tivariate normal random vector (X1, X2,..., XN ) having mean vector

(µ1, ..., µN ) and covariance matrix the N × N matrix Σ. The usual pro-

cedure involves a decomposition of Σ into factors such that A0A = Σ. For

example, A could be determined from the Cholesky decomposition, in Mat-

lab, A=chol(sigma), or in R, A= chol(sigma, pivot = FALSE, LINPACK

= pivot) which provides such a matrix A which is also upper triangular,

in the case that Σ is positive definite. Show that if Z = (Z1, ..., ZN ) is a

vector of independent standard normal random variables then the vector

X = (µ1, ..., µN ) + ZA has the desired distribution.

23. (Euler vs. Milstein Approximation) Use the Milstein approximation with

step size .001 to simulate a geometric Brownian motion of the form

dSt = .07Stdt+ .2StdWt

Compare both the Euler and the Milstein approximations using different

step sizes, say ∆t = 0.01, 0.02, 0.05, 0.1 and use each approximation to

price an at-the-money call option assuming S0 = 50 and expiry at T =

0.5. How do the two methods compare both for accurately pricing the call

option and for the amount of computing time required?

24. Suppose interest rates follow the constant elasticity of variance process of

the form

drt = k(b− rt) + σ|rt|
γdWt

for parameters value γ, b, k > 0. For various values of the parameters k, γ

and for b = 0.04 use both Euler and Milsten to generate paths from this

process. Draw conclusions about the following:

(a) When does the marginal distribution of rt appear to approach a

steady state solution. Plot the histogram of this steady state dis-

tribution.
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(b) Are there simulations that result in a negative value of r? How do

you rectify this problem?

(c) What does the parameter σ represent? Is it the annual volatility of

the process?

25. Consider a sequence of independent random numbers X1, X2, ...with a

continuous distribution and let M be the first one that is less than its

predecessor:

M = min{n;X1 · X2 · ... · Xn−1 > Xn}

(a) Use the identity E(M) =
P∞

n=0 P [M > n} to show E(M) = e.

(b) Use 100,000 simulation runs and part a to estimate e with a 95%

confidence interval.

(c) How many simulations are required if you wish to estimate e within

0.005 (using a 95% confidence interval)?



Chapter 4

Variance Reduction

Techniques

Introduction

In this chapter we discuss techniques for improving on the speed and efficiency

of a simulation, usually called “variance reduction techniques”.

Much of the simulation literature concerns discrete event simulations (DES),

simulations of systems that are assumed to change instantaneously in response

to sudden or discrete events. These are the most common in operations research

and examples are simulations of processes such as networks or queues. Simula-

tion models in which the process is characterized by a state, with changes only

at discrete time points are DES. In modeling an inventory system, for example,

the arrival of a batch of raw materials can be considered as an event which pre-

cipitates a sudden change in the state of the system, followed by a demand some

discrete time later when the state of the system changes again. A system driven

by differential equations in continuous time is an example of a DES because

the changes occur continuously in time. One approach to DES is future event

203
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simulation which schedules one or more future events at a time, choosing the

event in the future event set which has minimum time, updating the state of

the system and the clock accordingly, and then repeating this whole procedure.

A stock price which moves by discrete amounts may be considered a DES. In

fact this approach is often used in valuing American options by Monte Carlo

methods with binomial or trinomial trees.

Often we identify one or more performance measures by which the system

is to be judged, and parameters which may be adjusted to improve the system

performance. Examples are the delay for an air traffic control system, customer

waiting times for a bank teller scheduling system, delays or throughput for

computer networks, response times for the location of fire stations or supply

depots, etc. Performance measures again are important in engineering examples

or in operations research, but less common in finance. They may be used to

calibrate a simulation model, however. For example our performance measure

might be the average distance between observed option prices on a given stock

and prices obtained by simulation from given model parameters. In all cases,

the performance measure is usually the expected value of a complicated function

of many variables, often expressible only by a computer program with some

simulated random variables as input. Whether these input random variables are

generated by inverse transform, or acceptance-rejection or some other method,

they are ultimately a function of uniform[0,1] random variables U1, U2, .... These

uniform random variables determine such quantities as the normally distributed

increments of the logarithm of the stock price. In summary, the simulation is

used simply to estimate a multidimensional integral of the form

E(g(U1, ..., Ud)) =

Z Z
..

Z
g(u1, u2, ...ud)du1du2 . . . dud (4.1)

over the unit cube in d dimensions where often d is large.

As an example in finance, suppose that we wish to price a European option

on a stock price under the following stochastic volatility model.
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Example 33 Suppose the daily asset returns under a risk-neutral distribution

is assumed to be a variance mixture of the Normal distribution, by which we

mean that the variance itself is random, independent of the normal variable and

follows a distribution with moment generating function s(s). More specifically

assume under the Q measure that the stock price at time n∆t is determined

from

S(n+1)∆t = Sn∆t
exp{r∆t+ σn+1Zn+1}

m(12)

where, under the risk-neutral distribution, the positive random variables σ2i

are assumed to have a distribution with moment generating function m(s) =

E{exp(sσi)}, Zi is standard normal independent of σ2i and both (Zi,σ
2
i ) are

independent of the process up to time n∆t. We wish to determine the price of a

European call option with maturity T , and strike price K.

It should be noted that the rather strange choice of m( 12) in the denominator

above is such that the discounted process is a martingale, since

E

�
exp{σn+1Zn+1}

m( 12)

¸
= E{E

�
exp{σn+1Zn+1}

m(12)
|σn+1

¸
}

= E{
exp{σ2n+1/2}

m( 12)
}

= 1.

There are many ways of simulating an option price in the above example, some

much more efficient than others. We might, for example, simulate all of the 2n

random variables {σi, Zi, i = 1, ..., n = T/∆t} and use these to determine the

simulated value of ST , finally averaging the discounted payoff from the option

in this simulation, i.e. e−rT (ST−K)+. The price of this option at time 0 is the

average of many such simulations (say we do this a total of N times) discounted

to present,

e−rT (ST −K)+

where x denotes the average of the x0s observed over all simulations. This is
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a description of a crude and inefficient method of conducting this simulation.

Roughly the time required for the simulation is proportional to 2Nn, the total

number of random variables generated. This chapter discusses some of the many

improvements possible in problems like this. Since each simulation requires at

least d = 2n independent uniform random variables to generate the values

{σi, Zi, i = 1, ..., n} then we are trying to estimate a rather complicated integral

of the form 4.1 of high dimension d. In this case, however, we can immediately

see some obvious improvements. Notice that we can rewrite ST in the form

ST = S0
exp{rT + σZ}

mn(12)
(4.2)

where the random variable σ2 =
Pn
i=1 σ

2
i has moment generating functionm

n(s)

and Z is independent standard normal. Obviously, if we can simulate σ directly,

we can avoid the computation involved in generating the individual σi. Further

savings are possible in the light of the Black-Scholes formula which provides the

price of a call option when a stock price is given by (4.2) and the volatility

parameter σ is non-random. Since the expected return from the call under the

risk-neutral distribution can be written, using the Black-Scholes formula,

E(e−rT (ST −K)+) = E{E[e−rT (ST −K)+|σ]}

= e−rTE{S0Φ(
log(S0/K) + (r +

σ2

2 )T

σ
√
T

)−Ke−rTΦ(
log(S0/K) + (r −

σ2

2 )T

σ
√
T

)}

which is now a one-dimensional integral over the distribution of σ. This can now

be evaluated either by a one-dimensional numerical integration or by repeatedly

simulating the value of σ and averaging the values of

e−rTS0Φ(
log(S0/K) + (r +

σ2

2 )T

σ
√
T

)−Ke−rTΦ(
log(S0/K) + (r −

σ2

2 )T

σ
√
T

)

obtained from these simulations. As a special case we might take the distribution

of σ2i to be Gamma(α∆t,β) with moment generating function

m(s) =
1

(1− βs)α∆t
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in which case the distribution of σ2 is Gamma(αT,β). This is the so-called

”variance-gamma” distribution investigated extensively by ....... and originally

suggested as a model for stock prices by ......Alternatively many other wider-

tailed alternatives to the normal returns model can be written as a variance

mixture of the normal distribution and option prices can be simulated in this

way. For example when the variance is generated having the distribution of the

reciprocal of a gamma random variable, the returns have a student’s t distribu-

tion. Similarly, the stable distributions and the Laplace distribution all have a

representation as a variance mixture of the normal.

The rest of this chapter discusses “variance reduction techniques” such as

the one employed above for evaluating integrals like (4.1), beginning with the

much simpler case of an integral in one dimension.

Variance reduction for one-dimensional Monte-

Carlo Integration.

We wish to evaluate a one-dimensional integral
R 1
0
f(u)du, which we will denote

by θ using by Monte-Carlo methods. We have seen before that whatever the

random variables that are input to our simulation program they are usually

generated using uniform[0,1] random variables U so without loss of generality

we can assume that the integral is with respect to the uniform[0,1] probability

density function, i.e. we wish to estimate

θ = E{f(U)} =

Z 1

0

f(u)du.

One simple approach, called crude Monte Carlo is to randomly sample Ui ∼

Uniform[0, 1] and then average the values of f(Ui) obtain

θ̂CR =
1

n

nX
i=1

f(Ui).
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It is easy to see that E(θ̂CR) = θ so that this average is an unbiased estimator

of the integral and the variance of the estimator is

var(θ̂CR) = var(f(U1))/n.

Example 34 A crude simulation of a call option price under the Black-Scholes

model:

For a simple example that we will use throughout, consider an integral used to

price a call option. We saw in Section 3.8 that if a European option has payoff

V (ST ) where ST is the value of the stock at maturity T , then the option can

be valued at present (t = 0) using the discounted future payoff from the option

under the risk neutral measure;

e−rTE[V (ST )] = e−rTE[V (S0eX)]

where, in the Black-Scholes model, the random variable X = ln(ST /S0) has a

normal distribution with mean rT − σ2T/2 and variance σ2T . A normally

distributed random variable X can be generated by inverse transform and so we

can assume that X = Φ−1(U ; rT − σ2

2 T,σ
2T ) is a function of a uniform[0, 1]

random variable U where Φ−1(U ; rT − σ2

2 T,σ
2T ) is the inverse of the normal

(rT − σ2T/2, σ2T ) cumulative distribution function. Then the value of the

option can be written as an expectation over the distribution of the uniform

random variable U,

E{f(U)} =

Z 1

0

f(u)du

where f(u) = e−rTV (S0 exp{Φ−1(U ; rT −
σ2

2
T,σ2T )})

This function is graphed in Figure 4.1 in the case of a simple call option with

strike price K, with payoff at maturity V (ST ) = (ST −K)+, the current stock

price S0 = $10, the exercise price K is $10, the annual interest rate r = 5%,

the maturity is three months or one quarter of year T = 0.25, and the annual

volatility σ = 0.20.
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Figure 4.1: The function f(u) whose integral provides the value of a call option

A simple crude Monte Carlo estimator corresponds to evaluating this func-

tion at a large number of randomly selected values of Ui ∼ U [0, 1] and then

averaging the results. For example the following function in Matlab accepts a

vector of inputs u = (U1, ..., Un) assumed to be Uniform[0,1], outputs the values

of f(U1), ...f(Un) which can be averaged to give θ̂CR = 1
n

Pn
i=1 f(Ui).

function v=fn(u)

% value of the integrand for a call option with exercise price ex, r=annual interest

rate,

%sigma=annual vol, S0=current stock price.

% u=vector of uniform (0,1) inputs to

%generate normal variates by inverse transform. T=maturity

S0=10 ;K=10;r=.05; sigma=.2 ;T=.25 ; % Values of parameters

ST=S0*exp(norminv(u,r*T-sigma^2*T/2,sigma*sqrt(T)));

% ST =S0 exp{Φ−1(U ; rT − σ2

2 T,σ
2T )} is stock price at time T

v=exp(-r*T)*max((ST-ex),0); % v is the discounted to present payoffs from the

call option

and the analogous function in R,

fn<-function(u,So,strike,r,sigma,T){
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# value of the integrand for a call option with exercise price=strike, r=annual

interest rate,

# sigma=annual volatility, So=current stock price, u=uniform (0,1) input to gen-

erate normal variates

# by inverse transform. T=time to maturity. For Black-Scholes price, integrate

over (0,1).

x<-So*exp(qnorm(u,mean=r*T-sigma^2*T/2,sd=sigma*sqrt(T)))

v<-exp(-r*T)*pmax((x-strike),0)

v}

In the case of initial stock price $10, exercise price=$10, annual vol=0.20, r =

5%, T = .25 (three months), this is run as

u=rand(1,500000); mean(fn(u))

and in R,

mean(fn(runif(500000),So=10,strike=10,r=.05,sigma=.2,T=.25))

and this provides an approximate value of the option of θ̂CR = 0.4620. The

standard error of this estimator, computed using the formula (??) below, is

around
√
8.7 × 10−7. We may confirm with the black-scholes formula, again in

Matlab,

[CALL,PUT] = BLSPRICE(10,10,0.05,0.25,0.2,0).

The arguments are, in order (S0.K, r, T,σ, q) where the last argument (here

q = 0) is the annual dividend yield which we assume here to be zero. Provided

that no dividends are paid on the stock before the maturity of the option, this

is reasonable. This Matlab command provides the result CALL = 0.4615 and

PUT = 0.3373 indicating that our simulated call option price was reasonably

accurate- out by 1 percent or so. The put option is an option to sell the stock

at the specified price $10 at the maturity date and is also priced by this same

function.
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One of the advantages of Monte Carlo methods over numerical techniques is

that, because we are using a sample mean, we have a simple estimator of accu-

racy. In general, when n simulations are conducted, the accuracy is measured

by the standard error of the sample mean. Since

var(θ̂CR) =
var(f(U1))

n
,

the standard error of the sample mean is the standard deviation or

SE(θ̂CR) =
σf√
n
. (4.3)

where σ2f = var(f(U)). As usual we estimate σ
2
f using the sample standard de-

viation. Since fn(u) provides a whole vector of estimators (f(U1), f(U2), ..., f(Un))

then sqrt(var(fn(u))) is the sample estimator of σf so the standard error

SE(θ̂CR) is given by

Sf=sqrt(var(fn(u)));

Sf/sqrt(length(u))

giving an estimate 0.6603 of the standard deviation σf or standard error σf/
√
500000

or 0.0009. Of course parameters in statistical problems are usually estimated

using an interval estimate or a confidence interval, an interval constructed using

a method that guarantees capturing the true value of the parameter under sim-

ilar circumstances with high probability (the confidence coefficient, often taken

to be 95%). Formally,

Definition 35 A 95% confidence interval for a parameter θ is an interval [L,U ]

with random endpoints L,U such that the probability P [L · θ · U ] = 0.95.

If we were to repeat the experiment 100 times, say by running 100 more

similar independent simulations, and in each case use the results to construct

a 95% confidence interval, then this definition implies that roughly 95% of the

intervals constructed will contain the true value of the parameter (and of course
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roughly 5% will not). For an approximately Normal(µX ,σ2X) random variable

X, we can use the approximation

P [µX − 2σX · X · µX + 2σX ] ≈ 0.95 (4.4)

(i.e. approximately normal variables are within 2 standard deviations of their

mean with probability around 95%) to build a simple confidence interval. Strictly,

the value 2σX should be replaced by 1.96σX where 1.96 is taken from the Nor-

mal distribution tables. The value 2 is very close to correct for a t distribution

with 60 degrees of freedom. In any case these confidence intervals which as-

sume approximate normality are typically too short (i.e. contain the true value

of the parameter less frequently than stated) for most real data and so a value

marginally larger than 1.96 is warranted. Replacing σX above by the standard

deviation of a sample mean, (4.4) results in the approximately 95% confidence

interval

θ̂CR − 2
σf√
n
· θ · θ̂CR + 2

σf√
n

for the true value θ. With confidence 95%, the true price of the option is

within the interval 0.462 ± 2(0.0009). As it happens in this case this interval

does capture the true value 0.4615 of the option.

So far Monte Carlo has not told us anything we couldn’t obtain from the

Black-Scholes formula, but what is we used a distribution other than the normal

to generate the returns? This is an easy modification of the above. For example

suppose we replace the standard normal by a logistic distribution which, as

we have seen, has a density function very similar to the standard normal if

we choose b = 0.625. Of course the Black-Scholes formula does not apply to a

process with logistically distributed returns. We need only replace the standard

normal inverse cumulative distribution function by the corresponding inverse

for the logistic,

F−1(U) = b ln
µ

U

1− U

¶
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and thus replace the Matlab code, “norminv(u,T*(r-sigma^2/2),sigma*sqrt(T))’’

by ‘‘T*(r-sigma^2/2)+sigma*sqrt(T)*.625*log(u./(1-u))’’. This results

in a slight increase in option value (to 0.504) and about a 50% considerable in-

crease in the variance of the estimator.

We will look at the efficiency of various improvements to crude Monte Carlo,

and to that end, we record the value of the variance of the estimator based on

a single uniform variate in this case;

σ2crude = σ2f = var(f(U)) ≈ 0.436.

Then the crude Monte Carlo estimator using n function evaluations or n

uniform variates has variance approximately 0.436/n. If I were able to adjust

the method so that the variance σ2f based on a single evaluation of the func-

tion f in the numerator were halved, then I could achieve the same accuracy

from a simulation using half the number of function evaluations. For this rea-

son, when we compare two different methods for conducting a simulation, the

ratio of variances corresponding to a fixed number of function evaluations can

also be interpreted roughly as the ratio of computational effort required for a

given predetermined accuracy. We will often compare various new methods of

estimating the same function based on variance reduction schemes and quote

the efficiency gain over crude Monte-Carlo sampling.

Efficiency =
variance of Crude Monte Carlo Estimator

Variance of new estimator
(4.5)

where both numerator a denominator correspond to estimators with the same

number of function evaluations (since this is usually the more expensive part

of the computation). An efficiency of 100 would indicate that the crude Monte

Carlo estimator would require 100 times the number of function evaluations to

achieve the same variance or standard error of estimator.

Consider a crude estimator obtained from five U [0, 1] variates,

Ui = 0.1, 0.3, 0.5, 0.6, 0.8, i = 1, ..., 5.
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Figure 4.2: Crude Monte Carlo Estimator based on 5 observations Ui =

0.1, 0.3, 0.5, 0.6, 0.8

The crude Monte Carlo estimator in the case n = 5 is displayed in Figure 3.1,

the estimator being the sum of the areas of the marked rectangles. Only three of

the five points actually contribute to this area since for this particular function

f(u) = e−rT (S0 exp{Φ−1(u; rT −
σ2

2
T,σ2T )}−K)+ (4.6)

and the parameters chosen, f(0.1) = f(0.3) = 0. Since these two random num-

bers contributed 0 and the other three appear to be on average slightly too small,

the sum of the area of the rectangles appears to underestimate of the integral.

Of course another selection of five uniform random numbers may prove to be

even more badly distributed and may result in an under or an overestimate.

There are various ways of improving the efficiency of this estimator, many of

which partially emulate numerical integration techniques. First we should note

that most numerical integrals, like θ̂CR, are weighted averages of the values

of the function at certain points Ui. What if we evaluated the function at

non-random points, chosen to attempt reasonable balance between locations

where the function is large and small? Numerical integration techniques and

quadrature methods choose both points at which we evaluate the function and
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Figure 4.3: Graphical illustration of the trapezoidal rule (4.8)

weights that we attach to these points to provide accurate approximations for

polynomials of certain degree. For example, suppose we insist on evaluating the

function at equally spaced points, for example the points 0, 1/n, 2/n, ..., (n −

1)/n, 1. In some sense these points are now “more uniform” than we are likely

to obtain from n+1 randomly and independently chosen points Ui, i = 1, 2, ..., n.

The trapezoidal rule corresponds to using such equally spaced points and equal

weights (except at the boundary) so that the “estimator” of the integral is

θ̂TR =
1

2n
{f(0) + 2f(1/n) + . . .+ 2f(1−

1

n
) + f(1)} (4.7)

or the simpler and very similar alternative in our case, with n = 5,

θ̂TR =
1

5
{f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)} (4.8)

A reasonable balance between large and small values of the function is almost

guaranteed by such a rule, as shown in Figure 4.8 with the observations equally

spaced.

Simpson’s rule is to generate equally spaced points and weights that( except

for endpoints) alternate 2/3n, 4/3n, 2/3n.... In the case when n is even, the



216 CHAPTER 4. VARIANCE REDUCTION TECHNIQUES

integral is estimated with

θ̂SR =
1

3n
{f(0) + 4f(1/n) + 2f(2/n) + . . .+ 4f(

n− 1

n
) + f(1)}. (4.9)

The trapezoidal rule is exact for linear functions and Simpson’s rule is exact for

quadratic functions.

These one-dimensional numerical integration rules provide some insight into

how to achieve lower variance in Monte Carlo integration. It illustrates some

options for increasing accuracy over simple random sampling. We may either

vary the weights attached to the individual points or vary the points (the Ui)

themselves or both. Notice that as long as the Ui individually have distributions

that are Uniform[0, 1], we can introduce any degree of dependence among them

in order to come closer to the equal spacings characteristic of numerical integrals.

Even if the Ui are dependent U[0,1], an estimator of the form

1

n

nX
i=1

f(Ui)

will continue to be an unbiased estimator because each of the summands con-

tinue to satisfy E(f(Ui)) = θ. Ideally if we introduce dependence among the

various Ui and the expected value remains unchanged , we would wish that the

variance

var(
1

n

nX
i=1

f(Ui))

is reduced over independent uniform. The simplest case of this idea is the use

of antithetic random variables.

Antithetic Random Numbers.

Consider first the simple case of n = 2 function evaluations at possibly depen-

dent points. Then the estimator is

θ̂ =
1

2
{f(U1) + f(U2)}
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with expected value θ =
R 1
0
f(u)du and variance given by

var(θ̂) =
1

2
{var(f(U1)) + cov[f(U1), f(U2)]}

assuming both U1, U2 are uniform[0,1]. In the independent case the covariance

term disappears and we obtain the variance of the crude Monte-Carlo estimator

1

2
var(f(U1)).

Notice, however, that if we are able to introduce a negative covariance, the re-

sulting variance of θ̂ will be smaller than that of the corresponding crude Monte

Carlo estimator, so the question is how to generate this negative covariance.

Suppose for example that f is monotone (increasing or decreasing). Then

f(1−U1) decreases whenever f(U1) increases, so that substituting U2 = 1−U1

has the desired effect and produces a negative covariance(in fact we will show

later that we cannot do any better when the function f is monotone). Such

a choice of U2 = 1 − U1 which helps reduce the variability in f(U1), is termed

an antithetic variate. In our example, because the function to be integrated is

monotone, there is a negative correlation between f(U1) and f(1− U1) and

1

2
{var(f(U1)) + cov[f(U1), f(U2)]} <

1

2
var(f(U1)).

that is, the variance is decreased over simple random sampling. Of course in

practice our sample size is much greater than n = 2, but we still enjoy the

benefits of this argument if we generate the points in antithetic pairs. For

example, to determine the extent of the variance reduction using antithetic

random numbers, suppose we generate 500, 000 uniform variates U and use as

well the values of 1 − U as (for a total of 1, 000, 000 function evaluations as

before).

F=(fn(u)+fn(1-u))/2;
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This results in mean(F)=0.46186 and var(F)=0.1121. The standard error

of the estimator is s
0.1121

length(F )
=
√
2.24 × 107.

Since each of the 500,000 components of F obtains from two function evalua-

tions, the variance should be compared with a crude Monte Carlo estimator with

the same number 1000000 function evaluations, σ2crude/1000000 = 4.35× 10
−7.

The efficiency gain due to the use of antithetic random numbers is 4.35/2.24 or

about two, so roughly half as many function evaluations using antithetic random

numbers provide the same precision as a crude Monte Carlo estimator. There

is the additional advantage that only half as many uniform random variables

are required. The introduction of antithetic variates has had the same effect on

precision as increasing the sample size under crude Monte Carlo by a factor of

approximately 2.

We have noted that antithetic random numbers improved the efficiency

whenever the function being integrated is monotone in u. What if it is not.

For example suppose we use antithetic random numbers to integrate the func-

tion f(u) = u(1−u) on the interval 0 < u < 1? Rather than balance large values

with small values and so reduce the variance of the estimator, in this case notice

that f(U) and f(1−U) are strongly positively correlated, in fact are equal, and

so the argument supporting the use of antithetic random numbers for monotone

functions will show that in this case they increase the variance over a crude es-

timator with the same number of function evaluations. Of course this problem

can be remedied if we can identify intervals in which the function is monotone,

e.g. in this case use antithetic random numbers in the two intervals [0, 12 ] and

[12 , 1], so for example we might estimate
R 1
0
f(u)du by an average of terms like

1

4
{f(

U1
2
) + f(

1− U1
2

) + f(
1 + U2
2

) + f(
2− U2
2

)}

for independent U [0, 1] random variables U1, U2.
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Stratified Sample.

One of the reasons for the inaccuracy of the crude Monte Carlo estimator in the

above example is the large interval, evident in Figure 4.1, in which the function

is zero. Nevertheless, both crude and antithetic Monte Carlo methods sample

in that region, this portion of the sample contributing nothing to our integral.

Naturally, we would prefer to concentrate our sample in the region where the

function is positive, and where the function is more variable, use larger sample

sizes. One method designed to achieve this objective is the use of a stratified

sample. Once again for a simple example we choose n = 2 function evaluations,

and with V1 ∼ U [0, a] and V2 ∼ U [a, 1] define an estimator

θ̂st = af(V1) + (1− a)f(V2).

Note that this is a weighted average of the two function values with weights a

and 1 − a proportional to the length of the corresponding intervals. It is easy

to show once again that the estimator θ̂st is an unbiased estimator of θ, since

E(θ̂st) = aEf(V1) + (1− a)Ef(V2)

= a

Z a

0

f(x)
1

a
dx+ (1− a)

Z 1

a

f(x)
1

1− a
dx

=

Z 1

0

f(x)dx.

Moreover,

var(θ̂st) = a
2var[f(V 1)] + (1− a)

2var[f(V 2)] + 2a(1− a)cov[f(V 1), f(V 2)].

(4.10)

Even when V1, V2are independent, so we obtain var(θ̂st) = a2var[f(V1)] + (1−

a)2var[f(V2)], there may be a dramatic improvement in variance over crude

Monte Carlo provided that the variability of f in each of the intervals [0, a] and

[a, 1] is substantially less than in the whole interval [0, 1].

Let us return to the call option example above, with f defined by (4.6).
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Suppose for simplicity we choose independent values of V1, V2. In this case

var(θ̂st) = a
2var[f(V1)] + (1− a)

2var[f(V2)]. (4.11)

For example for a = .7, this results in a variance of about 0.046 obtained

from the following

F=a*fn(a*rand(1,500000))+(1-a)*fn(a+(1-a)*rand(1,500000));

var(F)

and the variance of the sample mean of the components of the vector F is

var(F)/length(F) or around 9.2 × 10−8. Since each component of the vector

above corresponds to two function evaluations we should compare this with a

crude Monte Carlo estimator with n = 1000000 having variance σ2f × 10
−6 =

4.36 × 10−7. This corresponds to an efficiency gain of .43.6/9.2 or around 5.

We can afford to use one fifth the sample size by simply stratifying the sample

into two strata. The improvement is somewhat limited by the fact that we are

still sampling in a region in which the function is 0 (although now slightly less

often).

A general stratified sample estimator is constructed as follows. We subdivide

the interval [0, 1] into convenient subintervals 0 = x0 < x1 < ...xk = 1, and

then select ni random variables uniform on the corresponding interval Vij ∼

U [xi−1, xi], j = 1, 2, ..., ni. Then the estimator of θ is

θ̂st =
kX
i=1

(xi − xi−1)
1

ni

niX
j=1

f(Vij). (4.12)

Once again the weights (xi − xi−1) on the average of the function in the i0th

interval are proportional to the lengths of these intervals and the estimator θ̂st
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is unbiased;

E(θ̂st) =
kX
i=1

(xi − xi−1)E{
1

ni

niX
j=1

f(Vij)}

=
kX
i=1

(xi − xi−1)Ef(Vi1)

=
kX
i=1

(xi − xi−1)
Z xi

xi−1
f(x)

1

xi − xi−1
dx

=

Z 1

0

f(x)dx = θ.

In the case that all of the Vij are independent, the variance is given by:

var(θ̂st) =
kX
i=1

(xi − xi−1)2
1

ni
var[f(Vi1)]. (4.13)

Once again, if we choose our intervals so that the variation within intervals

var[f(Vi1)] is small, this provides a substantial improvement over crude Monte

Carlo. Suppose we wish to choose the sample sizes so as to minimize this

variance. Obviously to avoid infinite sample sizes and to keep a ceiling on

costs, we need to impose a constraint on the total sample size, say

kX
i

ni = n. (4.14)

If we treat the parameters ni as continuous variables we can use the method of

Lagrange multipliers to solve

min
{ni}

kX
i=1

(xi − xi−1)2
1

ni
var[f(Vi1)]

subject to constraint (4.14).

It is easy to show that the optimal choice of sample sizes within intervals are

ni ∝ (xi − xi−1)
p
var[f(Vi1)]

or more precisely that

ni = n
(xi − xi−1)

p
var[f(Vi1)]Pk

j=1(xj − xj−1)
p
var[f(Vj1)]

. (4.15)
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In practice,of course, this will not necessarily produce an integral value of ni

and so we are forced to round to the nearest integer. For this optimal choice of

sample size, the variance is now given by

var(θ̂st) =
1

n
{
kX
j=1

(xj − xj−1)
q
var[f(Vj1)]}

2

The term
Pk

j=1(xj − xj−1)
p
var[f(Vj1)] is a weighted average of the standard

deviation of the function f within the interval (xi−1, xi) and it is clear that,

at least for a continuous function, these standard deviations can be made small

simply by choosing k large with |xi−xi−1| small. In other words if we ignore the

fact that the sample sizes must be integers, at least for a continuous function f ,

we can achieve arbitrarily small var(θ̂st) using a fixed sample size n simply by

stratifying into a very large number of (small) strata. The intervals should be

chosen so that the variances var[f(Vi1)] are small. ni ∝ (xi−xi−1)
p
var[f(Vi1)].

In summary, optimal sample sizes are proportional to the lengths of intervals

times the standard deviation of function evaluated at a uniform random variable

on the interval. For sufficiently small strata we can achieve arbitrarily small

variances. The following function was designed to accept the strata x1, x2, ..., xk

and the desired sample size n as input, and then determine optimal sample sizes

and the stratified sample estimator as follows:

1. Initially sample sizes of 1000 are chosen from each stratum and these are

used to estimate
p
var[f(Vi1)]

2. Approximately optimal sample sizes ni are then calculated from (4.15).

3. Samples of size ni are then taken and the stratified sample estimator

(4.12), its variance ( 4.13) and the sample sizes ni are output.

function [est,v,n]=stratified(x,nsample)

% function for optimal sample size stratified estimator on call option price example
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%[est,v,n]=stratified([0 .6 .85 1],100000) uses three strata (0,.6),(.6 .85),(.85 1)

and total sample size 100000

est=0;

n=[];

m=length(x);

for i=1:m-1 % the preliminary sample of size 1000

v= var(callopt2(unifrnd(x(i),x(i+1),1,1000),10,10,.05,.2,.25));

n=[n (x(i+1)-x(i))*sqrt(v)];

end

n=floor(nsample*n/sum(n)); %calculation of the optimal sample sizes, rounded

down

v=0;

for i=1:m-1

F=callopt2(unifrnd(x(i),x(i+1),1,n(i)),10,10,.05,.2,.25); %evaluate the function

f at n(i) uniform points in interval

est=est+(x(i+1)-x(i))*mean(F);

v=v+var(F)*(x(i+1)-x(i))^2/n(i);

end

A call to [est,v,n]=stratified([0 .6 .85 1],100000) for example generates a

stratified sample with three strata[0, 0.6], (0.6, 0.85], and (0.8, 1] and outputs

the estimate est = 0.4617, its variance v = 3.5 × 10−7 and the approximately

optimal choice of sample sizes n = 26855, 31358, 41785. To compare this with

a crude Monte Carlo estimator, note that a total of 99998 function evaluations

are used so the efficiency gain is σ2f/(99998× 3.5× 10
−7) = 12.8. Evidently this

stratified random sample can account for an improvement in efficiency of about

a factor of 13. Of course there is a little setup cost here (a preliminary sample

of size 3000) which we have not included in our calculation but the results of

that preliminary sample could have been combined with the main sample for a

very slight decrease in variance as well). For comparison, the function call
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[est,v,n]=stratified([.47 .62 .75 .87 .96 1],1000000)

uses five strata [.47 .62],[.62 .75], [.75, .87], [.87, .96], [.96, 1] and gives a

variance of the estimator of 7.4× 10−9. Since a crude sample of the same size has

variance around 4.36 × 10−7 the efficiency is about 170. This stratified sample

is as good as a crude Monte Carlo estimator with 170 million simulations! By

introducing more strata, we can increase this efficiency as much as we wish.

Within a stratified random sample we may also introduce antithetic variates

designed to provide negative covariance. For example we may use antithetic

pairs within an interval if we believe that the function is monotone in the inter-

val, or if we believe that the function is increasing across adjacent strata, we can

introduce antithetic pairs between two intervals. For example, we may generate

U ∼ Uniform[0, 1] and then sample the point Vij = xi−1+(xi− xi−1)U from

the interval (xi−1, xi) as well as the point V(i+1)j = xi+1 − (xi+1 − xi)U from

the interval (xi, xi+1) to obtain antithetic pairs between intervals. For a simple

example of this applied to the above call option valuation, consider the estima-

tor based on three strata [0,.47),[0.47 0.84),[0.84 1]. Here we have not bothered

to sample to the left of 0.47 since the function is 0 there, so the sample size here

is set to 0. Then using antithetic random numbers within each of the two strata

[0.47 0.84),[0.84 1], and U ∼ Uniform[0, 1] we obtain the estimator

θ̂str,ant =
0.37

2
[f(.47+ .37U)+f(.84− .37U)]+

0.16

2
[f(.84+ .16U)+f(1− .16U)]

To assess this estimator,

we evaluated, for U a vector of 1000000 uniform,

U=rand(1,1000000);

F=.37*.5*(fn(.47+.37*U)+fn(.84-.37*U))+.16*.5*(fn(.84+.16*U)+fn(1-.16*U));

mean(F) % gives 0.4615

var(F)/length(F) % gives 1.46× 10−9
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This should be compared with the crude Monte-Carlo estimator having the same

number n = 4× 106 function evaluations as each of the components of the vector

F : σ2crude/(4× 10
6) = 1.117× 10−7. The gain in efficiency is therefore 1.117/.0146

or approximately 77. The above stratified-antithetic simulation with 1,000,000

input variates and 4,000,000 function evaluations is equivalent to a crude Monte

Carlo simulation with sample size 308 million! Variance reduction makes the

difference between a simulation that is feasible on a laptop and one that would

require a very long time on a mainframe computer. However on a Pentium IV

2.2GHZ laptop it took approximately 58 seconds to run.

Control Variates.

There are two techniques that permit using knowledge about a function with

shape similar to that of f . First, we consider the use of a control variate, based

on the trivial identityZ
f(u)du =

Z
g(u)du+

Z
(f(u)− g(u))du. (4.16)

for an arbitrary function g(u). Assume that the integral of g is known, so we

can substitute its known value for the first term above. The second integral we

assume is more difficult and we estimate it by crude Monte Carlo, resulting in

estimator

θ̂cv =

Z
g(u)du+

1

n

nX
i=1

[f(Ui)− g(Ui)]. (4.17)

This estimator is clearly unbiased and has variance

var(θ̂cv) = var{
1

n

nX
i=1

[f(Ui)− g(Ui)]}

=
var[f(U)− g(U)]

n

so the variance is reduced over that of crude Monte Carlo estimator having the

same sample size n by a factor

var[f(U)]

var[f(U)− g(U)]
for U ∼ U [0, 1]. (4.18)
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Figure 4.4: Comparison of the function f(u) and the control variate g(u)

Let us return to the example of pricing a call option. By some experimen-

tation, which could involve a preliminary crude simulation or simply evaluating

the function at various points, we discovered that the function

g(u) = 6[(u− .47)+]2 + (u− .47)+

provided a reasonable approximation to the function f(u). The two functions

are compared in Figure 4.4. Moreover, the integral 2 × 0.532 + 1
20.53

3 of the

function g(.) is easy to obtain.

It is obvious from the figure that since f(u)−g(u) is generally much smaller

and less variable than is f(u), var[f(U) − g(U)] < var(f(U)). The variance of

the crude Monte Carlo estimator is determined by the variability in the func-

tion f(u) over its full range. The variance of the control variate estimator is

determined by the variance of the difference between the two functions, which

in this case is quite small. We used the following matlab functions, the first to

generate the function g(u) and the second to determine the efficiency gain of

the control variate estimator;
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function g=GG(u) % this is the function g(u), a control variate for fn(u)

u=max(0,u-.47);

g=6*u.^2+u;

function [est,var1,var2]=control(f,g,intg,n)

% run using a statement like [est,var1,var2]=control(’fn’,’GG’,intg,n)

% runs a simulation on the function f using control variate g (both character

strings) n times.

% intg is the integral of g % intg=
R 1
0
g(u)du

% outputs estimator est and variances var1,var2, variances with and without

control variate.

U=unifrnd(0,1,1,n);

FN=eval(strcat(f,’(U)’)); % evaluates f(u) for vector u

CN=eval(strcat(g,’(U)’)); % evaluates g(u)

est=intg+mean(FN-CN);

var1=var(FN);

var2=var(FN-CN);

Then the call [est,var1,var2]=control(’fn’,’GG’,2*(.53)^3+(.53)^2/2,1000000)

yields the estimate 0.4616 and variance=1.46 × 10−8 for an efficiency gain over

crude Monte Carlo of around 30.

This elementary form of control variate suggests using the estimatorZ
g(u)du+

1

n

nX
i=1

[f(Ui)− g(Ui)]

but it may well be that g(U) is not the best estimator we can imagine for f(U).

We can often find a linear function of g(U) which is better by using regression.

Since elementary regression yields

f(U)− E(f(U)) = β(g(U)− E(g(U))) + ² (4.19)
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where

β =
cov(f(U), g(U))

var(g(U))
(4.20)

and the errors ² have expectation 0, it follows that E(f(U)) + ² = f(U) −

β[g(U) − E(g(U))] and sof(U) − β[g(U) − E(g(U))] is an unbiased estimator

of E(f(U)). For a sample of n uniform random numbers this becomes

θ̂cv = βE(g(U)) +
1

n

nX
i=1

[f(Ui)− βg(Ui)]. (4.21)

Moreover this estimator having smallest variance among all linear combina-

tions of f(U)and g(U). Note that when β = 1 (4.21) reduces to the simpler

form of the control variate technique (4.17) discussed above. However, the lat-

ter is generally better in terms of maximizing efficiency. Of course in practice

it is necessary to estimate the covariance and the variances in the definition of

β from the simulations themselves by evaluating f and g at many different

uniform random variables Ui, i = 1, 2, ..., n and then estimating β using the

standard least squares estimator

bβ = n
Pn
i=1 f(Ui)g(Ui)−

Pn
i=1 f(Ui)

Pn
i=1 g(Ui)

n
Pn
i=1 g

2(Ui)− (
Pn
i=1 g(Ui))

2
.

Although in theory the substitution of an estimator bβ for the true value β

results in a small bias in the estimator, for large numbers of simulations n our

estimator bβ is so close to the true value that this bias can be disregarded.

Importance Sampling.

A second technique that is similar is that of importance sampling. Again we

depend on having a reasonably simple function g that after muultiplication by

some constant, is similar to f. However, rather than attempt to minimize the

difference f(u) − g(u) between the two functions, we try and find g(u) such

that f(u)/g(u) is nearly a constant. We also require that g is non-negative
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and can be integrated so that, after rescaling the function, it integrates to one,

i.e. it is a probability density function. Assume we can easily generate random

variables from the probability density function g(z). The distribution whose

probability density function is g(z), z ∈ [0, 1] is the importance distribution.

Note that if we generate a random variable Z having the probability density

function g(z), z ∈ [0, 1] thenZ
f(u)du =

Z 1

0

f(z)

g(z)
g(z)dz

= E

�
f(Z)

g(Z)

¸
. (4.22)

This can therefore be estimated by generating independent random variables Zi

with probability density function g(z) and then setting

θ̂im =
1

n

nX
i=1

f(Zi)

g(Zi)
. (4.23)

Once again, according to (4.22), this is an unbiased estimator and the variance

is

var{θ̂im} =
1

n
var{

f(Z1)

g(Z1)
}. (4.24)

Returning to our example, we might consider using the same function as

before for g(u). However, it is not easy to generate variates from a density

proportional to this function g by inverse transform since this would require

solving a cubic equation. Instead, let us consider something much simpler, the

density function g(u) = 2(0.53)−2(u − .47)+ having cumulative distribution

function G(u) = (0.53)2 [(u− .47)+]2 and inverse cumulative distribution func-

tion G−1(u) = 0.47+ 0.53
√
u. In this case we generate Zi using Zi = G−1(Ui)

for Ui ∼ Uniform[0, 1]. The following function simulates an importance sample

estimator:

function [est,v]=importance(f,g,Ginv,u)
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%runs a simulation on the function ’f” using importance density ”g”(both character

strings) and inverse c.d.f. ”Ginverse”

% outputs all estimators (should be averaged) and variance.

% IM is the inverse cf of the importance distribution c.d.f.

% run e.g.

% [est,v]=importance(’fn’,’2*(IM-.47)/(.53)^2;’,’.47+.53*sqrt(u);’,rand(1,1000));

IM= eval(Ginv); %=.47+.53*sqrt(u);

%IMdens is the density of the importance sampling distribution at IM

IMdens=eval(g); %2*(IM-.47)/(.53)^2;

FN=eval(strcat(f,’(IM)’));

est=FN./IMdens; % mean(est) prrovides the estimator

v=var(FN./IMdens)/length(IM); % this is the variance of the estimator per sim-

ulation

The function was called with [est,v]=importance(’fn’,’2*(IM-.47)/(.53)^2;’,’.47+.53*sqrt(u);’,rand(1,

giving an estimate mean(est) = 0.4616 with variance 1 .28 × 10−8 for an

efficiency gain of around 35 over crude Monte Carlo.

Example 36 (Estimating Quantiles using importance sampling.) Suppose we

are able to generate random variables X from a probability density function of

the form

fθ(x)

and we wish to estimate a quantile such as VAR, i.e. estimate xp such that

Pθ0(X · xp) = p

for a certain value θ0 of the parameter.

As a very simple example suppose S is the sum of 10 independent random

variables having the exponential distribution with mean θ, and fθ(x1, ..., x10) is

the joint probability density function of these 10 observations. Assume θ0 = 1
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and p = .999 so that we seek an extreme quantile of the sum, i.e. we want to

determine xpsuch that Pθ0(S · xp) = p. The equation that we wish to solve

for xp is

Eθ0{I(S · xp)} = p. (4.25)

The crudest estimator of this is obtained by generating a large number of

independent observations of S under the parameter value θ0 = 1 and finding

the p’th quantile, i.e. by defining the empirical c.d.f.. We generate independent

random vectors Xi = (Xi1, ...,Xi10) from the probability density fθ0(x1, ..., x10)

and with Si =
P10
j=1Xij ,define

bF (x) = 1

n

nX
i=1

I(Si · x). (4.26)

Invert it (possibly with interpolation) to estimate the quantile

cxp = bF−1(p). (4.27)

If the true cumulative distribution function is differentiable, the variance of this

quantile estimator is asymptotically related to the variance of our estimator of

the cumulative distribution function,

var(cxp) ' var( bF (xp))
(F 0(xp))2

,

so any variance reduction in the estimator of the c.d.f. us reflected, at least

asymptotically, in a variance reduction in the estimator of the quantile. Using

importance sampling (4.25) is equivalent to the same technique but with

bFI(x) = 1

n

nX
i=1

WiI(Si · x) where (4.28)

Wi =
fθ0(Xi1, ..., Xi10)

fθ(Xi1, ...,Xi10)

Ideally we should choose the value of θ so that the variance of bxp or of
WiI(Si · xp)
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is as small as possible. This requires a wise guess or experimentation with

various choices of θ. For a given θ we have another choice of empirical cumulative

distribution function

bFI2(x) = 1Pn
i=1Wi

nX
i=1

WiI(Si · x). (4.29)

Both of these provide fairly crude estimates of the sample quantiles when obser-

vations are weighted and, as one does with the sample median, one could easily

interpolate between adjacent values around the value of xp.

The alternative (4.29) is motivated by the fact that the values Wi appear

as weights attached to the observations Si and it therefore seems reasonable to

divide by the sum of the weights. In fact the expected value of the denominator

is

Eθ{
nX
i=1

Wi} = n

so the two denominators are similar. In the example where the Xij are

independent exponential(1) let us examine the weight on Si determined by

Xi = (Xi1, ..., Xi10),

Wi =
fθ0(Xi1, ..., Xi10)

fθ(Xi1, ..., Xi10)
=

10Y
j=1

exp(−Xij)

θ−1 exp(−Xij/θ)
= θ10 exp{−Si(1− θ−1)}.

The renormalized alternative (4.29) might be necessary for estimating extreme

quantiles when the number of simulations is small but only the first provides

an completely unbiased estimating function. In our case, using (4.28) with

θ = 2.5 we obtained an estimator of F (x0.999) with efficiency about 180 times

that of a crude Monte Carlo simulation. There is some discussion of various

renormalizations of the importance sampling weights in Hesterberg(1995).

Importance Sampling, the Exponential Tilt and the Saddlepoint Ap-

proximation

When searching for a convenient importance distribution, particularly if we

wish to increase or decrease the frequency of observations in the tails, it is
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quite common to embed a given density in an exponential family. For example

suppose we wish to estimate an integralZ
g(x)f(x)dx

where f(x) is a probability density function. Suppose K(s) denotes the cumu-

lant generating function (the logarithm of the moment generating function) of

the density f(x),i.e. if

exp{K(s)} =

Z
exsf(x)dx.

The cumulant generating function is a useful summary of the moments of a

distribution since the mean can be determined as K0(0) and the variance as

K00(0). From this single probability density function, we can now produce a

whole (exponential) family of densities

fθ(x) = e
θx−K(θ)f(x) (4.30)

of which f(x) is a special case corresponding to θ = 0. The density (4.30) is often

referred to as an exponential tilt of the original density function and increases

the weight in the right tail for θ > 0, decreases it for θ < 0.

This family of densities is closely related to the saddlepoint approximation.

If we wish to estimate the value of a probability density function f(x) at a par-

ticular point x, then note that this could be obtained from (4.30) if we knew

the probability density function fθ(x). On the other hand a normal approxi-

mation to a density is often reasonable at or around its mode, particularly if

we are interested in the density of a sum or an average of independent random

variables. The cumulant generating function of the density fθ(x) is easily seen

to be K(θ + s) and the mean is therefore K0(θ). If we choose the parameter

θ = θ(x) so that

K0(θ) = x (4.31)

then the density fθ has mean x and variance K00(θ). How do we know for a given

value of x there exists a solution to (4.31)? From the properties of cumulant
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generating functions, K(t) is convex, increasing and K(0) = 0. This implies

that as t increases, the slope of the cumulant generating function K0(t) is non-

decreasing. It therefore approaches a limit xmax(finite or infinite) as t→∞ and

as long as we restrict the value of x in (4.31) to the interval x < xmax we can

find a solution. The value of the N(x,K00(θ)) at the value x is

fθ(x) ≈

s
1

2πK00(θ)

and therefore the approximation to the density f(x) is

f(x) ≈

s
1

2πK00(θ)
eK(θ)−θx. (4.32)

where θ = θ(x) satisfies K0(θ) = x.

This is the saddlepoint approximation, discovered by Daniels (1954, 1980), and

usually applied to the distribution of sums or averages of independent random

variables because then the normal approximation is better motivated. Indeed,

the saddlepoint approximation to the distribution of the sum of n independent

identically distributed random variables is accurate to order O(n−1) and if we

renormalize it to integrate to one, accuracy to order O(n−3/2) is possible, sub-

stantially better than the order O(n−1/2) of of the usual normal approximation.

Consider, for example, the saddlepoint approximation to the Gamma(α, 1)

distribution. Because the moment generating function of the Gamma(α, 1) dis-

tribution is

m(t) =
1

(1− t)α
, t < 1,

the cumulant generating function is

K(t) = ln(m(t)) = −α ln(1− t),

K0(θ) = x implies θ(x) = 1−
α

x
and

K00(θ) =
α

(1− θ)2
so that K00(θ(x)) =

x2

α
.
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Therefore the saddlepoint approximation to the probability density function is

f(x) '

r
α

2πx2
exp{−α ln(α/x)− x(1−

α

x
)}

=

r
1

2π
α

1
2−αeαxα−1 exp(−x).

This is exactly the gamma density function with Stirling’s approximation replac-

ing Γ(α) and after renormalization this is exactly the Gamma density function.

Since it is often computationally expensive to generate random variables

whose distribution is a convolution of known densities, it is interesting to ask

whether (4.32) makes this any easier. In many cases the saddlepoint approxi-

mation can be used to generate a random variable whose distribution is close

to this convolution with high efficiency. For example suppose that we wish to

generate the random variable Sn =
Pn
i=1Xi where each random variable Xi

has the non-central chi-squared distribution with cumulant generating function

K(t) =
2λt

1− 2t
−
p

2
ln(1− 2t). (4.33)

The parameter λ is the non-centrality parameter of the distribution and p is

the degrees of freedom. Notice that the cumulant generating function of the sum

takes the same form but with (λ, p) replaced by (nλ, np) so in effect we wish

to generate a random variable with cumulant generating function (4.33) for

large values of the parameters (λ, p). In stead we generate from the saddlepoint

approximation (4.32) to this distribution and in fact we do this indirectly. If we

change variable in (4.32) to determine the density of the new random variable

Θ which solves the equation

K0(Θ) = X

then the saddlepoint approximation (4.32) is equivalent to specifying a proba-

bility density for this variable,

fΘ(θ) = f(K
0(θ))

dx

dθ

= constant ×
p
K00(θ)eK(θ)−θK

0(θ). (4.34)
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In general, this probability density function can often be bounded above by

some density over the range of possible values of θ allowing us to generate Θ

by acceptance rejection. Then the value of the random variable is X = K0(Θ).

In the particular case of the non-central chi-squared example above, swe may

take the dominating density to be the U [0, 12 ] density since (4.34) is bounded.

Combining Monte Carlo Estimators.

We have now seen a number of different variance reduction techniques and there

are many more possible. With many of these methods such as importance and

stratified sampling are associated parameters which may be chosen in different

ways. The variance formula may be used as a basis of choosing a “best” method

but these variances and efficiencies must also estimated from the simulation and

it is rarely clear a priori which sampling procedure and estimator is best. For

example if a function f is monotone on [0, 1] then an antithetic variate can be

introduced with an estimator of the form

θ̂a1 =
1

2
[f(U) + f(1− U)], U ∼ U [0, 1] (4.35)

but if the function is increasing to a maximum somewhere around 1
2 and then

decreasing thereafter we might prefer

θ̂a2 =
1

4
[f(U/2) + f((1− U)/2) + f((1 + U)/2) + f(1− U/2)]. (4.36)

Notice that any weighted average of these two unbiased estimators of θ would

also provide an unbiased estimator of θ. The large number of potential variance

reduction techniques is an embarrassment of riches. Which variance reduction

methods we should use and how will we know whether it is better than the

competitors? Fortunately, the answer is often to use “all of the methods” (within

reason of course); that choosing a single method is often neither necessary nor

desirable. Rather it is preferable to use a weighted average of the available

estimators with the optimal choice of the weights provided by regression.
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Suppose in general that we have k estimators or statistics bθi, i = 1, ..k, all

unbiased estimators of the same parameter θ so that E(bθi) = θ for all i . In

vector notation, letting Θ0 = (bθ1, ..., bθk), we write E(Θ) = 1θ where 1 is the

k-dimensional column vector of ones so that 10 = (1, 1, ..., 1). Let us suppose for

the moment that we know the variance-covariance matrix V of the vector Θ,

defined by

Vij = cov(bθi, bθj).
Theorem 37 (best linear combinations of estimators)

The linear combination of the bθi which provides an unbiased estimator of θ and
has minimum variance among all linear unbiased estimators is

bθblc =X
i

bibθi (4.37)

where the vector b = (b1, ..., bk)0 is given by

b = (1tV −11)−1V −11.

The variance of the resulting estimator is

var(bθblc) = btV b = 1/(1tV −11)
Proof. The proof is straightforward. It is easy to see that for any linear

combination (4.37) the variance of the estimator is

btV b

and we wish to minimize this quadratic form as a function of b subject to the

constraint that the coefficients add to one, or that

b01 =1.

Introducing the Lagrangian, we wish to set the derivatives with respect to
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the components bi equal to zero

∂

∂b
{btV b+ λ(b

0
1−1)} = 0 or

2V b+ λ1= 0

b=constant × V −11

and upon requiring that the coefficients add to one, we discover the value of the

constant above is (1tV −11)−1.

This theorem indicates that the ideal linear combination of estimators has

coefficients proportional to the row sums of the inverse covariance matrix. No-

tably, the variance of a particular estimator bθi is an ingredient in that sum,
but one of many. In practice, of course, we almost never know the variance-

covariance matrix V of a vector of estimators Θ. However, when we do simula-

tion evaluating these estimators using the same uniform input to each, we obtain

independent replicated values of Θ. This permits us to estimate the covariance

matrix V and since we typically conduct many simulations this estimate can be

very accurate. Let us suppose that we have n simulated values of the vectors Θ,

and call these Θ1, ...,Θn. As usual we estimate the covariance matrix V using

the sample covariance matrix

bV = 1

n− 1

nX
i=1

(Θi −Θ)(Θi −Θ)
0

where

Θ =
1

n

nX
i=1

Θi.

Let us return to the example and attempt to find the best combination of

the many estimators we have considered so far. To this end, let
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bθ1 = 0.53

2
[f(.47 + .53u) + f(1− .53u)] an antithetic estimator,

bθ2 = 0.37

2
[f(.47 + .37u) + f(.84− .37u)] +

0.16

2
[f(.84 + .16u) + f(1− .16u)],

bθ3 = 0.37[f(.47 + .37u)] + 0.16[f(1− .16u)], (stratified-antithetic)
bθ4 = Z g(x)dx+ [f(u)− g(u)], (control variate)

bθ5 = θ̂im, the importance sampling estimator (4.23).

Then bθ2, and bθ3 are both stratified-antithetic estimators, bθ4 is a control

variate estimator and bθ5 the importance sampling estimator discussed earlier, all
obtained from a single input uniform random variate U. In order to determine

the optimal linear combination we need to generate simulated values of all 5

estimators using the same uniform random numbers as inputs. We determine

the best linear combination of these estimators using

function [o,v,b,V]=optimal(U)

% generates optimal linear combination of five estimators and outputs

% average estimator, variance and weights

% input U a row vector of U[0,1] random numbers

T1=(.53/2)*(fn(.47+.53*U)+fn(1-.53*U));

T2=.37*.5*(fn(.47+.37*U)+fn(.84-.37*U))+.16*.5*(fn(.84+.16*U)+fn(1-.16*U));

T3=.37*fn(.47+.37*U)+.16*fn(1-.16*U);

intg=2*(.53)^3+.53^2/2;

T4=intg+fn(U)-GG(U);

T5=importance(’fn’,U);

X=[T1’ T2’ T3’ T4’ T5’]; % matrix whose columns are replications of the same

estimator, a row=5 estimators using same U

mean(X)

V=cov(X); % this estimates the covariance matrix V
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on=ones(5,1);

V1=inv(V); % the inverse of the covariance matrix

b=V1*on/(on’*V1*on); % vector of coefficients of the optimal linear combination

o=mean(X*b); % vector of the optimal linear combinations

v=1/(on’*V1*on); % variance of the optimal linear combination based on

a single U

One run of this estimator, called with [o,v,b,V]= optimal(unifrnd(0,1,1,1000000))

yields

o = 0.4615

b0 = [−0.5499 1.4478 0.1011 0.0491 − 0.0481].

The estimate 0.4615 is accurate to at least four decimals which is not surprising

since the variance per uniform random number input is v = 1.13 × 10−5. In

other words, the variance of the mean based on 1,000,000 uniform input is

1.13× 10−10, the standard error is around .00001 so we can expect accuracy to at

least 4 decimal places. Note that some of the weights are negative and others are

greater than one. Do these negative weights indicate estimators that are worse

than useless? The effect of some estimators may be, on subtraction, to render the

remaining function more linear and more easily estimated using another method

and negative coefficients are quite common in regression generally. The efficiency

gain over crude Monte Carlo is an extraordinary 40,000. However since there

are 10 function evaluations for each uniform variate input, the efficiency when

we adjust for the number of function evaluations is 4,000. This simulation

using 1,000,000 uniform random numbers and taking a 63 seconds on a Pentium

IV (2.4 GHz) (including the time required to generate all five estimators) is

equivalent to forty billion simulations by crude Monte Carlo, a major task on a

supercomputer!

If we intended to use this simulation method repeatedly, we might well wish

to see whether some of the estimators can be omitted without too much loss
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of information. Since the variance of the optimal estimator is 1/(1tV −11), we

might use this to attempt to select one of the estimators for deletion. Notice that

it is not so much the covariance of the estimators V which enters into Theorem

35 but its inverse J = V −1 which we can consider a type of information matrix

by analogy to maximum likelihood theory. For example we could choose to delete

the i0th estimator, i.e. delete the i0th row and column of V where i is chosen

to have the smallest effect on 1/(1tV −11) or its reciprocal 1tJ1 =
P
i

P
j Jij .

In particular, if we let V(i) be the matrix V with the i0th row and column

deleted and J(i) = V−1(i) , then we can identify 1
tJ1 − 1tJ(i)1 as the loss of

information when the i0th estimator is deleted. Since not all estimators have

the same number of function evaluations, we should adjust this information

by FE(i) =number of function evaluations required by the i0th estimator. In

other words, if an estimator i is to be deleted, it should be the one corresponding

to

min
i
{
1tJ1− 1tJ(i)1

FE(i)
}.

We should drop this i0th estimator if the minimum is less than the information

per function evaluation in the combined estimator, because this means we will

increase the information available in our simulation per function evaluation.

In the above example with all five estimators included, 1tJ1 = 88757 (with

10 function evaluations per uniform variate) so the information per function

evaluation is 8, 876.

i 1tJ1− 1tJ(i)1 FE(i)
1tJ1−1tJ(i)1

FE(i)

1 88,048 2 44024

2 87,989 4 21,997

3 28,017 2 14,008

4 55,725 1 55,725

5 32,323 1 32,323

In this case, if we were to eliminate one of the estimators, our choice would
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likely be number 3 since it contributes the least information per function eval-

uation. However, since all contribute more than 8, 876 per function evaluation,

we should likely retain all five.

Common Random Numbers.

We now discuss another variance reduction technique, closely related to anti-

thetic variates called common random numbers, used for example whenever

we wish to estimate the difference in performance between two systems or any

other variable involving a difference such as a slope of a function.

Example 38 For a simple example suppose we have two estimators bθ1, bθ2 of
the “center” of a symmetric distribution. We would like to know which of these

estimators is better in the sense that it has smaller variance when applied to

a sample from a specific distribution symmetric about its median. If both esti-

mators are unbiased estimators of the median, then the first estimator is better

if

var(bθ1) < var(bθ2)
and so we are interested in estimating a quantity like

Eh1(X)− Eh2(X)

where X is a vector representing a sample from the distribution and h1(X) =bθ21, h2(X) = bθ22. There are at least two ways of estimating these differences;
1. Generate samples and hence values of h1(Xi), i = 1, ..., n and Eh2(Xj), j =

1, 2, ...,m independently and use the estimator

1

n

nX
i=1

h1(Xi)−
1

m

mX
j=1

h2(Xj).

2. Generate samples and hence values of h1(Xi), h2(Xi), i = 1, ..., n inde-

pendently and use the estimator

1

n

nX
i=1

(h1(Xi)− h2(Xi)).
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It seems intuitive that the second method is preferable since it removes

the variability due to the particular sample from the comparison. This is a

common type of problem in which we want to estimate the difference between

two expected values. For example we may be considering investing in a new

piece of equipment that will speed up processing at one node of a network and

we wish to estimate the expected improvement in performance between the new

system and the old. In general, suppose that we wish to estimate the difference

between two expectations, say

Eh1(X)− Eh2(Y ) (4.38)

where the random variable or vector X has cumulative distribution function FX

and Y has cumulative distribution function FY . Notice that the variance of a

Monte Carlo estimator

var[h1(X)− h2(Y )] = var[h1(X)] + var[h2(Y )]− 2cov{h1(X), h2(Y )} (4.39)

is small if we can induce a high degree of positive correlation between the gen-

erated random variables X and Y . This is precisely the opposite problem that

led to antithetic random numbers, where we wished to induce a high degree

of negative correlation. The following lemma is due to Hoeffding (1940) and

provides a useful bound on the joint cumulative distribution function of two

random variables X and Y. Suppose X,Y have cumulative distribution func-

tions FX(x) and FY (y) respectively and joint cumulative distribution function

G(x, y) = P [X · x, Y · y].

Lemma 39 (a) The joint cumulative distribution function G of (X,Y ) always

satisfies

(FX(x) + FY (y)− 1)
+ · G(x, y) · min(FX(x), FY (y)) (4.40)

for all x, y .
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(b) Assume that FX and FY are continuous functions. In the case that

X = F−1X (U) and Y = F−1Y (U) for U uniform on [0, 1], equality is achieved

on the right G(x, y) = min(FX(x), FY (y)). In the case that X = F−1X (U) and

Y = F−1Y (1− U) there is equality on the left; (FX(x) + FY (y)− 1)+ = G(x, y).

Proof. (a) Note that

P [X · x, Y · y] · P [X · x] and similarly

· P [Y · y].

This shows that

G(x, y) · min(FX(x), FY (y)),

verifying the right side of (4.40). Similarly for the left side

P [X · x, Y · y] = P [X · x]− P [X · x, Y > y]

≥ P [X · x]− P [Y > y]

= FX(x)− (1− FY (y))

= (FX(x) + FY (y)− 1).

Since it is also non-negative the left side follows.

For (b) suppose X = F−1X (U) and Y = F−1Y (U), then

P [X · x, Y · y] = P [F−1X (U) · x, F−1Y (U) · y]

= P [U · FX(x), U · FY (y)]

since P [X = x] = 0 and P [Y = y] = 0.

But

P [U · FX(x), U · FY (y)] = min(FX(x), FY (y))

verifying the equality on the right of (4.40) for common random numbers. By
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a similar argument,

P [F−1X (U) · x, F−1Y (1− U) · y] = P [U · FX(x), 1− U · FY (y)]

= P [U · FX(x), U ≥ 1− FY (y)]

= (FX(x)− (1− FY (y)))
+

verifying the equality on the left.

The following theorem supports the use of common random numbers to

maximize covariance and antithetic random numbers to minimize covariance.

Theorem 40 (maximum/minimum covariance)

Suppose h1 and h2 are both non-decreasing (or both non-increasing) functions.

Subject to the constraint that X,Y have cumulative distribution functions FX , FY

respectively, the covariance

cov[h1(X), h2(Y )]

is maximized when Y = F−1Y (U) and X = F−1X (U) (i.e. for common uniform[0, 1]

random numbers) and is minimized when Y = F−1Y (U) and X = F−1X (1 − U)

(i.e. for antithetic random numbers).

Proof. We will sketch a proof of the theorem when the distributions are

all continuous and h1, h2 are differentiable. Define G(x, y) = P [X · x, Y · y].

The following representation of covariance is useful: define

H(x, y) = P (X > x, Y > y)− P (X > x)P (Y > y) (4.41)

= G(x, y)− FX(x)FY (y).
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Notice that, using integration by parts,Z ∞
−∞

Z ∞
−∞

H(x, y)h01(x)h
0
2(y)dxdy

= −

Z ∞
−∞

Z ∞
−∞

∂

∂x
H(x, y)h1(x)h

0
2(y)dxdy

=

Z ∞
−∞

Z ∞
−∞

∂2

∂x∂y
H(x, y)h1(x)h2(y)dxdy

=

Z ∞
−∞

Z ∞
−∞

h1(x)h2(y)g(x, y)dxdy −

Z ∞
−∞

h1(x)fX(x)dx

Z ∞
−∞

h2(y)fY (y)dy

= cov(h1(X), h2(Y )) (4.42)

where g(x, y), fX(x), fY (y) denote the joint probability density function, the

probability density function of X and that of Y respectively. In fact this result

holds in general even without the assumption that the distributions are contin-

uous. The covariance between h1(X) and h2(Y ), for h1 and h2 differentiable

functions, is

cov(h1(X), h2(Y )) =

Z ∞
−∞

Z ∞
−∞

H(x, y)h01(x)h
0
2(y)dxdy.

The formula shows that to maximize the covariance, if h1, h2 are both increasing

or both decreasing functions, it is sufficient to maximize H(x, y) for each x, y

since h01(x), h02(y) are both non-negative. Since we are constraining the mar-

ginal cumulative distribution functions FX , FY , this is equivalent to maximizing

G(x, y) subject to the constraints

lim
y→∞G(x, y) = FX(x)

lim
x→∞G(x, y) = FY (y).

Lemma 37 shows that the maximum is achieved when common random numbers

are used and the minimum achieved when we use antithetic random numbers.

We can argue intuitively for the use of common random numbers in the case

of a discrete distribution with probability on the points indicated in Figure 4.5.
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This figure corresponds to a joint distribution with the following probabilities,

say

x 0 0.25 0.25 0.75 0.75 1

y 0 0.25 0.75 0.25 0.75 1

P [X = x, Y = y] .1 .2 .2 .1 .2 .2

Suppose we wish to maximize P [X > x, Y > y] subject to the constraint that

the probabilities P [X > x] and P [Y > y] are fixed. We have indicated

arbitrary fixed values of (x, y) in the figure. Note that if there is any weight

attached to the point in the lower right quadrant (labelled “P2”), some or all

of this weight can be reassigned to the point P3 in the lower left quadrant

provided there is an equal movement of weight from the upper left P4 to the

upper right P1. Such a movement of weight will increase the value of G(x, y)

without affecting P [X · x] or P [Y · y]. The weight that we are able to transfer

in this example is 0.1, the minimum of the weights on P4 and P2 . In general,

this continues until there is no weight in one of the off-diagonal quadrants for

every choice of (x, y). The resulting distribution in this example is given by

x 0 0.25 0.25 0.75 0.75 1

y 0 0.25 0.75 0.25 0.75 1

P [X = x, Y = y] .1 .3 0 .1 .3 .2

and it is easy to see that such a joint distribution can be generated from common

random numbers X = F−1X (U), Y = F−1Y (U).

Conditioning

We now consider a simple but powerful generalization of control variates. Sup-

pose that we can decompose a random variable T into two components T1, ε

T = T1 + ε (4.43)

so that T1, ε are uncorrelated

cov(T1, ε) = 0.
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Figure 4.5: Changing weights on points to maximize covariance

Assume as well that E(ε) = 0. Regression is one method for determining such

a decomposition and the error term ε in regression satisfies these conditions.

Then T1 has the same mean as T and it is easy to see that

var(T ) = var(T1) + var(ε)

so T1 as smaller variance than T (unless ε = 0 with probability 1). This means

that if we wish to estimate the common mean of T or T1, the estimator T1 is

preferable, since it has the same mean with smaller variance.

One special case is variance reduction by conditioning. For the standard

definition and properties of conditional expectation see the appendix. One com-

mon definition of E[X |Y ] is the unique (with probability one) function g(y)

of Y which minimizes E{X − g(Y )}2. This definition only applies to random

variables X which have finite variance and so this definition requires some mod-

ification when E(X2) =∞, but we will assume here that all random variables,

say X,Y,Z have finite variances. We can define conditional covariance using

conditional expectation as

cov(X,Y |Z) = E[XY |Z]− E[X |Z]E[Y |Z]
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and conditional variance:

var(X |Z) = E(X2|Z)− (E[X |Z])2.

The variance reduction through conditioning is justified by the following well-

known result:

Theorem 41 (a)E(X) = E{E[X |Y ]}

(b) cov(X,Y ) = E{cov(X,Y |Z)}+ cov{E[X |Z], E[Y |Z]}

(c) var(X) = E{var(X |Z)}+ var{E[X |Z]}

This theorem is used as follows. Suppose we are considering a candidate

estimator θ̂, an unbiased estimator of θ. We also have an arbitrary random

variable Z which is somehow related to θ̂. Suppose that we have chosen Z

carefully so that we are able to calculate the conditional expectation T1 =

E[θ̂|Z]. Then by part (a) of the above Theorem, T1 is also an unbiased estimator

of θ. Define

ε = θ̂ − T1.

By part (c),

var(θ̂) = var(T1) + var(ε)

and var(T1) = var(θ̂) − var(ε) < var(θ̂). In other words, for any variable Z,

E[θ̂|Z] has the same expectation as does θ̂ but smaller variance and the decrease

in variance is largest if Z and θ̂ are nearly independent, because in this case

E[θ̂|Z] is close to a constant and its variance close to zero. In general the

search for an appropriate Z so as to reducing the variance of an estimator by

conditioning requires searching for a random variable Z such that:

1. the conditional expectation E[θ̂|Z] with the original estimator is com-

putable

2. var(E[θ̂|Z]) is substantially smaller than var(θ̂).



250 CHAPTER 4. VARIANCE REDUCTION TECHNIQUES

Figure 4.6: Example of the Hit and Miss Method

Example 42 (hit or miss)

Suppose we wish to estimate the area under a certain graph f(x) by the hit

and miss method. A crude method would involve determining a multiple c of a

probability density function g(x) which dominates f(x) so that cg(x) ≥ f(x) for

all x.We can generate points (X,Y ) at random and uniformly distributed under

the graph of cg(x) by generating X by inverse transform X = G−1(U1) where

G(x) is the cumulative distribution function corresponding to density g and

then generating Y from the Uniform[0, cg(X)] distribution, say Y = cg(X)U2.

An example, with g(x) = 2x, 0 < x < 1 and c = 1/4 is given in Figure 4.6.

The hit and miss estimator of the area under the graph of f obtains by

generating such random points (X,Y ) and counting the proportion that fall

under the graph of g, i.e. for which Y · f(X). This proportion estimates the

probability

P [Y · f(X)] =
area under f(x)
area under cg(x)

=
area under f(x)

c
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since g(x) is a probability density function. Notice that if we define

W =

⎧⎨⎩ c if Y · f(X)

0 if Y > f(X)

then

E(W ) = c ×
area under f(x)
area under cg(x)

= area under f(x)

so W is an unbiased estimator of the parameter that we wish to estimate. We

might therefore estimate the area under f(x) using a Monte Carlo estimator

θ̂HM = 1
n

Pn
i=1Wi based on independent values of Wi.This is the “hit-or-miss”

estimator. However, in this case it is easy to find a random variable Z such

that the conditional expectation E(Z|W ) can be determined in closed form. In

fact we can choose Z = X, we obtain

E[W |X] =
f(X)

g(X)
.

This is therefore an unbiased estimator of the same parameter and it has smaller

variance than does W. For a sample of size n we should replace the crude esti-

mator θ̂cr by the estimator

θ̂Cond =
1

n

nX
i=1

f(Xi)

g(Xi)

=
1

n

nX
i=1

f(Xi)

2Xi

with Xi generated from X = G−1(Ui) =
√
Ui, i = 1, 2, ..., n and Ui ∼ Uni-

form[0,1]. In this case, the conditional expectation results in a familiar form for

the estimator θ̂Cond. This is simply an importance sampling estimator with g(x)

the importance distribution. However, this derivation shows that the estimator

θ̂Cond has smaller variance than θ̂HM .
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Problems

1. Use both crude and antithetic random numbers to integrate the functionZ 1

0

eu − 1

e− 1
du.

(a) What is the efficiency gain attributed to the use of antithetic random

numbers?

(b) How large a sample size would I need, using antithetic and crude

Monte Carlo, in order to estimate the above integral, correct to four

decimal places, with probability at least 95%?

2. Under what conditions on f does the use of antithetic random numbers

completely correct for the variability of the Monte-Carlo estimator? i.e.

When is var(f(U) + f(1− U)) = 0?

3. Suppose that F (x) is the normal(µ,σ2) cumulative distribution function,

Prove that F−1(1−U) = 2µ− F−1(U) and therefore, if we use antithetic

random numbers to generate two normal random variables X1, X2, having

mean µ and variance σ2, this is equivalent to setting X2 = 2µ − X1.

In other words, if we wish to use antithetic random numbers for normal

variates, it is not necessary to generate the normal random variables using

the inverse transform method.

4. Show that the variance of a weighted average

var(αX + (1− α)W )

is minimized over α when

α =
var(W )− cov(X,W )

var(W ) + var(X)− 2cov(X,W )

Determine the resulting minimum variance. What if the random variables

X,W are independent?
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5. Use a stratified random sample to integrate the functionZ 1

0

eu − 1

e− 1
du.

What do you recommend for intervals (two or three) and sample sizes?

What is the efficiency gain?

6. Use a combination of stratified random sampling and an antithetic random

number in the form
1

2
[f(U/2) + f(1− U/2)]

to integrate the function Z 1

0

eu − 1

e− 1
du.

What is the efficiency gain?

7. In the case f(x) = ex−1
e−1 , use g(x) = x as a control variate to integrate over

[0,1]. Show that the variance is reduced by a factor of approximately 60.

Is there much additional improvement if we use a more general quadratic

function of x?

8. The second version of the control variate Monte-Carlo estimator

bθcv = 1

n

nX
i=1

{f(Ui)− β[g(Ui)− E(g(Ui))]}

is an improved control variate estimator, is equivalent to the first version

in the case β = 1. In the case f(x) = ex−1
e−1 , consider using g(x) = x as a

control variate to integrate over [0,1]. Determine how much better bθcv is
than the basic control variate (β = 1) by performing simulations. Show

that the variance is reduced by a factor of approximately 60 over crude

Monte Carlo. Is there much additional improvement if we use a more

general quadratic function of x for g(x).

9. It has been suggested that stocks are not log-normally distributed but the

distribution can be well approximated by replacing the normal distribu-

tion by a student t distribution. Suppose that the daily returns Xi are
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independent with probability density function f(x) = c(1+(x/b)2)−2 (the

re-scaled student distribution with 3 degrees of freedom). We wish to es-

timate a weekly Value at Risk, V ar.95, a value ev such that P [
P5
i=1Xi <

v] = 0.95. If we wish to do this by simulation, suggest an appropriate

method involving importance sampling. Implement and estimate the vari-

ance reduction.

10. Suppose three different simulation estimators Y1, Y2, Y3 have means which

depend on two unknown parameters θ1, θ2 so that Y1, Y2, Y3, are unbi-

ased estimators of θ1, θ1 + θ2, θ2 respectively. Assume that var(Yi) =

1, cov(Yi, Yj) = −1/2 an we want to estimate the parameter θ1. Should

we use only the estimator Y1 which is the unbiased estimator of θ1, or

some linear combination of Y1, Y2, Y3? Compare the number of simula-

tions necessary for a certain degree of accuracy.

11. In the case f(x) = ex−1
e−1 , use g(x) = x as a control variate to integrate

over [0,1]. Find the optimal linear combination using estimators (4.35) and

(4.36), an importance sampling estimator and the control variate estimator

above. What is the efficiency gain over crude Monte-Carlo?

12. Show that the Jacobian of the transformation used in the proof of Theorem

23; (x,m)→ (x, y) where y = exp(−(2m−x)2/2) is given by 1

2y
√
−2 ln(y) .



Chapter 5

Simulating the Value of

Options

Asian Options

An Asian option, at expiration T, has value determined not by the closing price

of the underlying asset as for a European option, but on an average price of

the asset over an interval. For example a discretely sampled Asian call op-

tion on an asset with price process S(t) pays an amount on maturity equal

to max(0, S̄k −K) where S̄k = 1
k

Pk
i=1 S(iT/k) is the average asset price at k

equally spaced time points in the time interval (0, T ). Here, k depends on the

frequency of sampling (e.g. if T = .25 (years) and sampling is weekly, then

k = 13. If S(t) follows a geometric Brownian motion, then S̄k is the sum of

lognormally distributed random variables and the distribution of the sum or av-

erage of lognormal random variables is very difficult to express analytically. For

this reason we will resort to pricing the Asian option using simulation. Notice,

however that in contrast to the arithmetic average, the distribution of the geo-

metric average has a distribution which can easily be obtained. The geometric

255
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mean of n valuesX1, ...,Xn is (X1X2...Xn)1/n = exp{ 1n
Pn
i=1 ln(Xi)} and if the

random variables Xn were each lognormally distributed then this results adding

the normally distributed random variables ln(Xi) in the exponent, a much more

familiar operation. In fact the sum in the exponent 1
n

Pn
i=1 ln(Xi) is normally

distributed so the geometric average will have a lognormal distribution.

Our objective is to determine the value of the Asian option E(V1) with

V1 = e
−rTmax(0, S̄k −K)

Since we expect geometric means to be close to arithmetic means, a reasonable

control variate is the random variable V2 = e−rTmax(0, S̃k − K) where S̃k =

{
Qk
i=1 S(iT/k)}

1/k is the geometric mean. Assume that V1 and V2 obtain from

the same simulation and are therefore possibly correlated. Of course V2 is only

useful as a control variate if its expected value can be determined analytically

or numerically more easily than that of V1 but in view of the fact that V2

has a known lognormal distribution, the prospects of this are excellent. Since

S(t) = S0e
Y (t) where Y (t) is a Brownian motion with Y (0) = 0, drift r − σ2/2

and diffusion σ, it follows that S̃k has the same distribution as does

S0 exp{
1

k

kX
i=1

Y (iT/k)}. (5.1)

The exponent is a weighted average of the independent normal increments of

the process and therefore normally distributed. In particular if we set

Ȳ =
1

k

kX
i=1

Y (iT/k)

=
1

k
[k(Y (T/k)) + (k − 1){Y (2T/k)− Y (T/k)}+ (k − 2){Y (3T/k)− Y (2T/k)}

+ ...+ {Y (T )− Y ((k − 1)T/k)}],
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then we can find the mean and variance of Ȳ ,

E(Ȳ ) =
r − σ2/2

k

kX
i=1

iT/k

= (r −
σ2

2
)
k + 1

2k
T

= eµT, say,
and

var(Ȳ ) =
1

k2
{k2var(Y (T/k)) + (k − 1)2var{Y (2T/k)− Y (T/k)}+ ...}

=
Tσ2

k3

kX
i=1

i2 =
Tσ2(k + 1)(2k + 1)

6k2

= eσ2T, say.
The closed form solution for the price E(V2) in this case is therefore easily

obtained because it reduces to the same integral over the lognormal density

that leads to the Black-Scholes formula. In fact

E(V2) = E{e
−rT (S0eY −K)+}, where Y ∼ N(eµ, eσ2T ) so

= E[e−rT+eµTS0eY−eµT − e−rTK]+
= E[S0e

(−r+eµ+ 1
2eσ2)T exp{Y − eµT − 1

2
eσ2T}− e−rTK]+

= E[S0e
(−r+eµ+ 1

2eσ2)T exp{N(−eσ2T
2
, eσ2T )}−Ke−rT ]+.

where we temporarily denote a random variable with the Normal(µ,σ2) distrib-

ution by N(µ,σ2). Recall that the Black-Scholes formula gives the price at time

t = 0 of a European option with exercise price K, initial stock price S0,

BS(S0,K, r, T,σ) = E(e
−rT (S0 exp{N((r −

σ2

2
)T,σ2T )}−K)+ (5.2)

= E(S0 exp{N(−
σ2T

2
,σ2T )}−Ke−rT )+ (5.3)

= S0Φ(d1)− Ee
−rTΦ(d2) (5.4)
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where

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T .

Thus E(V2) is given by the Black-Scholes formula with S0 replaced by

fS0 = S0 exp{T (eσ2
2
+ eµ− r)} = S0 exp{−rT (1− 1

k
)−

σ2T

12
(1−

1

k2
)}

and σ2 by eσ2. Of course when k = 1, this gives exactly the same result as the
basic Black-Scholes because in this case, the Asian option corresponds to the

average of a single observation at time T . For k > 1 the effective initial stock

price is reduced fS0 < S0 and the volatility parameter is also smaller eσ2 < σ2.

With lower initial stock price and smaller volatility the price of a European call

will decrease, indicating that an Asian option priced using a geometric mean

has price lower than a similar European option on the same stock.

Recall from our discussion of a control variate estimators that we can esti-

mate E(V1) unbiasedly using

V1 − β(V2 − E(V2)) (5.5)

where

β =
cov(V1, V2)

var(V2)
. (5.6)

In practice, of course, we simulate many values of the random variables V1, V2

and replace V1, V2 by their averages V1, V 2 so the resulting estimator is

V1 − β(V 2 − E(V2)). (5.7)

Table 4.1 is similar to that in Boyle, Broadie and Glasserman(1997) and com-

pares the variance of the crude Monte Carlo estimator with that of an estimator

using a simple control variate,

E(V2) + V1 − V 2,

a special case of (5.7) with β = 1. We chose K = 100, k = 50, r = 0.10, T = 0.2,

a variety of initial asset prices S0 and two values for the volatility parameter
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σ = 0.2 and σ = 0.4. The efficiency depends only on S0 and K through the

ratio K/S0 or alternatively the moneyness of the option, the ratio erTS0/K of

the value on maturity of the current stock price to the strike price. Standard

errors are estimated from n = 10, 000 simulations. Since the efficiency is the

ratio of the number of simulations required for a given degree of accuracy, or

alternatively the ratio of the variances, this table indicates efficiency gains due

to the use of a control variate of several hundred. Of course using the control

variate estimator (5.7) described above could only improve the efficiency further.

Table 4.1. Standard Errors for Arithmetic Average Asian Options.

σ Moneyness=erTS0/K
STANDARD ERROR

USING CRUDE MC

STANDARD ERROR

USING CONTROL VARIATE

0.2 1.13 0.0558 0.0007

1.02 0.0334 0.00064

0.93 0.00636 0.00046

0.4 1.13 0.105 0.00281

1.02 0.0659 0.00258

0.93 0.0323 0.00227

The following function implements the control variate for an Asian option

and was used to produce the above table.

function [v1,v2,sc]=asian(r,S0,sig,T,K,k,n)

% computes the value of an asian option V1 and control variate V2

% S0=initial price, K=strike price

% sig = sigma, k=number of time increments in interval [0.T]

% sc is value of the score function for the normal inputs with respect to

% r the interest rate parameter. Repeats for a total of n simulations.

v1=[]; v2=[]; sc=[]; mn=(r-sig^2/2)*T/k;

sd=sig*sqrt(T/k); Y=normrnd(mn,sd,k,n);
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sc= (T/k)*sum(Y-mn)/(sd^2); Y=cumsum([zeros(1,n); Y]);

S = S0*exp(Y); v1= exp(-r*T)*max(mean(S)-K,0);

v2=exp(-r*T)*max(S0*exp(mean(Y))-K,0);

disp([’standard errors ’ num2str(sqrt(var(v1)/n)) ’ num2str(sqrt(var(v1-v2)/n))])

For example if we use K = 100, we might confirm the last row of the above

table using the command

asian(.1,100*.93*exp(-r*T),.4,.2,100,50,10000);

Asian Options and Stratified Sampling

For many options, the terminal value of the stock has a great deal of influence

on the option price. Although it is difficult in general to stratify samples of

stock prices, it fairly easy to stratify along a single dimension, for example the

dimension defined by the stock price at time T. In particular we may stratify

the generation of

St = S0 exp(Zt)

where Zt can be written in terms of a standard Brownian motion

Zt = µt+ σWt, with µ = r − σ2/2.

To stratify into K strata of equal probability for ST we may generate ZT using

ZT = rT +
p
rT − σ2T/2 Φ−1(i− 1 +

Ui
K
), i = 1, 2, ...K

for Uniform[0,1] random variables Ui and then randomly generate the rest of the

path interpolating the value of S0 and ST using Brownian Bridge interpolation.

To do this we use the fact that for a standard Brownian motion and s < t < T

we have that the conditional distribution of Wt given Ws,WT is normal with

mean a weighted average of the value of the process at the two endpoints

T − t

T − s
Ws +

t− s

T − s
WT
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and variance
(t− s)(T − t)

T − s
.

Thus given the value of ST (or equivalently the value of W (T )) the increments

of the process at times ε, 2ε, ...N² = T can be generated sequentially so that the

j’th increment W (jε)−W ((j − 1)ε) conditionally on the value of W ((j − 1)ε)

and of W (T ) has a Normal distribution with mean

(
N − j

N
W ((j − 1)ε) +

j

N
W (T )

and with variance
N − j

N − j + 1
.

Use of Girsanov’s Lemma.

There are many other variance reduction schemes that one can apply to valuing

an Asian Option. However prior to attacking this problem by other methods,

let us consider a simpler example.

Importance Sampling and Pricing a European Call Option

Suppose we wish to estimate the value of a call option using Monte Carlo meth-

ods which is well “out of the money”, one with a strike price K far above the

current price of the stock S0. If we were to attempt to evaluate this option using

crude Monte Carlo, the majority of the values randomly generated for ST would

fall below the strike and contribute zero to the option price. One possible rem-

edy is to generate values of ST under a distribution that is more likely to exceed

the strike, but of course this would increase the simulated value of the option.

We can compensate for changing the underlying distibution by multiplying by

a factor adjusting the mean as one does in importance sampling.

More specifically, we wish to estimate

EQ[e
−rT (S0eZT −K)+], where ZT ∼ N(rT − σ2T/2,σ2T )
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where EQ indicates that the expectation is taken under a risk neutral distri-

bution or probability measure Q for and K is large. Suppose that we modify

the underlying probability measure of ZT to Q0, say a normal distribution with

mean value ln(K/S0)− σ2T/2 but the same variance σ2T . Then the expected

stock price under this new distribution

EQ0
S0e

ZT = S0 exp(EQ0
ZT + σ2T/2) = K

so there is a much greater probability (roughly 1/2) that the strike price is

attained. The importance sampling adjustment that insures that the estimator

continues to be an unbiased estimator of the option price is the ratio of two

probability densities. Denote the normal probability density function by

ϕ(x, µ,σ2) =
1

√
2πσ

exp{−
(x− µ)2

2σ2
}.

Then the Radon-Nikodym derivative

dQ

dQ0
(zT ) =

ϕ(zt; rT −
σ2T
2 ,σ

2T )

ϕ(zt; ln(K/S0)−
σ2T
2 ,σ

2T )

is simply the ratio of the two normal density functions with the two different

means, and

EQ[e
−rT (ST −K)+] = EQ0 [e

−rT (ST −K)+
dQ

dQ0
(ZT )]

= EQ0 [e
−rT (S0eZT −K)+

ϕ(ZT ; rT −
σ2T
2 ,σ

2T )

ϕ(ZT ; ln(K/S0)−
σ2T
2 ,σ

2T )
]

so the importance sample estimator is the average of terms of the form

e−rT (S0eZT−K)+
ϕ(ZT ; rT −

σ2T
2 ,σ

2T )

ϕ(ZT ; ln(K/S0)−
σ2T
2 ,σ

2T )
, where ZT ∼ N(ln(K/S0)−

σ2T

2
,σ2T ).

The new simulation generates paths that are less likely to produce options ex-

piring with zero value, and in a sense has thus eliminated some computational

waste. What gains in efficiency result from this use of importance sampling?

Let us consider a three month (T = 0.25) call option with S0 = 10, K = 15,
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σ = 0.2, r = .05. We determined the efficiency of the importance sampling es-

timator relative to using crude Monte Carlo in this situation using the function

below. Running this using the command [eff,m,v]=importance2(10,.05,15,.2,.25)

shows an efficiency gain of around 73, in part because very few of the crude es-

timates of ST exceed the exercise price.

function [eff,m,v]=importance2(S0,r,K,sigma,T,N)

% simple importance sampling estimator of call option price

% outputs efficiency relative to crude. Run using

% [eff,m,v]=importance2(10,.05,15,.2,.25)

Z=randn(1,N);

%first do crude

ZT=(r-.5*sigma^2)*T+sigma*sqrt(T).*Z;

est1=exp(-r*T)*max(0,S0*exp(ZT)-K);

% now do importance

ZT=(log(K/S0)-.5*sigma^2)*T+sigma*sqrt(T).*Z;

ST=S0*exp(ZT);

est2=exp(-r*T)*max(0,ST-K).*normpdf(ZT,(r-.5*sigma^2)*T,sigma*sqrt(T))./normpdf(ZT,(log(K/S0)-

.5*sigma^2)*T,sigma*sqrt(T));

v=[var(est1) var(est2)];

m=[mean(est1) mean(est2)];

eff=v(1)/v(2);

Importance Sampling and Pricing an Asian Call Option

Let us now return to pricing an Asian option. We wish to use a variety of

variance reduction techniques including importance sampling as in the above

example, but in this case the relevant observation is not a simple stock price

at one instant, but the whole stock price history from time 0 to T. An Asian

option should nevertheless have payoff correlated with the value of the stock on
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maturity S(T ). It might be reasonable to stratify the sample; i.e. sample more

often when S(T ) is large or to use importance sampling and generate S(T )

from a geometric Brownian motion with drift larger than rSt so that it is more

likely that S(T )̇ > K. As before if we do this we need to then multiply by the

ratio of the two probability density functions, (the Radon Nikodym derivative

of one process with respect to the other). This density is given by a result called

Girsanov’s Theorem (see Appendix B). The idea is as follows: Suppose P is the

probability measure induced on the paths on [0, T ] by an Ito process

dSt = µ(St)dt+ σ(St)dWt, S0 = s0. (5.8)

Similarly suppose P0 is the probability measure on path generated by a

similar process with the same diffusion term but different drift term

dSt = µ0(St)dt+ σ(St)dWt, S0 = s0. (5.9)

Note that in both cases, the process starts at the same initial value s0.Then the

“likelihood ratio” or the Radon-Nikodym dP
dP0

of P with respect to P0 is

dP

dP0
= exp{

Z T

0

µ(St)− µ0(St)

σ2(St)
dSt −

Z T

0

µ2(St)− µ20(St)

2σ2(St)
dt} (5.10)

We do not attempt to give a technical proof of this result, either here or in

the appendix, since real “proofs” can be found in a variety of texts, including

Steele (2004) and Karatzas and Shreve, (xxx). Instead we provide heuristic

justification of (5.10). Let us consider the conditional distribution of a small

increment dSt in the process St under the model (5.8). Since this distribution is

conditionally normal distributed it has conditional probability density function

given the past

1
√
2πdt

exp{−(dSt − µ(St)dt)
2/(2σ2(St)dt) (5.11)

and under the model (5.9), it has the conditional probability density

1
√
2πdt

exp{−(dSt − µ0(St)dt)
2/(2σ2(St)dt) (5.12)
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The ratio of these two probability density functions is

exp{
µ(St)− µ0(St)

σ2(St)
dSt −

µ2(St)− µ20(St)

2σ2(St)
dt}

But the joint probability density function over a number of disjoint intervals is

obtained by multiplying these conditional densities together and this results in

Πt exp{
µ(St)− µ0(St)

σ2(St)
dSt −

µ2(St)− µ20(St)

2σ2(St)
dt}

= exp{

Z T

0

µ(St)− µ0(St)

σ2(St)
dSt −

Z T

0

µ2(St)− µ20(St)

2σ2(St)
dt}

where the product of exponentials results in the sum of the exponents, or, in

the limit as the increment dt approaches 0, the corresponding integrals.

Girsanov’s result is very useful in conducting simulations because it permits

us to change the distribution under which the simulation is conducted. In

general, if we wish to determine an expected value under the measure P, we

may conduct a simulation under P0 and then multiply by dP
dP0

or if we use a

subscript on E to denote the measure under which the expectation is taken,

EPV (ST ) = EP0 [V (ST )
dP

dP0
].

Suppose, for example, we wish to determine by simulation the expected value

of V (rT ) for an interest rate model

drt = µ(rt)dt+ σdWt (5.13)

for some choice of function µ(rt). Then according to Girsanov’s theorem, we

may simulate rt under the Brownian motion model drt = µ0dt+ σdWt (having

the same initial value r0 as in our original simulation) and then average the

values of

V (rT )
dP

dP0
= V (rT ) exp{

Z T

0

µ(rt)− µ0
σ2

drt −

Z T

0

µ2(rt)− µ20
2σ2

dt} (5.14)

So far, the constant µ0 has been arbitrary and we are free to choose it in order

to achieve as much variance reduction as possible. Ideally we do not want to get
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too far from the original process so µ0 should not be too far from the values of

µ(rt). In this case we hope that the term dP
dP0

is not too variable (note that c dPdP0

would be the estimator if V (ST ) = c were constant). On the other hand, the

term V (rT ) cannot generally be ignored, and there is no formula or simple rule

for choosing parameters which minimize the variance of V (rT ) dPdP0 . Essentially

we need to resort to choosing µ0 to minimize the variance of V (rT ) dPdP0 by

experimentation, usually using some preliminary simulations.

Pricing a Call option under stochastic interest

rates.

(REVISE MODEL)Again we consider pricing a call option, but this time under

a more realistic model which permits stochastic interest rates. We will use

the method of conditioning, although there are many other potential variance

reduction tools here. Suppose the asset price, (under the risk-neutral probability

measure, say) follows a geometric Brownian motion model of the form

dSt = rtStdt+ σStdW
(1)
t (5.15)

where rt is the spot interest rate. We assume rt is stochastic and follows the

Brennan-Schwartz model,

drt = a(b− rt)dt+ σ0rtdW
(2)
t (5.16)

where W (1)
t ,W

(2)
t are both Brownian motion processes and usually assumed to

be correlated with correlation coefficient ρ. The parameter b in (5.16) can

be understood to be the long run average interest rate (the value that it would

converge to in the absence of shocks or resetting mechanisms) and the parameter

a > 0 governs how quickly reversion to b occurs.

It would be quite remarkable if a stock price is completely independent of

interest rates, since some of the same factors influence both. However we begin
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by assuming something a little less demanding, that the random noise processes

driving the asset price and stock price are independent or that ρ = 0.

Control Variates.

The first method might be to use crude Monte Carlo; i.e. to simulate both the

process St and the process rt, evaluate the option at expiry, say V (ST , T ) and

then discount to its present value by multiplying by exp{−
R T
0
rtdt}. However,

in this case we can exploit the assumption that ρ = 0 so that interest rates are

independent of the Brownian motion process W (1)
t which drives the asset price

process. For example, suppose that the interest rate function rt were known

(equivalently: condition on the value of the interest rate process so that in the

conditional model it is known). While it may be difficult to obtain the value of

an option under the model (5.15), (5.16) it is usually much easier under a model

which assumes constant interest rate c. Let us call this constant interest rate

model for asset prices with the same initial price S0 and driven by the equation

dZt = cZtdt+ σZtdW
(1)
t , Z0 = S0 (5.17)

model “0” and denote the probability measure and expectations under this

distribution by P0 and E0 respectively. The value of the constant c will be

determined later. Assume that we simulated the asset prices under this model

and then valued a call option, say. Then since

ln(ZT /Z0) has a N((c−
σ2

2
)T,σ2T ) distribution

we could use the Black-Scholes formula to determine the conditional expected

value
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E0[exp{−

Z T

0

rtdt}(ZT −K)
+|rs, 0 < s < T ] (5.18)

= EE0[(S0e
(c−r)T eW − e−rTK)+|rs, 0 < s < T ],

where W has a N(−σ2T/2,σ2T )

= E[BS(S0e
(c−r)T ,K, r, T,σ)], with r =

1

T

Z T

0

rtdt.

Here, r is the average interest rate over the period and the function BS is

the Black-Scholes formula (5.2). In other words by replacing the interest rate

by its average over the period and the initial value of the stock by S0e(c−r)T ,

the Black-Scholes formula provides the value for an option on an asset driven

by (5.17) conditional on the value of r. The constant interest rate model is a

useful control variate for the more general model (5.16). The expected value

E[BS(S0e
(c−r)T ,K, r, T,σ)] can be determined by generating the interest rate

processes and averaging values of BS(S0e(c−r)T ,K, r, T,σ). Finally we may es-

timate the required option price under (5.15),(5.16) using an average of values

of

exp{−

Z T

0

rtdt}[(ST −K)
+ − (ZT −K)

+]}+E{BS(S0e
(c−r)T ,K, r, T,σ)}

for ST and ZT generated using common random numbers.

We are still able to make a choice of the constant c. One simple choice is c ≈

E(r) since this means that the second term is approximatelyE{BS(S0,K, r, T,σ)}.

Alternatively we can again experiment with small numbers of test simulations

and various values of c in an effort to roughly minimize the variance

var(exp{−

Z T

0

rtdt}[(ST −K)
+ − (ZT −K)

+]}).

Evidently it is fairly easy to arrive at a solution in the case ρ = 0 since

we really only need to average values of the Black Scholes price under various

randomly generated interest rates. This does not work in the case ρ 6= 0 because
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the conditioning involved in (5.18) does not result in the Black Scholes formula.

Nevertheless we could still use common random numbers to generate two interest

rate paths, one corresponding to ρ = 0 and the other to ρ 6= 0 and use the

former as a control variate in the estimation of an option price in the general

case.

Importance Sampling

The expectation under the correct model could also be determined by multi-

plying this random variable by the ratio of the two likelihood functions and

then taking the expectation under E0. By Girsanov’s Theorem, E{V (ST , T )} =

E0{V (ST , T )
dP
dP0
} where P is the measure on the set of stock price paths corre-

sponding to (5.15),(5.16) and P0 that measure corresponding to (5.17). The

required Radon-Nykodym derivative is

dP

dP0
= exp{

Z T

0

(rt − c)St
S2t σ

2
dSt −

Z T

0

(r2t − c
2)S2t

2σ2S2t
dt} (5.19)

= exp{

Z T

0

rt − c

Stσ2
dSt −

Z T

0

r2t − c
2

2σ2
dt} (5.20)

The resulting estimator of the value of the option is therefore an average

over all simulations of the value of

V (ST , T )exp{−

Z T

0

rtdt+

Z T

0

rt − c

σ2rt
dSt −

Z T

0

r2t − c
2

2σ2
dt} (5.21)

where the trajectories rt are simulated under interest rate model (5.16).

As discussed before, we can attempt to choose the drift parameter c to

approximately minimize the variance of the estimator (5.21).

Simulating Barrier and lookback options

For a financial times series Xt observed over the interval 0 · t · T , what

is recorded in newspapers is often just the initial value or open of the time
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series O = X0, the terminal value or close C = XT , the maximum over the

period or the high, H = max{Xt; 0 · t · T} and the minimum or the low

L = min{Xt; 0 · t · T}. Very few uses of the highly informative variables H

and L are made, partly becuase their distribution is a bit more complicated than

that of the normal distribution of returns. Intuitively, however, the difference

between H and L should carry a great deal of information about one of the

most important parameters of the series, its volatility. Estimators of volatility

obtained from the range of prices H −L or H/L will be discussed in Chapter 6.

In this section we look at how simple distributional properties of H and L can

be used to simulate the values of certain exotic path-dependent options.

Here we consider options such as barrier options, lookback options and hind-

sight options whose value function depends only on the four variables (O,H,L,C)

for a given process. Barrier options include knock-in and knock-out call options

and put options. Barrier options are simple call or put options with a fea-

ture that should the underlying cross a prescribed barrier, the option is either

knocked out (expires without value) or knocked in (becomes a simple call or

put option). Hindsight options, also called fixed strike lookback options are like

European call options in which we may use any price over the interval [0, T ]

rather than the closing price in the value function for the option. Of course for

a call option, this would imply using the high H and for a put the low L. A few

of these path-dependent options are listed below.

Option Payoff

Knock-out Call (C −K)+I(H · m)

Knock-in Call (C −K)+I(H ≥ m)

Look-back Put H − C

Look-Back Call C − L

Hindsight (fixed strike lookback) Call (H −K)+

Hindsight (fixed strike lookback) put (K − L)+

Table 5.1: Value Function for some exotic options
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For further details, see Kou et. al. (1999) and the references therein.

Simulating the High and the Close

All of the options mentioned above are functions of two or three variables O,C,

and H or O,C, and L and so our first challenge is to obtain in a form suitable

to calculation or simulation the joint distribution of these three variables. Our

argument will be based on one of the simplest results in combinatorial proba-

bility, the reflection principle. We would like to be able to handle more than

just a Black-Scholes model, both discrete and continuous distributions, and we

begin with the simple discrete case. Much of the material in this section can be

found in McLeish(2002).

In the real world, the market does not rigorously observe our notions of the

passage of time. Volatility and volume traded vary over the day and by day

of the week. A successful model will permit some variation in clock speed and

volatility, and so we make an attempt to permit both in our discrete model.

In the discrete case, we will assume that the stock price St forms a trinomial

tree, taking values on a set set D = {· · · d−1 < d0 < d1 · · · }... At each time

point t, the stock may either increase, decrease, or stay in the same place and

the probability of these movements may depend on the time. Specifically we

assume that if St = di, then for some parameters θ, pt, t = 1, 2, ...,

P (St+1 = dj |St = di) =
1

kt(θ)
×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pte
θ if j = i+ 1

1− 2pt if j = i

pte
−θ if j = i− 1

0 otherwise

(5.22)

where kt(θ) = 1+ pt(eθ + e−θ − 2) and pt · 1
2 for all t. If we choose all pt =

1
2 ,

then this is a model of a simple binomial tree which either steps up or down

at each time point. The increment in this process Xt+1 = St+1 − St has mean
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which depends on the time t except in the case θ = 0

E(Xt+1|Xt = di) =
pt
kt(θ)

{(di+1 − di)e
θ − (di − di−1)e−θ),

and variance, also time-dependent except in the case θ = 0. The parameter θ

describes one feature of this process which is not dependent on the time or the

location of the process, since the log odds of a move up versus a move down is

2θ = log[
P [UP]

P [DOWN]
].

Suppose we label the states of the process so that S0 = d0 and there is a barrier

at the point dm where m > 0. The main result conerning the distribution of

the high (or low) is the following:

Proposition 43 Suppose a stock price St has dynamics determined by (5.22),

and S0 = d0. Define

H = max
0� t�T

St and C = ST

Then for u < m,

Pθ(H ≥ dm|C=du)=
P0[C = d2m−u]
P0[C = du]

, for min(u, 0) < m, (5.23)

= 1, for min(u,0) ≥ m

Proof. We wish to count the number of paths over an interval of time [0, T ]

which touch or cross this barrier and end at a particular point du, u < m. Such

a path is shown as a solid line in Figure 5.1 in the case that the points di are

all equally spaced. Such a path has a natural “reflection” about the horizontal

line at dm. The reflected path is identical up to the first time τ that the original

path touches the point dm, and after this time, say at time t > τ, the relected

path takes the value d2m−i where St = di. This path is the dotted line in Figure

5.1. Notice that if the original path ends at du < dm, below the barrier, the

reflected path ends at d2m−u > dm or above the barrier. Each path touching
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Figure 5.1: Illustration of the Reflection Principle

the barrier at least once and ending below it at du has a reflected path ending

above it at d2m−u, and of course each path that ends above the barrier must

touch the barrier for a first time at some point and has a reflection that ends

below the barrier. This establishes a one-one correspondence useful for counting

these paths. Let us denote by the symbol “#” the “number of paths such that”.

Then:

#{H ≥ dm and C = du < dm} = #{C = d2m−u}.

Now consider the probability of any path ending at a particular point du,

(S0 = d0, S1, ..., ST = du).

To establish this probability, each time the process jumps up in this interval

we must multiply by the factor pte
θ

kt(θ)
and each time there is a jump down we

multiply by pte
−θ

kt(θ)
. If the process stays in the same place we multiply by 1−2pt

kt(θ)
.

The reflected path has exactly the same factors except that after the time τ at

which the barrier is touched, the “up” jumps are replaced by “down” jumps and

vice versa. For an up jump in the original path multiply by e−2θ. For a down

jump in the original path, multiply by e2θ. Of course this allows us to compare

path probabilities for an arbitrary value of the parameter θ, say with P0, the



274 CHAPTER 5. SIMULATING THE VALUE OF OPTIONS

probability under θ = 0 since, if the path ends at C = du,

Pθ(path) =
eNUθe−NDθQ

t kt(θ)
P0[path]

=
euθQ
t kt(θ)

P0[path] (5.24)

where NU and ND are the number of up jumps and down jumps in the path.

Note that we have subscripted the probability measure by the assumed value of

the parameter θ. This makes it easy to compare the probabilities of the original

and the reflected path, since

Pθ[original path]
Pθ[reflected path]

= e−2θNU e2θND

where now the number of up and down jumps NU and ND are counted following

time τ. However, since ST = du and Sτ = dm, it follows that ND−NU = m−u

and that
P [original path]
P [reflected path]

= e2θ(u−m)

which is completely independent of how that path arrived at the closing value

du, depending only on the close. This makes it easy to establish the probability

of paths having the property that H ≥ dm and C = du < dm since there are

exactly the same number of paths such that C = d2m−u and the probabilities of

these paths differ by a constant factor e2θ(u−m). Finally this provides the useful

result for u < m.

Pθ[H ≥ dm and C = du] = e2θ(u−m)Pθ[C = d2m−u],

or, on division by P [C = du],

Pθ[H ≥ dm|C = du] =
e2θ(u−m)Pθ[C = d2m−u]

Pθ[C = du]

=
e2θ(u−m)eθ(2m−u)P0[C = d2m−u]

eθuP0[C = du]

=
P0[C = d2m−u]
P0[C = du]
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where we have used (5.24). This rather simple formula completely descibes the

conditional distribution of the high under an arbitrary value of the parameter

θ in terms of the value of the close under parameter value θ = 0.

Thus, the conditional distribution of the high of a process given the open and

close can be determined easily without knowledge of the underlying parameter

and is related to the distribution of the close when the “drift” θ = 0. This result

also gives the expected value of the high in fairly simple form if the points dj are

equally spaced. Suppose dj = j∆ for j = 0,±1,±2, .... Then for u = j∆,with

j ≥ 0 and k ≥ 1, (see Problem 1)

Pθ[H − C ≥ k∆|C = j∆] =

E[H |C = u] = u+∆
P [C > u and C−u

∆ is even]
P [C = u]

.

Roughly, (5.23) indicates that if you can simulate the close under θ, then

you use the properties of the close under θ = 0 to simulate the high of the

process. Consider the problem of simulating the high for a given value of the

close C = ST = du and again assuming that S0 = d0. Suppose we use inverse

transform from a uniform random variable U to solve the inequalities

Pθ( max
0� t�T

St ≥ dm+1|ST = du) < U · Pθ( max
0� t�T

St ≥ dm|ST = du)

for the value of dm. In this case the value of

dm = sup{dj ;UP0[ST = du] · P0[ST = d2j−u]}

is the generated value of the high. This inequality is equivalent to

P0[ST = d2m+2−u] < UP0[ST = du] · P0[ST = d2m−u].

Graphically this inequality is demonstrated in Figure ?? which shows the prob-

ability histogram of the distribution ST under θ = 0. The value UP0[ST = du]

is the y-coordinate of a point P
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Generating a High for a discrete distribution

randomly chosen from the bar corresponding to the point du. The high dm is

generated by moving horizontally to the right an even number of steps until just

before exiting the histogram. This is above the value d2m−u and dm is between

du and d2m−u.

A similar result is available for Brownian motion and Geometric Brownian

motion. A justification of these results can be made by taking a limit in the

discrete case as the time steps and the distances dj − dj−1 all approach zero. If

we do this, the parameter θ is analogous to the drift of the Brownian motion.

The result for Brownian motion is as follows:

Theorem 44 Suppose St is a Brownian motion process

dSt = µdt+ σdWt,

S0 = 0, ST = C,

H = max{St; 0 · t · T} and

L = min{St; 0 · t · T}.

If f0 denotes the Normal(0,σ2T ) probability density function, the distribution of
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C under drift µ = 0, then

UH =
f0(2H − C)

f0(C)
is distributed as U [0, 1] independently of C,

UL =
f0(2L− C)

f0(C)
is distributed as U [0, 1] independently of C.

ZH = H(H − C) is distributed as Exponential (
1

2
σ2T ) independently of C,

ZL = L(L− C) is distributed as Exponential (
1

2
σ2T )independently of C.

We will not prove this result since it is a special case of Theorem 46 below.

However it is a natural extension of Proposition 43 in the special case that

dj = j∆ for some ∆ and so we will provide a simple sketch of a proof using

this proposition. Consider the ratio

P0[C = d2m−u]
P0[C = du]

on the right side of (5.23). Suppose we take the limit of this as ∆ → 0 and as

m∆→ h and u∆→ c. Then this ratio approaches

f0(2h− c)

f0(c)

where f0 is the probability density function of C under µ = 0. This implies for

a Brownian motion process,

P [H ≥ h|C = c] =
f0(2h− c)

f0(c)
for h ≥ c. (5.25)

If we temporarily denote the cumulative distribution function of H given C = c

by Gc(h) then (5.25) gives an expression for 1 − Gc(h) and recall that since

the sumulative distribution function is continuous, when we evaluate it at the

observed value of a random variable we obtain a U [0, 1] random variable e.g.

Gc(H) ∼ U [0, 1]. In other words conditional on C = c we have

f0(2H − c)

f0(c)
∼ U [0, 1].

This result verifies a simple geometric procedure, directly analogous to that in

Figure 5.2, for generating H for a given value of C = c. Suppose we gener-

ate a point PH = (c, y) under the graph of f0(x) and uniformly distributed
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Figure 5.2: Generating H for a fixed value of C for a Brownian motion.

on {(c, y); 0 · y · f0(c)}. This point is shown in Figure ??. We regard the

y−coordinate of this point as the generated value of f0(2H− c). Then H can be

found by moving from PH horizontally to the right until we strike the graph of

f0 and then moving vertically down to the axis (this is now the point 2H − c)

and finally taking the midpoint between this coordinate 2H − c and the close

c to obtain the generated value of the high H. The low of the process can be

generated in the same way but with a different point PL uniform on the set

{(c, y); 0 · y · f0(c)}. The algorithm is the same in this case except that we

move horizontally to the left.

There is a similar argument for generating the high under a geometric Brown-

ian motion as well, since the logarithm of a geometric Brownian motion is a

Brownian motion process.

Corollary 45 For a Geometric Brownian motion process

dSt = µStdt+ σStdWt,

S0 = O and ST = C
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with f0 the normal(0,σ2T ) probability density function, we have

ln(H/O) ln(H/C) ∼ exp(
1

2
σ2T ) independently of O,C and

ln(L/O) ln(L/C) ∼ exp(
1

2
σ2T ) independently of O,C.

UH =
f0(ln(H

2/OC))

f0(ln(C/O))
∼ U [0, 1] independently of O,C and

UL =
f0(ln(L

2/OC))

f0(ln(C/O))
∼ U [0, 1] independently of O,C.

Both of these results are special cases of the following more general Theorem.

We refer to McLeish(2002) for the proof. As usual, we consider a price process

St and define the high H = max{St; 0 · t · T}, and the open and close O = S0,

C = ST .

Theorem 46 Suppose the process St satisfies the stochastic differential equa-

tion:

dSt = {ν +
1

2
σ0(St)}σ(St)λ2(t)dt+ σ(St)λ(t)dWt (5.26)

where σ(x) > 0 and λ(t) are positive real-valued functions such that g(x) =R x 1
σ(y)dy and θ =

R T
0
λ2(s)ds <∞ are well defined on <+.

(a) Then with f0 the N(0, θ) probability density function we have

UH =
f0{2g(H)− g(O)− g(C)}

f0{g(C)− g(O)}
∼ U [0, 1]

and UH is independent of C.

(b) For each value of T , ZH = (g(H) − g(O))(g(H) − g(C)) is independent of

O,C, and has an exponential distribution with mean 1
2θ.

A similar result holds for the low of the process over the interval, namely

that

UL =
f0{2g(L)− g(O)− g(C)}

f0{g(C)− g(O)}
∼ U [0, 1]
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and ZH = {g(L) − g(O)}{g(L) − g(C)} is independent of O,C, and has an

exponential distribution with mean 1
2θ.

Before we discuss the valuation of various options, we examing the signif-

icance of the ratio appearing in on the right hand side of (5.25) a little more

closely. Recall that f0 is the N(0,σ2T ) probability density function and so we

can replace it by

f0(2h− c)

f0(c)
=
exp{− (2h−c)2

2σ2T }

exp{− c2

2σ2T }
= exp{−2

zh
σ2T

} (5.27)

where zh = h(h − c) or in the more general case where S(0) = O may not be

equal to zero,

zh = (h− O)(h− c). (5.28)

This ratio f0(2h−c)
f0(c)

represents the probability that a particular process with

close c breaches a barrier at h and so the exponent

2
zh
σ2T

in the right hand side of (5.27) controls the probability of this event.

Of course we can use the above geometric algorithm for Brownian motion to

generated highs and closing prices for a geometric Brownian motion, for exam-

ple, St satisfying d ln(St) = σdWt (minor adjustments required to accommodate

nonzero drift). The graph of the normal probability density function f0(x) of

ln(C) is shown in Figure ??.

If a point PH is selected at random uniformly distributed in the region below

the graph of this density, then, by the usual arguments supporting the accep-

tance rejection method of simulation, the x-coordinate of this point is a variate

generated from the probability density function f0(x), that is, a simulated value

from the distribution of ln(C). The y-coordinate of such a randomly selected

point also generates the value of the high as before.If we extend a line horizon-

tally to the right from PH until it strikes the graph of the probability density and
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Figure 5.3: Simulating from the joint distribution of (H,C) or from (L,C)

then consider the abscissa, of this point, this is the simulated value of ln(H2/C),

and ln(H) the average the simulated values of ln(H2/C) and ln(C).

A similar point PL uniform under the probability density function f0 can be

used to generate the low of the process if we extend the line from PL to the left

until it strikes the density. Again the abscissa of this point is ln(L2/C) and the

average with ln(C) gives a simulated value of ln(L). Although the y−coordinate

of both PH and PL are uniformly distributed on [0, f0(C)] conditional on the

value of C they are not independent.

Suppose now we wish to price a barrier option whose payoff on maturity

depends on the value of the close C but provided that the high H did not

exceed a certain value, the barrier. This is an example of an knock-out barrier

but other types are similarly handled. Once again we assume the simplest form

of the geometric Brownian motion d ln(St) = σdWt and assume that the upper

barrier is at the point Oeb so that the payoff from the option on maturity T is

ψ(C)I(H < Oeb)

for some function ψ. It is clear that the corresponding value of H does not

exceed a boundary at Oeb if and only if the point PH is below the graph of the
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Figure 5.4: Simulating a knock-out barrier option with barrier at Oeb

probability density function but not in the shaded region obtained by reflecting

the right hand tail of the density about the vertical line x = b − ln(O) in

Figure 5.4. To simulate the value of the option, choose points uniformly under

the graph of the probability density f0(x). For those points in the non-shaded

region under f0 (the x-coordinate of these points are simulated values ψ(C)of

ln(C) under the condition that the barrier is not breached) we average the values

of ψ(C) and for those in the shaded region we average 0.

Equivalently,

Eψ(C)I(H < Oeb) = Eψ∗(C)

where

ψ∗(C) =

⎧⎨⎩ ψ(C) for C · Oeb

−ψ(2b+ ln(O2/C)) for C > Oeb
.

and so the barrier option can be priced as if it were a vanilla European option

with payoff function ψ∗(C).

Any option whose value depends on the high and the close of the process

(or (L,C)) can be similarly valued as a European option. If an option be-

comes worthless whenever an upper boundary at Oeb is breached, we need only
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multiply the payoff from the option ignoring the boundary by the factor

1− exp{−2
zh
σ2T

}

with

zh = b(b+ ln(O/C))

to accommodate the filtering effect of the barrier and then value the option as

if it were a European option.

There is a a variety of distributional results related to H, some used by

Redekop (1995) to test the local Brownian nature of various financial time series.

These are easily seen in Figure 5.5. For example, for a Brownian motion process

with sero drift, suppose we condition on the value of 2H − O − C. Then the

point PH must lie (uniformly distributed) on the line L1 and therefore the point

H lies uniformly on this same line but to the right of the point O. This shows

that conditional on 2H − O − C the random variable H − O is uniform or,

H − O

2H − O − C
∼ U [0, 1].

Similarly, conditional on the value of H, the point PH must fall somewhere on

the curve labelled C2 whose y-coordinate is uniformly distributed showing that

C − O

2H − O − C
∼ U [0, 1].

Redekop shows that for a Brownian motion process, the statistic

H − O

2H − O − C
(5.29)

is supposed to be uniformly [0, 1] distributed but when evaluated using real

financial data, is far too often close to or equal the extreme values 0 or 1.

The joint distribution of (C,H) can also be seen from Figure 5.6. Note

that the rectangle around the point (x, y) of area ∆x∆y under the graph of the

density, when mapped into values of the high results in an interval of values for
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Figure 5.5: Some uniformly distributed statistics for Brownian Motion

(2H − C) of width −∆y/φ0(2y − x) where φ0 is the derivative of the standard

normal probability density function (the minus sign is to adjust for the negative

slope of the density here). This interval is labelled ∆(2H − C). This, in turn

generates the interval ∆H of possible values of H, of width exactly half this, or

−∆y

2φ0(2y − x)
.

Inverting this relationship between (x, y) and (H,C),

P [H ∈ ∆H,C ∈ ∆C] = −2φ0(2y − x)∆x∆y

confirming that the joint density of (H,C) is given by −2φ0(2y − x) for x < y.

In order to get the joint density of the High and the Close when the drift is

non-zero, we need only multiply by the ratio of the two normal density functions

of the close
fµ(x)

f0(x)

and this gives the more general result in the table below.

The table below summarizes many of our distributional results for a Brown-

ian motion process with drift on the interval [0, 1],

dSt = µdt+ σdWt, with S0 = O.
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Figure 5.6: Confirmation of the joint density of (H,C)

Statistic Density Conditions

X = C − O,

Y = H − O
f(y, x) = −2φ0(2y − x) exp(µx− µ2/2)

−∞ < x < y,

and y > 0,σ = 1

given O

Y |X fY |X(y|x) = 2(2y − x)e−2y(y−x) y > x,σ = 1

Z = Y (Y −X) exp((σ2/2) given O,X

(L− O)(L− C) exp(σ2/2) given (O,C)

(H − O)(H − C) exp(σ2/2) given (O,C)

H−O
2H−O−C U [0, 1] drift ν = 0, given O, 2H − O − C

L−O
2L−O−C U [0, 1] drift ν = 0, given O, 2L− O − C

C−O
2H−O−C U [−1, 1] drift ν = 0, given H,O

TABLE 5.2: Some distributional results for High, Close and Low.

We now consider briefly the case of non-zero drift for a geometric Brownian

motion. Fortunately, all that needs to be changed in the results above is the

marginal distribution of ln(C) since all conditional distributions given the value

of C are the same as in the zero-drift case. Suppose an option has payoff on
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maturity ψ(C) if an upper barrier at level Oeb, b > 0 is not breached. We have

already seen that to accommodate the filetering effect of this knock-out barrier

we should determine, numerically or by simulation, the expected value

E[ψ(C)(1− exp{−2
b(b+ ln(O/C))

σ2T
})]

the expectation conditional (as always) on the value of the open O. The effect

of a knock-out lower barrier at Oe−a is essentially the same but with b replaced

by a, namely

E[ψ(C)(1− exp{−2
a(a+ ln(C/O))

σ2T
})].

In the next section we consider the effect of two barriers, both an upper and a

lower barrier.

One Process, Two barriers.

We have discussed a simple device above for generating jointly the high and the

close or the low and the close of a process given the value of the open. The joint

distribution of H,L,C given the value of O or the distribution of C in the case

of upper and lower barriers is more problematic. Consider a single factor model

and two barriers- an upper and a lower barrier. Note that the high and the

low in any given interval is dependent, but if we simulate a path in relatively

short segments, by first generating n increments and then generating the highs

and lows within each increment, then there is an extremely low probability

that the high and low of the process will both lie in the same short increment.

For example for a Brownian motion with the time interval partitioned into 5

equal subintervals, the probability that the high and low both occur in the

same increment is less than around 0.011 whatever the drift. If we increase the

number of subintervals to 10, this is around 0.0008. This indicates that provided

we are willing to simulate highs, lows and close in ten subintervals, pretending
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that within subintervals the highs and lows are conditionally independent, the

error in our approximation is very small.

An alternative, more computationally intensive, is to differentiate the infinite

series expression for the probability P (H · b, L ≥ a,C = u|O = 0] A first step

in this direction is the the following result, obtained from the reflection principle

with two barriers.

Theorem 47 For a Brownian motion process

dSt = µdt+ dWt, S0 = 0

defined on [0, 1] and for −a < u < b,

P (L < −a or H > b|C = u)

=
1

φ(u)

∞X
n=1

[φ{2n(a+ b) + u}+ φ{2n(a+ b)− 2a− u}

+ φ{−2n(b+ a) + u}+ φ{2n(b+ a) + 2a+ u}]

where φ is the N(0, 1) probability density function.

Proof. The proof is a well-known application of the reflection principal.

It is sufficient to prove the result in the case µ = 0 since the conditional

distribution of L,H given C does not depend on µ (A statistician would say

that C is a sufficient statistic for the drift parameter). Denote the following

paths determined by their behaviour on 0 < t < 1. All paths are assumed to

end at C = u.
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A+1 = H > b (path goes above b)

A+2 = path goes above b and then falls below −a

A+3 = goes above b then falls below −a then rises above b

etc.

A−1 = L < −a

A−2 = path falls below −a then rises above b

A−3 = falls below −a then rises above b then falls below −a

etc.
For an arbitrary event A, denote by P (A|u) probability of the event conditional

on C = u. Then according to the reflection principal the probability that the

Brownian motion leaves the interval [−a, b] is given from an inclusion-exclusion

argument by

P (A+1|u)− P (A+2|u) + P (A+3|u)− · · · (5.30)

+P (A−1|u)− P (A−2|u) + P (A−3|u) · · ·

This can be verified by considering the paths in Figure 5.7. (It should be noted

here that, as in our application of the reflection principle in the one-barrier case,

the reflection principle allows us to show that the number of paths in two sets is

the same, and this really only translates to probability in the case of a discrete

sample space, for example a simple random walk that jumps up or down by a

fixed amount in discrete time steps. This result for Brownian motion obtains if

we take a limit over a sequence of simple random walks approaching a Brownian

motion process.)

Note that

P (A+1|u) =
φ(2b− u)

φ(u)

P (A+2n|u) =
φ{2n(a+ b) + u}

φ(u)

P (A+(2n−1)|u) =
φ{2n(a+ b)− 2a− u}

φ(u)
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Figure 5.7: The Reflection principle with Two Barriers

and

P (A−1|u) =
φ(−2a− u)

φ(u)

P (A−2n|u) =
φ{−2n(b+ a) + u}

φ(u)

P (A−(2n+1)|u) =
φ{2n(b+ a) + 2a+ u}

φ(u)
.

The result then obtains from substitution in (5.30).

As a consequence of this result we can obtain an expression for P (a < L ·

H < b, u < C < v) (see also Billingsley, (1968), p. 79) for a Brownian motion

on [0, 1] with zero drift:

P (a, b, u, v) = P (a < L · H < b, u < C < v)

=
∞X

k=−∞
Φ[v + 2k(b− a)]− Φ[u+ 2k(b− a)]

−
∞X

k=−∞
Φ[2b− u+ 2k(b− a)]− Φ[2b− v + 2k(b− a)]. (5.31)

where Φ is the standard normal cumulative distribution function. From (5.31)

we derive the joint density of (L,H,C) by taking the limit P (a, b, u, u+ δ)/δ as
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δ → 0, and taking partial derivatives with respect to a and b:

f(a, b, u) = 4
∞X

k=−∞
k2φ00[u+ 2k(b− a)]− k(1 + k)φ00[2b− u+ 2k(b− a)]

= 4
∞X
k=1

k2φ00[u+ 2k(b− a)]− k(1 + k)φ00[2b− u+ 2k(b− a)]

+ k2φ00[u− 2k(b− a)] + k(1− k)φ00[2b− u− 2k(b− a)] (5.32)

for a < u < b.

From this it is easy to see that the conditional cumulative distribution func-

tion of L given C = u,H = b is given by on a · u · b (where −2φ0(2b − u)

is the joint p.d.f. of H,C) by

F (a|b, u) = 1 +
∂2

∂b∂vP (a, b, u, v)|v=u
2φ0(2b− u)

(5.33)

=
−1

φ0(2b− u)

∞X
k=1

{−kφ0[u+ 2k(b− a)] + (1 + k)φ0[2b− u+ 2k(b− a)]

+ kφ0[u− 2k(b− a)] + (1− k)φ0[2b− u− 2k(b− a)]}

This allows us to simulate both the high and the low, given the open and the

close by first simulating the high and the close using −2φ0(2b− u) as the joint

p.d.f. of (H,C) and then simulating the low by inverse transform from the

cumulative distribution function of the form (5.33).

Survivorship Bias

It is quite common for retrospective studies in finance, medicine and to be

subject to what is often called “survivorship bias”. This is a bias due to the

fact that only those members of a population that remained in a given class

(for example the survivors) remain in the sampling frame for the duration of

the study. In general, if we ignore the “drop-outs” from the study, we do so

at risk of introducing substantial bias in our conclusions, and this bias is the

survivorship bias.
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Suppose for example we have hired a stable of portfolio managers for a large

pension plan. These managers have a responsibility for a given portfolio over

a period of time during which their performance is essentially under continuous

review and they are subject to one of several possible decisions. If returns below

a given threshhold, they are deemed unsatisfactory and fired or converted to

another line of work. Those with exemplary performance are promoted, usually

to an administrative position with little direct financial management. And those

between these two “absorbing” barriers are retained. After a period of time,

T, an amibitious graduate of an unnamed Ivey league school working out of

head office wishes to compare performance of those still employed managing

portfolios. How are should the performance measures reflect the filtering of

those with unusually good or unusually bad performance? This is an example

of a process with upper and lower absorbing barriers, and it is quite likely

that the actual value of these barriers differs from one employee to another, for

example the son-in-law of the CEO has a substantially different barriers than the

math graduate fresh out of UW. However, let us ignore this difference, at least

for the present, and concentrate on a difference that is much harder to ignore

in the real world, the difference between the volatility parameters of portfolios,

possibly in different sectors of the market, controlled by different managers.

For example suppose two managers were responsible for funds that began and

ended the year at the same level and had approximately the same value for the

lower barrier as in Table 5.2. For each the value of the volatility parameter

σ was estimated using individual historical volatilities and correlations of the

component investments.

Portfolio Open price Close Price Lower Barrier Volatility

1 40 5658 30 .5

2 40 5614 30 .2

Table 5.3
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Suppose these portfolios (or their managers) have been selected retrospec-

tively from a list of “survivors” which is such that the low of the portfolio value

never crossed a barrier at l = Oe−a (bankruptcy of fund or termination or

demotion of manager, for example) and the high never crossed an upper barrier

at h = Oeb. However, for the moment let us assume that the upper barrier is so

high that its influence can be neglected, so that the only absorbtion with any

substantial probability is at the lower barrier. We interested in the estimate of

return from the two portfolios, and a preliminary estimate indicates a continu-

ously compounded rate of return from portfolio 1 of R1 = ln(56.625/40) = 35%

and from portfolio two of R2 = ln(56.25/40) = 34%. Is this difference significant

and are these returns reasonably accurate in view of the survivorship bias?

We assume a geometric Brownian motion for both portfolios,

dSt = µStdt+ σStdWt, (5.34)

and define O = S(0), C = S(T ),

H = max
0� t�T

S(t), L = min
0� t�T

S(t)

with parameters µ,σ possibly different.

In this case it is quite easy to determine the expected return or the value of

any performance measure dependent on C conditional on survival, since this is

essentially the same as a problem already discussed, the valuation of a barrier

option. According to (5.27), the probability that a given Brownian motion

process having open 0 and close c strikes a barrier placed at l < min(0, c) is

exp{−2
zl
σ2T

}

with

zl = l(l − c).

Converting this statement to the Geometric Brownian motion (5.34), the prob-

ability that a geometric Brownian motion process with open O and close c
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breaches a lower barrier at l is

P [L · l|O,C] = exp{−2
zl
σ2T

}

with

zl = ln(O/l) ln(C/l) = a(a+ ln(C/O)).

Of course the probability that a particular path with this pair of values (O,C)

is a “survivor” is 1 minus this or

1− exp{−2
zl
σ2T

}. (5.35)

When we observe the returns or the closing prices C of survivors only, the results

have been filtered with probability (5.35). In other words if the probability

density function of C without any barriers at all is f(c) (in our case this is a

lognormal density with parameters that depend on µ and σ) then the density

function of C of the survivors in the presence of a lower barrier is proportional

to

f(c)[1− exp{−2
ln(O/l) ln(c/l)

σ2T
}]

= f(c)(1− (
l

c
)λ), with λ =

2 ln(O/l)

σ2T
=

2a

σ2T
> 0.

It is interesting to note the effect of this adjustment on the moments of C for

various values of the parameters. For example consider the expected value of C

conditional on survival

E(C|L ≥ l] =

R∞
l
cf(c)(1− ( lc)

λ)dcR∞
l
f(c)(1− ( lc)

λ)dc

=
E[CI(C ≥ l)]− lλE[C1−λI(C ≥ l)]
P [C ≥ l]− lλE[C−λI(C ≥ l)]

(5.36)

and this is easy to evaluate in the case of interest in which C has a lognormal

distribution. In fact the same kind of calculation is used in the development of

the Black-Scholes formula. In our case C = exp(Z) where Z is N(µT,σ2T )



294 CHAPTER 5. SIMULATING THE VALUE OF OPTIONS

and so for any p and l > 0, we have from (3.11), using the fact that E(C |O) =

O exp{µT + σ2T/2}, (and assuming O is fixed),

E[CpI(C > l)] = Opexp{pµT + p2σ2T/2}Φ(
1

σ
√
T
(a+ µT ) + σ

√
Tp)

To keep things slightly less combersome, let us assume that we observe the

geometric Brownian motion for a period of T = 1. Then (5.36) results in

Oeµ+σ
2/2Φ( 1σ (a+ µ) + σ)− Oe−aλ+(1−λ)µ+(1−λ)

2σ2/2Φ( 1σ (a+ µ) + σ(1− λ))

Φ( 1σ (a+ µ))− e
−λa−λµ+λ2σ2/2Φ( 1σ (a+ µ)− σλ)

Let there be no bones about it. At first blush this is still a truly ugly and

opaque formula. We can attempt to beautify it by re-expressing it in terms more

like those in the Black-Scholes formula, putting

d2(λ) =
1

σ
(µ− a), and d2(0) =

1

σ
(a+ µ),

d1(λ) = d2(λ) + σ, d1(0) = d2(0) + σ.

These are analogous to the values of d1,d2 in the Black-Scholes formula in the

case λ = 0. Then

E[C|L ≥ l] = O
eµ+σ

2/2Φ(d1(0))− e−λa+(1−λ)µ+(1−λ)
2σ2/2Φ(d1(λ))

Φ(d2(0))− e−λa−λµ+λ
2σ2/2Φ(d2(λ))

. (5.37)

What is interesting is how this conditional expectation, the expected close for

the survivors, behaves as a function of the volatility parameter σ. Although this

is a rather complicated looking formula, we can get a simpler picture (Figure

5.8) using a graph with the drift parameter µ chosen so that E(C) = 56.25 is

held fixed. We assume a = − ln(30/40) (consistent with Table 5.2)and vary

the value of σ over a reasonable range from σ = 0.1 (a very stable investment)

through σ = .8 (a highly volatile investment). In Figure 5.8 notice that for small

volatility, e.g. for σ · 0.2, the conditional expectation E[C |L ≥ 30] remains

close to its unconditional value E(C) but for σ ≥ 0.3 it increases almost linearly

in σ to around 100 for σ = 0.8. The intuitive reason for this dramatic increase is

quite simple. For large values of σ the process fluctuates more, and only those
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Figure 5.8: E[C |L ≥ 30] for various values of (µ,σ) chosen such that E(C) =

56.25.

paths with very large values of C have abeen able to avoid the absorbing barrier

at l = 30. Two comparable portfolios with unconditional return about 40%

will show radically different apparent returns in the presence of an absorbing

barrier. If σ = 20% then the survivor’s return will still average around 40%,

but if σ = 0.8, the survivor’s returns average close to 150%. The practical

implications are compelling. If there is any form of survivorship bias (as there

usually is), no measure of performance should be applied to the returns from

different investments, managers, or portfolios without an adjustment for the

risk or volatility.

In the light of this discussion we can return to the comparison of the two

portfolios in Table 5.3. Evidently there is little bias in the estimate of returns

for portfolio 2, since in this case the volatility is small σ = 0.2. However there

is very substantial bias associated with the estimate for portfolio 1, σ = 0.5.

In fact if we repeat the graph of Figure 5.8 assuming that the unconditional

return is around 8% we discover that E[C|L ≥ 30] is very close to 5658 when

σ = 0.5 indicating that this is a more reasonable estimator of the performance

of portfolio 1.
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Figure 5.9: The Effect of Surivorship bias for a Brownian Motion

For a Brownian motion process it is easy to demonstrate graphically the

nature of the surivorship bias. In Figure 5.9, the points under the graph of

the probability density which are shaded correspond to those which whose low

fell below the absorbing barrier at l = 30. The points in the unshaded region

correspond to the survivors. The expected value of the return conditional on

survival is the mean return (x-cooredinate of the center of mass) of those points

chosen uniformly under the density but above the lower curve, in the region

labelled “survivors”. Note that if the mean µ of the unconditional density

approaches the barrier (here at 30) , this region approaches a narrow band

along the top of the curve and to the right of 30. Similarly if the unconditional

standard deviation or volatility increases, the unshaded region stretches out to

the right in a narrow band and the conditional mean increases.

We arrive at the following seemingly paradoxical conclusions which make it

imperative to adjust for survivorship bias: the conditional mean, conditional on

survivorship, may increase as the volatility increases even if the unconditional
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mean decreases.

Let us return to the problem with both an upper and lower barrier and

consider the distribution of returns conditional on the low never passing a barrier

Oe−a and the high never crossing a barrier at Oeb ( representing a fund buyout,

recruitment of manager by competitor or promotion of fund manager to Vice

President). It is common in process control to have an upper and lower barrier

and to intervene if either is crossed, so we might wish to study those processes

for which no intervention was required. Similarly, in a retrospective study we

may only be able to determine the trajectory of a particle which has not left

a given region and been lost to us. Again as an example, we use the following

data on two portfolio managers, both observed conditional on survival, for a

period of one year.

Portfolio Open price Close Price Lower Barrier Upper Barrier Volatility

1 40 5658 30 100 .5

2 40 5614 30 100 .2

If φ denotes the standard normal p.d.f., then the conditional probability

density function of ln(C/O) given that Oe−a < L < H < Oeb is proportional

to 1
σφ(

u−µ
σ )w(u) where, as before

w(u) = 1− e−2b(b−u)/σ
2

+ e−2(a+b)(a+b−u)/σ
2

− e−2a(a+u)/σ
2

+ e−2(a+b)(a+b+u)/σ
2

− E(W ),

where W = I[frac1(
ln(H)

a+ b
) >

b

a+ b
] + I[frac1(

− ln(L)

a+ b
) >

a

a+ b
], and

b = ln(100/40), a = −ln(30/40).

The expected return conditional on survival when the drift is µ is given by

E(ln(C/O)|30 < L < H < 100) =
1

σ

Z b

−a
uw(u)φ(

u− µ

σ
)du.
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where w(u) is the weight function above. Therefore a moment estimator of the

drift for the two portfolios is determined by setting this expected return equal

to the observed return, and solving for µi the equation

1

σi

Z b

−a
uw(u)φ(

u− µi
σi

)du = Ri, i = 1, 2.

The solution is, for portfolio 1, µ1 = 0 and for portfolio 2, µ2 = 0.3. Thus the

observed values of C are completely consistent with a drift of 30% per annum

for portfolio 2 and a zero drift for portfolio 1. The bias again very strongly

effects the portfolio with the greater volatility and estimators of drift should

account for this substantial bias. Ignoring the survivorship bias has led in the

past to some highly misleading conclusions about persistence of skill among

mutual funds.

Problems

1. If the values of dj are equally spaced, i.e. if dj = j∆, j = ...,−2,−1, 0, 1, ...and

with S0 = 0, ST = C and M = max(S0, ST ), show that

E[H |C = u] =M +∆
P [C > u and C−M

∆ is even]
P [C = u]

.

2. Let W (t) be a standard Brownian motion on [0, 1] with W0 = 0. Define

C =W (1) and H = max{W (t); 0 · t · 1}. Show that the joint probabil-

ity density function of (C,H) is given by

f(c, h) = 2φ(c)(2h− c)e−2h(h−c), for h > max(0, c)

where φ(c) is the standard normal probability density function.

3. Use the results of Problem 2 to show that the joint probability density

function of the random variables

Y = exp{−(2H − C)2/2}

and C is a uniform density on the region {(x, y); y < exp(x2/2)}.
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4. Let X(t) be a Brownian motion on [0, 1], i.e. Xt satisfies

dXt = µdt+ σdWt, and X0 = 0.

Define C = X(1) and H = max{X(t); 0 · t · 1}. Find the joint proba-

bility density function of (C,H).
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Chapter 6

Quasi- Monte Carlo

Multiple Integration

Introduction

In some sense, this chapter fits within Chapter 4 on variance reduction; in

some sense it is stratification run wild. Quasi-Monte Carlo methods are purely

deterministic, numerical analytic methods in the sense that they do not even

attempt to emulate the behaviour of independent uniform random variables, but

rather cover the space in d dimensions with fewer gaps than independent random

variables would normally admit. Although these methods are particularly when

evaluating integrals in moderate dimensions, we return briefly to the problem

of evaluating a one-dimension integral of the form

Z 1

0

f(x)dx.

The simplest numerical approximation to this integral consists of choosing a

point xj in the interval [
j
N ,

j+1
N ], j = 0, 1, ..., N − 1, perhaps the midpoint of the

301
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interval, and then evaluating the average

1

N

N−1X
j=0

f(xj). (6.1)

If the function f has one continuous derivative, such a numerical method with

N equally or approximately equally spaced points will have bias that approaches

0 at the rate 1/N because, putting M = sup{|f 0(z)|; 0 < z < 1},Z (j+1)/N

j/N

f(x)dx−
1

N
f(xj) ·

1

N2
M (6.2)

and so summing both sides over j gives

|

Z 1

0

f(x)dx−
1

N

N−1X
j=0

f(xj)| ·
1

N
M.

We will refer to the error in the numerical integral in this case

εN = |

Z 1

0

f(x)dx−
1

N

N−1X
j=0

f(xj)|

as O(N−1) which means that the sequence of errors εN satisfies

lim sup
N→∞

N−1εN <∞

or intuitively that the errors are bounded by a constant times N−1.

If the function f is known to have bounded derivatives of second or third

order, then integrals can be approximated to an even higher degree of precision.

For example various numerical quadrature formulae permit approximating an

integral of the form
R 1
0
f(x)w(x)dx with a weighted average of N points

NX
j=1

wjf(xj) (6.3)

in such a way that if f(x) is a polynomial of degree 2N − 1 or less, the approx-

imation is exact. Here the function w(x) is typically some density such as the

uniform, exponential or normal density and the optimal placement of the points

xj as well as the weights wj depends on w(x). Of course a smooth function
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can be closely approximated with a polynomial of high degree and so numerical

quadrature formulae of the form (6.3) permit approximating a one-dimension

integral arbitrarily closely provided that the function is sufficiently smooth, i.e.

it has bounded derivatives of sufficiently high order. We should note that in

this case, the weights wj and the points xj are both deterministic. By contrast,

the Monte Carlo integral bθMC =
1

N

NX
i=1

f(Ui)

with N points places these points at random or pseudo-random locations, has

zero bias but the standard deviation of the estimator
q
var(bθMC) is a constant

multiple of 1/
√
N . The Central Limit theorem assures us that

N1/2(bθMC −

Z 1

0

f(x)dx)

converges to a normal distribution which means that the error is order (in prob-

ability) N−1/2. Note that there is a change in our measure of the size of an

error, since only the variance or standard deviation of a given term in the se-

quence of errors is bounded, not the whole sequence of errors εN . In particular

if a pseudo-random estimator bθ satisfies
E(bθ − Z 1

0

f(x)dx)2 = O(N−2k)

then we say that the error is OP (N−k) where OP denotes “order in probability”.

This is clearly a weaker notion than O(N−k). Even the simplest numerical

integral (6.1) has a faster rate of convergence then that of the Monte Carlo

integral with or without use of the variance reduction techniques of Chapter 4.

This is a large part of the reason numerical integration is usually preferred to

Monte Carlo methods in one dimension, at least for smooth functions, but it

also indicates that for regular integrands, there is room for improvement over

Monte Carlo in higher dimensions as well.

The situation changes in 2 dimensions. Suppose we wish to distribute N

points over a uniform lattice in some region such as the unit square. One
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possible placement is to points of the form

(
i
√
N
,
j
√
N
), i, j = 1, 2, ...

√
N

assuming for convenience of notation that
√
N is integer. The distance between

adjacent points is of order 1/
√
N and by an argument akin to (6.2), the bias in

a numerical integral is order 1/
√
N . This is the now same order as the standard

deviation of a Monte Carlo integral, indicating that the latter is already, in two

dimensions, competitive. When the dimension s ≥ 3, a similar calculation shows

that the standard deviation of the Monte-Carlo method is strictly smaller order

than the error of a numerical integral with weights at lattice points. Essentially,

the placement of points on a lattice for evaluating a d−dimensional integral is far

from optimal when d ≥ 2. Indeed various deterministic alternatives called quasi-

random samples provide substantially better estimators especially for smooth

functions of several variables. Quasi-random samples are analogous to equally

spaced points in one dimension and are discussed at length by Niederreiter

(1978), where it is shown that for sufficiently smooth functions, one can achieve

rates of convergence close to the rate 1/N for the one-dimensional case.

We have seen a number of methods designed to reduce the dimensionality

of the problem. Perhaps the most important of these is conditioning, which can

reduce an d−dimensional integral to a one-dimensional one. In the multidimen-

sional case, variance reduction has an increased importance because of the high

variability induced by the dimensionality of crude methods. The other vari-

ance reduction techniques such as regression and stratification carry over to the

multivariable problem with little change, except for the increased complexity of

determining a reasonable stratification in such problems.

Errors in numerical Integration

We consider the problem of numerical integration in d dimensions. For d = 1

classical integration methods, like the trapezoidal rule, are weighted averages of



INTRODUCTION 305

the value of the function at equally spaced points;

Z 1

0

f(u)du ≈
mX
n=0

wnf(
n

m
), (6.4)

where w0 = wm = 1/(2m), and wn = 1/m for 1 · n · m − 1. The trape-

zoidal rule is exact for any function that is linear (or piecewise linear between

grid-points) and so we can assess the error of integration by using a linear ap-

proximation through the points ( jm , f(
j
m )) and (

j+1
m , f( j+1m )). Assume

j

m
< x <

j + 1

m
.

If the function has a continuous second derivative, we have by Taylor’s Theorem

that the difference between the function and its linear interpolant is of order

O(x− j
m )

2, i.e.

f(x) = f(
j

m
) + (x−

j

m
)m[f(

j + 1

m
)− f(

j

m
)] +O(x−

j

m
)2.

Integrating both sides between j
m and j+1

m , notice thatZ (j+1)/m

j/m

{f(
j

m
) + (x−

j

m
)m[f(

j + 1

m
)− f(

j

m
)]}dx =

f( j+1m ) + f( jm )

2m

is the area of the trapezoid and the error in the approximation is

O(

Z (j+1)/m

j/m

(x−
j

m
)2) = O(m−3).

Adding these errors of approximation over them trapezoids gives O(m−2). Con-

sequently, the error in the trapezoidal rule approximation is O(m−2), provided

that f has a continuous second derivative on [0, 1].

We now consider the multidimensional case, d ≥ 2. Suppose we evaluate

the function at all of the (m+ 1)d points of the form (n1m , . . . ,
ns
m ) and use this

to approximate the integral. The classical numerical integration methods use a

Cartesian product of one-dimensional integration rules. For example, the d-fold

Cartesian product of the trapezoidal rule is
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Z
[0,1]d

f(u)du ≈
mX

n1=0

· · ·
mX

ns=0

wn1 · · ·wnsf(
n1
m
, . . . ,

ns
m
), (6.5)

where [0, 1]d is the closed s-dimensional unit cube and the wn are as before.

The total number of nodes is N = (m+ 1)s. From the previous error bound it

follows that the error is O(m−2), provided that the second partial derivatives of

f are continuous on [0, 1]d. We know that the error cannot be smaller because

when the function depends on only one variable and is constant in the others,

the one-dimensional result is a special case. In terms of the number N of nodes

or function evaluations, since m = O(N1/d), the error is O(N−2/d), which,

with increasing dimension d, changes dramatically. For example if we required

N = 100 nodes to achieve a required precision in the case d = 1, to achieve the

same precision for a d = 5 dimensional integral using this approach we would

need to evaluate the function at a total of 100d = 1010= ten billion nodes. As

the dimension increases, the number of function evaluations or computation

required for a fixed precision increases exponentially. This phenomena is often

called the “curse of dimensionality”, exorcised in part at least by quasi or regular

Monte Carlo methods.

The ordinary Monte Carlo method based on simple random sampling is free

of the curse of dimensionality. By the central limit theorem, even a crude Monte

Carlo estimate for numerical integration yields a probabilistic error bound of the

form OP (N
−1/2) in terms of the number N of nodes (or function evaluations)

and this holds under a very weak regularity condition on the function f . The

remarkable feature here is that this order of magnitude does not depend on the

dimension d. This is true even if the integration domain is complicated. Note

however that the definition of “O” has changed from one that essentially con-

siders the worst case scenario to OP which measures the average or probabilistic

behaviour of the error.

Some of the oft-cited deficiencies of the Monte Carlo method limiting its
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usefulness are:

1. There are only probabilistic error bounds (there is no guarantee that the

expected accuracy is achieved in a particular case -an alternative approach

would optimize the “worst-case” behaviour);

2. Regularity of the integrand is not exploited even when it is available. The

probabilistic error bound OP (N−1/2) holds under a very weak regularity

condition but no extra benefit is derived from any additional regularity or

smoothness of the integrand. For example the estimator is no more precise

if we know that the function f has several continuous derivatives. In cases

when we do not know whether the integrand is smooth or differentiable,

it may be preferable to use Monte Carlo since it performs reasonably well

without this assumption.

3. Genuine Monte Carlo is not feasible anyway since generating truly in-

dependent random numbers is virtually impossible. In practice we use

pseudo-random numbers to approximate independence.

Theory of Low discrepancy sequences

The quasi-Monte Carlo method places attention on the objective, approximating

an integral, rather than attempting to imitate the behaviour of independent

uniform random variates. Quasi-random sequences of low discrepancy sequences

would fail all of the tests applied to a pseudo-random number generate except

those testing for uniformity of the marginal distribution because the sequence

is, by construction, autocorrelated. Our objective is to approximate an integral

using a average of the function at N points, and we may adjust the points so that

the approximation is more accurate. Ideally we would prefer these sequences to

be self-avoiding, so that as the sequence is generated, holes are filled. As usual
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we will approximate the integral with an average;

Z
[0,1]d

f(u)du ≈
1

N

NX
n=1

f(xn). (6.6)

Quasi Monte-Carlo is able to achieve a deterministic error bound O((logN)d/N)

for suitably chosen sets of nodes and for integrands with a relatively low degree

of regularity, much better than the rate O(N−1/2) achieved by Monte Carlo

methods. Even smaller error bounds can be achieved for sufficiently regular

integrands. There are several algorithms or quasi-Monte-Carlo sequences which

give rise to this level of accuracy.

Suppose, as with a crude Monte Carlo estimate, we approximate the integral

with (6.6) with x1, . . . ,xN ∈ [0, 1]d. The sequence x1, . . . ,xN,... is determinis-

tic (as indeed are the pseudo-random sequences we used for Crude Monte-Carlo),

but they are now chosen so as to guarantee a small error. Points are chosen so

as to achieve the maximal degree of uniformity or a low degree of discrepancy

with a uniform distribution. A first requirement for a low discrepancy sequence

is that we obtain convergence of the sequence of averages so that:

lim
N→∞

1

N

NX
n=1

f(xn) =

Z
[0,1]d

f(u)du,

and this should hold for a reasonably large class of integrands. This suggests

that the most desirable sequences of nodes x1, . . . ,xN are “evenly distributed”

over [0, 1]d. Various notions of discrepancy have been considered as quantitative

measures for the deviation from the uniform distribution but we will introduce

only one here, the so-called “star-discrepancy”. The star discrepancy is perhaps

the more natural one in statistics, since it measures the maximum difference be-

tween the empirical cumulative distribution function of the points {x1, . . . ,xN}

and the uniform distribution of measure on the unit cube. Suppose we construct

bFN (x) = 1

N

NX
n=1

I(xn · x),
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the empirical cumulative distribution function of the points x1, . . . ,xN, and

compare it with

F (x) =F (x1, ...xd) = min(1, x1x2...xd) if all xi ≥ 0

the theoretical uniform distribution on [0, 1]d. While any measure of the dif-

ference could be used, the star discrepancy is simply the Kolmogorov-Smirnov

distance between these two cumulative distribution functions

D∗N = sup
x
| bFN (x)− F (x)| =sup

B
|
# of points in B

N
− λ(B)|,

where the supremum is taken over all rectangles B of the form [0, x1]× [0, x2]×

... × [0, xd] and where λ(B) denotes the Lebesgue measure of B in Rd.

It makes intuitive sense that we should choose points {x1, . . . ,xN} such

that the discrepancy is small for each N. This intuition is supported by a

large number of theoretical results, at least in the case of smooth integrands

with smooth partial derivatives. The smoothness is measured using V (f), a

“total variation” in the sense of Hardy and Krause, intuitively the length of the

monotone segments of f. For a one dimensional function with a continuous first

derivative it is simply

V (f) =

Z 1

0

|f 0(x)|dx.

In higher dimensions, the Hardy Krause variation may be defined in terms of

the integral of partial derivatives;

Definition 48 Hardy and Krause Total Variation

If f is sufficiently differentiable then the variation of f on [0, 1]d in the sense

of Hardy and Krause is

V (f) =
sX

k=1

X
1� i1<···<ik�s

V (k)(f ; i1, . . . , ik), (6.7)

where

V (k)(f ; i1, . . . , ik) =

Z 1

0

· · ·

Z 1

0

¯̄̄̄
∂sf

∂xi1 · · · ∂xik

¯̄̄̄
xj=1,j 6=i1,...,ik

dxi1 · · · dxik . (6.8)
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The precision in our approximation to an integral as an average of function

values is closely related to the discrepancy measure as the following result shows.

Indeed the mean of the function values differs from the integral of the function

by an error which is bounded by the product of the discrepancy of the sequence

and the measure V (f) of smoothness of the function.

Theorem 49 (Koksma-Hlawka inequality)

If f has bounded variation V (f) on [0, 1]d in the sense of Hardy and Krause,

then, for any x1, . . . ,xN ∈ [0, 1]d, we have

|
1

N

NX
n=1

f(xn)−

Z
Is
f(u)du| · V (f)D∗N . (6.9)

We do not normally use this inequality as it stands since the evaluation of the

error bound on the right hand side requires determining V (f), typically a very

difficult task. However this bound allows a separation between the regularity

properties of the integrand and the degree of uniformity of the sequence. We can

guarantee a reasonable approximation for any function f with bounded total

variation V (f) by ensuring that the discrepancy of the sequence D∗N is small.

For this reason, the discrepancy is central to quasi-Monte Carlo integration.

Sequences with small star discrepancy are called low-discrepancy sequences. In

fact since a variety of sequences exist with discrepancy of order

(logN)d

N

as N →∞, the term “low-discrepancy” is often reserved for these.

Examples of low discrepancy sequences

Van der Corput Sequence.

In the one dimensional case the best rate of convergence isO(N−1 logN), N ≥ 2.

It is achieved, for example, by the van der Corput sequence, obtained by
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reversing the digits in the representation of some sequence of integers in a given

base. Consider one-dimensional case d = 1 and base b = 2. Take the base b

representation of the sequence of natural numbers;

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, ...

and then map these into the unit interval [0, 1] so that the integer
Pt

k=0 akb
k

is mapped into the point
Pt

k=0 akb
−k−1. These binary digits are mapped into

(0,1) in the following three steps;

1. Write n using its binary expansion. e.g. 13 = 1(8) + 1(4) + 0(2) + 1(1)

becomes 1101.

2. Reverse the order of the digits. e.g. 1101 becomes 1011.

3. Determine the number that this is the binary decimal expansion for. e.g.

1011 = 1(12) + 0(
1
4 ) + 1(

1
8) + 1(

1
16) =

11
16 .

Thus 1 generates 1/2, 10 generates 0( 12) + 1(
1
4), 11 generates 1(

1
2) + 1(

1
4)

and the sequence of positive integers generates the points. The intervals are

recursively split in half in the sequence 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, ... and

the points are fairly evenly spaced for any value for the number of nodes N ,

and perfectly spaced if N is of the form 2k − 1. The star discrepancy of this

sequence is

D∗N = O(
logN

N
)

which matches the best that is attained for infinite sequences.

The Halton Sequence

This is simply the multivariate extension of the Van der Corput sequence. In

higher dimensions, say in d dimensions, we choose d distinct primes, b1, b2, ...bd

(usually the smallest primes) and generate, from the same integer m , the d

components of the vector using the method described for the Van der Corput
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sequence. For example, we consider the case d = 3 and use bases b1 = 2,

b2 = 3, b3 = 5 because these are the smallest three prime numbers. The first

few vectors , (12 ,
1
3 ,

1
5), (

1
4 ,

2
3 ,

2
5), (

3
4 ,

1
9 ,

3
5), ...are generated in the table below.

m
repres

base 2

first

component

repres.

base 3

second

comp

repres

base 5

third

comp

1 1 1/2 1 1/3 1 1/5

2 10 1/4 2 2/3 2 2/5

3 11 3/4 10 1/9 3 3/5

4 100 1/8 11 4/9 4 4/5

5 101 5/8 12 7/9 10 1/25

6 110 3/8 20 2/9 11 6/25

7 111 7/8 21 5/9 12 11/25

9 1000 1/16 22 8/9 13 16/25

10 1001 9/16 100 1/27 14 21/25

Figure 6.1 provides a plot of the first 500 points in the above Halton sequence

of dimension 3.

There appears to be greater uniformity than a sequence of random points

would have. Some patterns are discernible on the two dimensional plot of the

first 100 points, for example see Figures 6.2 and 6.3.

These figures can be compared with the plot of 100 pairs of independent

uniform random numbers in Figure 6.4, which seems to show more clustering

and more holes in the point cloud.

These points were generated with the following function for producing the

Halton sequence.

function x=halton(n,s)

%x has dimension n by s and is the first n terms of the halton sequence of

%dimension s.

p=primes(s*6); p=p(1:s); x=[];
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Figure 6.1: 500 points from a Halton seqnece of dimension 3

for i=1:s

x=[x (corput(n,p(i)))’];

end

function x=corput(n,b)

% converts integers 1:n to from van der corput number with base b

m=floor(log(n)/log(b));

n=1:n; A=[];

for i=0:m

a=rem(n,b); n=(n-a)/b;

A=[A ;a];

end

x=((1./b’).^(1:(m+1)))*A;

The Halton sequence is a genuine low discrepancy sequence in the sense that

D∗N = O(
(logN)d

N
)
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Figure 6.2: The first and second coordinate of 100 points from the Halton

sequence of dimension 3

and the coverage of the unit cube is reasonably uniform for small dimensions.

Unfortunately the notation O() hides a constant multiple, one which, in this

case, depends on the dimension d. Roughly (Niedereiter, 1992), this constant

is asymptotic to dd which grows extremely fast in d. This is one indicator that

for large d, the uniformity of the points degrades rapidly, largely because the

relative sparseness of the primes means that the d0th prime is very large for d

large. This results in larger holes or gaps in that component of the vector than

we would like. This is evident for example in Figure6.5 where we plot the last

two coordinates of the Halton sequence of dimension 15.

The performance of the Halton sequence is considerably enhanced by per-

muting the coefficients ak prior to mapping into the unit interval as is done by

the Faure sequence.
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Figure 6.3: The second and third coordinate of 100 points from the Halton

sequence of dimension 3

Faure Sequence

The Faure sequence is similar to the Halton sequence in that each dimension is

a permutation of a van der Corput sequence; however, the same prime is used

as the base b for each of the components of the vector, and is usually chosen to

be the smallest prime greater than or equal to the dimension (Fox, 1996).

In the Van der Corput sequence we wrote the natural numbers in the formPt
k=0 akb

k which was then mapped into the point
Pt
k=0 akb

−k−1in the unit

interval. For the Faure sequence we use the same construction but we use

different permutations of the coefficients ak for each of the coordinates. In

particular in order to generate the i’th coordinate we generate the point

tX
k=0

ckb
−k−1
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Figure 6.4: 100 independent U [0, 1] pairs

where

ck =
tX

m=k

µ
m

k

¶
(i− 1)m−kammod b

Notice that only the last t − k + 1 values of ai are used to generate ck. For

example consider the case d = 2, b = 2. Then the first 10 Faure numbers are

0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 1/16 9/16

0 1/2 3/4 1/4 5/8 1/8 3/8 7/8 15/16 7/16

The first row corresponds to the Van der Corput numbers and the second row

of obtained from the first by permuting the values with the same denominator.

The Faure sequence has better regularity properties than does the Halton

sequence above particularly in high dimensions. However the differences are by

no means evident from a graph when the dimension is moderate. For example

we plot in Figure 6.6 the 14’th and 15’th coordinates of 1000 points from the

Faure sequence of dimension d = 15 for comparison with Figure 6.5.
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Figure 6.5: The 14’th and 15’th coordinates of the first 1000 of a Halton sequence

d = 15

Other suggestions for permuting the digits in a Halton sequence include

using only every l0th term in the sequence so as to destroy the cycle.

In practice, in order to determine the effect of using one of these low dis-

crepancy sequences we need only substitute such a sequence for the vector of

independent uniform random numbers used by a simulation. For example if we

wished to simulate a process for 10 time periods, then value a call option and

average the results, we could replace the 10 independent uniform random num-

bers that we used to generate one path by an element of the Halton sequence

with d = 10.

Suppose we return briefly to the call option example treated in Chapter 3.

The true value of this call option was around 0.4615 according to the Black-

Scholes formula. If however we substitute the Van der Corput sequence for the

sequence of uniform random numbers,
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Figure 6.6: The last two coordinates of the first 1000 Faure points of dimension

d = 15.

mean(fn(corput(100000,2)))

we obtain an estimate of 0.4614 very close to the correct value. I cannot

compare these estimators using the notion of efficiency that we used there, how-

ever, because these low-discrepancy sequences are not random and do not even

attempt to emulate random numbers. Though unable to compare performance

with the variance of an estimator, we can look at the Mean squared error (see

for example Figure 6.8). which shows a faster rate of convergence for Quasi

Monte Carlo equivalent to variance reduction in excess of 100). Galanti & Jung

(1997), report that the Faure sequence suffers from the problem of start-up



EXAMPLES OF LOW DISCREPANCY SEQUENCES 319

and especially in high-dimensions and the Faure numbers can exhibit clustering

about zero. In order to reduce this problem, Faure suggests discarding the first

b4 − 1 points.

Sobol Sequence

The Sobol sequence is generated using a set of so-called direction numbers

vi =
mi

2i , i = 1, 2, where the mi are odd positive integers less than 2i. The

values of mi are chosen to satisfy a recurrence relation using the coefficients of

a primitive polynomial in the Galois Field of order 2. A primitive polynomial is

irreducible (i.e. cannot be factored into polynomials of smaller degree) and does

not divide the polynomial xr + 1 for r < 2p − 1. For example the polynomial

x2+x+1 has no non-trival factors over the Galois Field of order 2 and it does

divide x3+1 but not xr +1 for r < 3. Corresponding to a primitive polynomial

zp + c1z
p−1 + ...cp−1z + cp

is the recursion

mi = 2c1mi−1 + 22c2mi−2 + ...+ 2pcpmi−p

where the addition is carried out using binary arithmetic. For the Sobol se-

quence, we then replace the binary digit ak by akvk.

In the case d = 2, the first 10 Sobol numbers are, using irreducible polyno-

mials x+ 1 and x3 + x+ 1

0 1/2 1/4 3/4 3/8 7/8 1/8 5/8 5/16 13/16

0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 11/16 3/16

Again we plot the last two coordinates for the first 1000 points from a Sobol

sequence of dimension d = 15 in Figure 6.7 for comparison with Figures 6.5 and

6.6.
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Figure 6.7: The last two coordinates of the first 1000 points from a Sobel se-

quence of dimension 15

Although there is a great deal of literature espousing the use of one quasi-

Monte Carlo sequence over another, most results from a particular application

and there is not strong evidence at least that when the dimension of the problem

is moderate (for example d · 15) it makes a great deal of difference whether we

use Halton, Faure or Sobol sequences. There is evidence that the starting values

for the Sobol sequences have an effect on the speed of convergence, and that

Sobol sequences can be generated more quickly than Faure Moreover neither

the Faure nor Sobol sequence provides a “black-box” method because both are

sensitive to intitialization. I will not attempt to adjudicate the considerable

literature on this topic here, but provide only a fragment of evidence that, at

least in the kind of example discussed in the variance reduction chapter, there

is little to choose between the various methods. Of course this integral, the
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discounted payoff from a call option as a function of the uniform input, is a

one-dimensional integral so the Faure, Halton and Van der Corput sequences

are all the same thing in this case. In Figure 6.8 we plot the (expected) squared

error as a function of sample size for n = 1, ..., 100000 for crude Monte Carlo

( the dashed line) and the Van der Corput sequence. The latter, although it

oscillates somewhat, is substantially better at all sample sizes, and its mean

squared error is equivalent to a variance reduction of around 1000 by the time

we reach n = 100, 000. The different slope indicates an error approaching zero

at rate close to n−1 rather than the rate n−1/2 for the Crude Monte Carlo

estimator. The Sobol sequence, although highly more variable as a function

of sample size, appears to show even more rapid convergence along certain

subsequences.

Figure 6.8: (Expected) squared error vs. sample size in the estimation of an

Call option price for Crude MC and Van der Corput sequence.
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The Sobol and Faure sequences are particular cases of (t, s)−nets. In order

to define then we need the concept of an elementary interval.

Elementary Intervals and Nets

Definition: elementary interval

An elementary interval in base b is n interval E in Is of the form

E =
sY
j=1

�
aj
bdj
,
(aj + 1)

bdj

¶
, (6.10)

with dj ≥ 0, 0 · aj · bdj and aj , dj are integers.

In other words an elementary interval is a multidemsional generalization of

a rectangle with sides of length bd parallel to the axes. A net is a finite sequence

which is perfectly balanced in the sense that certain elementary intervals all

have exactly the same number of elements of the sequence.

Definition: (t,m, s) - net

Let 0 · t · m be integers. A (t.m.s) - net in base b is a finite sequence with

bm points from Is such that every elementary interval in base b of volume bt−m

contains exactly bt points of the sequence.

Definition: (t, s) - sequence

An infinite sequence of points {xi} ∈ Is is a (t,s)-sequence in base b if for all

k ≥ 0 and m > t, the finite sequence xkbm , . . . , x(k+1)bm−1 forms a (t,m,s) - net

in base b.

It is known that for a (t, s)-sequence in base b, we can obtain an upper bound

for the star discrepancy of the form:

D∗N · C
(logN)s

N
+O(

(logN)s−1

N
). (6.11)
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Special constructions of such sequences for s ≥ 2 have the smallest discrep-

ancy that is currently known (Niederreiter, 1992).

Tan(1998) provides a thorough investigation into various improvements in

Quasi-Monte Carlo sampling, as well as the evidence of the high efficiency of

these methods when valuing Rainbow Options in high dimensions. Papageor-

giou and Traub (1996) tested what Tezuka called generalized Faure points. They

concluded that these points were superior to Sobol points in a particular prob-

lem, important for financial computation snce a reasonably small error could be

achieved with few evaluations. For example, just 170 generalized Faure points

were sufficient to achieve an error of less than one part in a hundred for a 360

dimensional problem. See also Traub and Wozniakowski (1994) and Paskov

and Traub (1995).

In summary, Quasi-Monte Carlo frequently generates estimates superior to

Monte-Carlo methods in many problems of low or intermediate effective dimen-

sion. If the dimension d is large, but a small number of variables determine

most of the variability in the simulation, then we might expect Quasi Monte-

Carlo methods to continue to perform well. Naturally we pay a price for the

smaller error often associated with quasi Monte-Carlo methods and other nu-

merical techniques or, in some cases any technique which other than a crude

simulation of the process. Attempts to increase the efficiency for the estimation

of a particular integral work by sacrificing information on the distribution of

other functionals of the process of interest. If there are many objectives to a

simulation, including establishing the distribution of a large number of different

variables (some of which are necessarily not smooth), often only a crude Monte

Carlo simulation will suffice. In addition, the theory supporting low-discrepancy

sequences, both the measures of discrepancy themselves and the variation mea-

sure V (f) are artificiall tied to the arbitrary direction of the axes. For example

if f(x) represents the indicator function of a square with sides parallel to the

axes in dimension d = 2, then V (f) = 0. However, if we rotate this rectangle
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by 45 degrees, the variation becomes infinite, indicating that functions with

steep isoclines at a 45 degree angle to the axes may be particularly difficult to

integrate using Quasi Monte Carlo.

Problems

1. Use 3-dimensional Halton sequences to integrate the functionZ 1

0

Z 1

0

Z 1

0

f(x, y, z)dxdydz

where f(x, y, z) = 1 if x < y < z and otherwise f(x, y, z) = 0. Compare

your answer with the true value of the integral and with crude Monte

Carlo integral of the same function.

2. Use your program from Question 1 to generate 50 points uniformly dis-

tributed in the unit cube. Evaluate the Chi-squared statistic χ2obs for a

test that these points are independent uniform on the cube where we di-

vide the cube into 8 subcubes, each having sides of length 1/2. Carry

out the test by finding P [χ2 > χ2obs] where χ
2 is a random chi-squared

variate with the appropriate number of degrees of freedom. This quantity

P [χ2 > χ2obs] is usually referrred to as the “significance probability” or

“p-value” for the test. If we suspected too much uniformity to be con-

sistent with assumption of independent uniform, we might use the other

tail of the test, i.e. evaluate P [χ2 < χ2obs]. Do so and comment on your

results.


