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1. Introduction

Optimization problems in dynamic, stochastic environments are an increasingly

important part of economic theory and applied economics. Inspired by the potential returns

to richer and more realistic models of a variety of policy problems and the promise of ever-

growing computational power, economists have turned more and more to models that can be

simulated but not solved in closed form. The central role of simulation gives rise to two

subsequent related integration problems. One arises in model solution, for agents whose

expected utilities cannot be expressed as a closed function of state and decision variables.

The other occurs when the investigator combines sources of uncertainty about the model to

draw conclusions about policy.

This chapter concentrates on computational methods that are both important and useful

in the solution of these simulation and integration problems. In mathematics there is a

longstanding use of simulation in the solution of integration problems, notably partial

differential equations, where the form of the simulation is often suggested by the problem

itself. The history of simulation methods to solve integration problems in economics is

shorter, but these methods are appealing for the same reason there: integration generally

involves probability distributions in the integrand, which thereby suggests the simulation

methods to be employed.

This pervasive use of simulation methods in science persists despite the well known

asymptotic advantages of deterministic approaches to integration. This continued use of

simulation methods arises in part because astronomical computing time is often required to

realize the promise of deterministic methods. A more important fact is that simulation

methods are generally straightforward for the investigator to implement, relying on an

understanding of a few principles of simulation and the structure of the problem at hand.

By contrast deterministic methods typically require much larger problem-specific

investments in numerical methods. Simulation methods economize the use of that most

valuable resource, the investigator's time.

The objective of this chapter is to convey an understanding of principles for the

practical application of simulation in economics, with a specific focus on integration

problems. It begins with a discussion of circumstances in which deterministic methods are

preferred to simulation, in Section 2. The next section takes up general procedures for

simulation from univariate and multivariate distributions, including acceptance and adaptive

methods. The construction and use of independent identically distributed random vectors to

solve the multidimensional integration problems that typically arise in economic models is

taken up in Section 4, with special attention to combination of different approaches and
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assessment of the accuracy of numerical approximations to the integral. Section 5

discusses some modifications of these methods to produce identically but not independently

distributed random vectors, that often greatly reduce approximation error in applications in

economics. Recently developed Markov chain Monte Carlo methods, which make use of

samples that are neither independently nor identically distributed, have greatly expanded the

scope of integration problems with convenient practical solutions. These procedures are

taken up in Section 6. The chapter concludes with some examples of recent applications of

simulation and integration methods in economics.
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2. Deterministic methods of integration

The evaluation of the integral

I = ff(x)cbc

is a problem as old as the calculus itself, and is equivalent to solution of the differential

equation

dyldx = f(x)

subject to the boundary condition y(a) = 0. In well-catalogued instances analytical

solutions are available (Gradshteyn and Ryzhik, 1965, is a useful standard reference). The

literature on numerical approaches to each problem is huge, a review of any small part of

which would occupy a substantial part of this volume. This section focuses on those

procedures that provide the most useful tools in economics and econometrics and are

readily available in commercial software. This means neglecting the classical but dated

approaches using equally-spaced abscissas, like Newton-Cotes; a useful overview of these

methods is provided by Press et al. (1987, Chapter 4) and a more extended discussion may

be found in Davis and Rabinowitz (1984, Chapter 2).

2.1 Unidimensional quadrature

The principle underlying most state-of-the-art deterministic evaluations of I =5f(x)dr
a

is Gaussian quadrature. If f(x) = p(x)w(x), where p(x) is any polynomial of degree

2n –1 or lower, and w(x) is a chosen basis function, then there exist points x, E [a, b] and

a weight a), associated with each point such that

tf(x)dx = p(x) w(x)dr = I = I w, p(x, ).
ex

The points and weights depend only on a, b, and the function w(x), and if they are known

for a=0 and b =1 then it is straightforward to determine their values for any other choices

of a and b. If r(x) = f(x)/w(x) is not a polynomial of degree 2n –1 or lower, then

rai co, r(x,)

may be taken as an approximation to I = erf(x)thc. If r(x) is "smooth" relative to a

polynomial of degree 2n –1, then the approximation should be good. More precisely, one

may show that if r(x) is 2n-times differentiable then

j
abf(x)dx	 =1(01 r(x,)= TC2n)(4)

for some 4 e [a,b], where {c} is a sequence of constants with	 c„ = 0. For
2114-1z (nOlt(2n + 1)12n !r} (Judd, 1991, pp.example, if w(x) = 1,a = –1, b = +1, then c„ =

6-7, 6-8).
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This approach can be applied to any subinterval of [a,b] as well, and so long as r(x) is

2n-times differentiable the accuracy of the approximation may be improved by summing

over subintervals. In fact in this case, one may satisfy prespecified convergence or error

criteria through successive bisection. Error criteria are usually specified as the absolute or

relative difference in the computed approximation to I = f(x)dx using an n -point and an
a

ni -point quadrature (Golub and Welsch, 1969).

Open and semi-open intervals can be treated by appropriate transformation of the

interval to a finite interval (Piessens et al., 1983). Existence and boundedness of r(2")

depends in part on the choice of basis function w(x). Some of the most useful are

indicated in the following table.

w(x)	 Interval	 Name

1	 (-1,1)	 Legendre

1N1 – x 2	(-1,1)	 Chebyshev first Idnd

(-1,1)	 Chebyshev second kind
exp(–x2 )	 +00)	 Hermite

(1+ x)a (1–x)3	(-1,1)	 Jacobi

exp(–x)x“	 (0, 00)	 Generalized Laguerre

Vcosh(x)	 Hyperbolic cosine

For many purposes Gauss-Legendre rules are adequate, and there is a substantial stock of

commercially supplied software to evaluate one-dimensional integrals up to specified

tolerances. These methods have been adapted to include functions having singularities at

identified points in the interval of integration (Piessens, et al., 1983).

2.2 Multidimensional quadrature

Some multidimensional integration problems in fact reduce to an integration in a single

variable that must be carried out numerically. For example, all but one dimension may be

integrable analytically, or the multidimensional integral may in fact be a product of integrals

each in a single variable, perhaps after a suitable change of variable. In such cases

quadrature for one-dimensional integrals usually provides a neat solution. Such cases are

rare in economics and econometrics. If the dimension of the domain of integration is not

too high and the integrand is sufficiently smooth, then one-dimensional methods may be

extended with practical results. These cases cover a small subset of integration problems in

economics and econometrics, but they deserve discussion because quadrature-based

methods are then quite efficient and may be easy to use.
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The straightforward extension of quadrature methods to higher dimensions shows both

its strengths and weaknesses. Following Davis and Rabinowitz (1984, pp. 354-359),

suppose that R is an m -point rule of integration over B g 91' , leading to the approximation

R(f) =	 cok f(x) ) if (x)dx, x1 e B,

and that S is an n -point rule over G c W , leading to the approximation

S(f ) = Inkal f (y k )	 f (y)dy,yk e G.
Jc

The product rule of R and S i

,

s the mn -point rule applicable to BxG,

Rx S(f) =	 13rk) JBxG
f (x, y)dxdy, x jy E B,EG.Zft. 0, vk f(X) 

If R integrates f(x) exactly over B, if S integrates g(y) exactly over G, and if

h(x,y) = f(x)g(y), then Rx S will integrate h(x,y) exactly over BxG. The obvious

extensions to the product of three or more rules can be made. These extensions can be

expected to work well when (a) quadrature is adequate in the lower dimensional marginals
of the function at hand, (b) h(x,y) f (x)g(y), and (c) the product Inn is small enough that

computation time is reasonable. Condition (b) is violated when the support of h is small

relative to the Cartesian boundaries for that support, as illustrated in Figure 1(a). A more

common occurrence in economics and econometrics involves both (a) and (b): BxG =

x 9ts , but the function is concentrated on a small subset of its support that cannot be

expressed as a Cartesian product, as illustrated in Figure 1(b). Whether these difficulties

are present or not, the number of function evaluations and products required in any product

rule increases geometrically with the number of arguments of the function, a phenomenon

sometimes dubbed "the curse of dimensionality."

These constitute the dominant problems for numerical integration in economics and

econometrics. To a point, one may extend quadrature to higher dimensions using

extensions more sophisticated than product rules. Extensions are usually specific to

functions of a certain type, and for this reason the literature is large but reliable software for

a problem at hand may be hard to come by. For example, there has been considerable

attention to monomials (polynomials whose highest degree in any one product is bounded);

e.g. McNamee and Stenger (1967), Genz and Malik (1983), Davis and Rabinowitz (1984,

Section 5.7). Compound, or subregion, methods provide the most widely applied

extensions of quadrature to higher dimensions. In these procedures a finer and finer

subdivision of the original integration region is dynamically constructed, with smaller

subregions concentrated where the integrand is most irregular. Within each subregion a

local rule with a moderate number of points is used to provide an estimated for the integral.

If, at a given step, a prespecified global convergence criterion is not satisfied, those regions

for which the convergence criterion is farthest from being satisfied are subdivided, and the
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local rule is applied to the new subdivisions (van Dooren and de Ridder, 1976; Genz and

Malik, 1980; Genz, 1991). For these procedures to work successfully it is important to

have a scheme for construction of subregions well suited to the problem at hand, as

reconsideration of Figure 1(b) will make clear. For example Genz (1994) provides an

algorithm that copes well with the isolated peaks in high-dimensional spaces often found in

Bayesian multiparameter problems.

These extensions of quadrature are routinely successful for integrals through

dimension four or five. Beyond four or five, success depends on whether the problem at

hand is of a type for which existing subregion methods are well suited. Whereas the

application of quadrature to a function of a single variable can be successful as a "black

box" procedure, problems of dimensions three and four are more likely to require

transformations or other analytical work before quadrature can be applied. There are very

few applications of quadrature-based methods to integrals over more than five dimensions

in the literature. For these problems other deterministic methods may be used, but the

stochastic methods developed beginning in Section 3 of this chapter are generally more

practical.

2.3 Other deterministic methods

There exist a number of methods for higher dimensional integrals that are in a practical

sense intermediate between quadrature and the Monte Carlo procedures taken up beginning

in Section 3. Two examples are given here.

The m -point quadrature rules are highly structured, but difficult to adapt efficiently to

higher dimensions. A less structured but still systematic approach was suggested by

Richtmeyer (1952, 1958) in work made known in Hammersly and Handscomb (1964).

Suppose it is desired to find I = Lf(x)dx, where f: H 9V and H is the unit hypercube

in 91 k . Let a„ .... ak be irrational roots of a polynomial of degree 3 .� k +1. Let

Vail—Dad)
where [ • ] denotes fractional part. Suppose f (x) has Fourier expansion

f (x) = E•••E-k _. a (1:1,...,nk)exp(2 wit I	 ).

If E- .E_ (max In •18-`)Ia(n ...n <	 thenj	 k

I
I	 f (xl= 0(N-1).

More practically, if 	 ••En-___Igni,...nkl.B< , then

f (x )15 (1+ log MBIN
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This approach applies to a wide range of functions defined over hyperrectangles in 91k and

provides an interesting supplement to quadrature-based methods. However, a finite range of

integration in all dimensions is essential to the method. Transformation of the domain to a

hypercube, in a way that preserves accuracy for reasonable values of N may be difficult or

impossible. These difficulties probably account for the dearth of application of this

approach to date.

In specialized settings integration in high dimensions can be made more tractable. The

obvious limiting case is the one in which the entire problem may be solved analytically. But

there are also classes of problems that cannot be solved analytically, with common features

that suggest specific approximations. An example is provided by Tierney and Kadane

(1986) for a class of problems arising in Bayesian statistics and econometrics:

	

g(0)exp[t(0)]1/(0)d0	 exp[n L(0)]d0
E„(g) 	

faexp[t(0)]x(0)d0	 je exp[n (0)[d0

where t(9) is a log-likelihood function; 140) is a prior density kernel; g(9) is a strictly

positive function of interest; n is the number of observations entering the log-likelihood
function; L(0) = [log Ir(0)+ t(0)]1 n; and L* (0). [log g(0) + log z(0)+ .40)11 n .

Let 9 denote the mode of L, and let E = d 2 L dad01 LaPlace's approximation is

fe exp[n L(0 d 0)j = sexp[n 14e)–	 – 0) E(0 – O)
j
d° = (2 tr)42 1Ir2 exp[n L(t3)].

Similarly, if b* is the mode of L and r = d2 L. I Od 019=•,

exp[n C (0 d 0)].t, (2 x) 42 II* Iin exp[n L*(?)]

The error of approximation in each case is 0(n -v2 ), but in the corresponding approximation

(g) = II=/4/2 expf n[1: Cal- L(0)11

the leading terms in the numerator and denominator cancel and the resulting error of

approximation for E„ (g) is O(n ') (Tierney and Kadane, 1986).

The approximate solution provided by this method is a substantial improvement on

previous approximations of this kind, which worked with a single expansion about B. It

exhibits two attractions shared by most specialized approximations to integration in higher

dimensions. First, it avoids the need for specific adaptive subregion analysis required for

quadrature, if indeed quadrature can be made to work at all. Second, once function-specific

code has been written the computations involve standard ascent algorithms to find B and

b* and are usually extremely fast. This example also shares some limitations of this

approach. First, there is no way to reduce approximation error, whereas in quadrature one

7



can increase the number of points or subregions used and in Monte Carlo one can increase

the number of iterations. Second, there is no way to evaluate the error of approximation;

again, quadrature and Monte Carlo will prove error estimates. Third, there is possibly time

intensive analytical work required for each problem in forming derivatives for different g as

well as different f . And finally, the requirement that g be strictly positive is restrictive. The

method may be extended to more general functions at the cost of some increase in

complexity (Tierney, Kass and Kadane, 1989).
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3. Pseudorandom number generation

The analytical properties of virtually all Monte Carlo methods for numerical integration,

and more generally for simulation, are rooted in the assumption that it is possible to observe

sequences of independent random variables, each distributed uniformly on the unit interval.

Given this assumption various methods, described in Section 3.2, may be used to construct

random variables and vectors with more complex distributions. Specific transformations

from the uniform random distribution to virtually all of the classical distributions of

mathematical statistics have been constructed using these methods. Some examples are

reviewed in Sections 3.3 and 3.4. These distributions, in turn, constitute building blocks for

the solutions of integration and simulation problems described subsequently in this chapter.

The assumption that it is possible to observe sequences of independent random

variables, distributed uniformly or otherwise, constitutes a model or idealization of what

actually occurs. In this regard it plays the same role here with respect to what follows, as

does the assumption of randomness in much of economic theory with respect to the derived

implications for optimizing behavior, or does the assumption of randomness with respect to

the development of methods of statistical inference in econometrics. In current methods for

pseudorandom number generation the observed sequences of numbers for which the

assumption of an i.i.d. uniform distribution is the model, are in fact deterministic. Since the

algorithms that produce these observed sequences are known, the properties of the

sequences may be studied analytically in a way that events in the real world corresponding

to assumptions of randomness in economic models may not. Thus, the adequacy or

inadequacy of stochastic independence as a model for these sequences is on a surer footing

than is this assumption as a model in economic or econometric theory. We begin this

section with an overview of current methods of generating sequences for which the

independent uniform assumption should be an adequate model.

3.1 Uniform pseudorandom number generation

Virtually all pseudorandom number generators employed in practice are linear

congruential generators and their elaborations. In the linear congruential generator a
sequence of integers PC,1 is determined by the recursion

X,=	 + c)modm.	 (3.1)

The parameters a, c, and m determine the qualities of the generator. If c= 0 the resulting

generator is a pure multiplicative congruential generator. For example, the multiplicative

generator with m = 23/ —1= 2147483647 (a prime) and c= 16807, c = 397204094, or

c= 950706376 is used in the IMSL scientific library (IMSL, 1989), and the user may

9



choose between different values of c, as well as set the seed X0 . The sequence IX,1 is

mapped into the pseudorandom uniform sequence {U,} by the transformation

(3.2)

If in is prime the sequence will cycle after producing exactly m distinct values; clearly one

can do no better than m= 23' –1 for a sequence of positive integers with 32-bit arithmetic.

There are many criteria for evaluating the i.i.d. uniform distribution as a model for the
resulting sequences iL7,1. Informal but useful discussions are provided by Press et al.

(1986, pp. 192-194) and Bratley, Fox and Schrage (1987, pp. 216-220). More technical

and detailed evaluations, including discussion of the choice of c, may be found in Coveyou

and McPherson (1969), Marsaglia (1972), Knuth (1981), and Fishman and Moore (1982,

1986).

There are many elaborations on pseudorandom number generation that build on the

primitive of the linear or multiplicative congruential generator. In the shuffled generator a

table is initialized with q pseudorandom uniform numbers from the congruential generator.

The generator is then used in the obvious way to select a table entry pseudorandomly, and

Ul is generated from this entry as described in the preceding paragraph. Then a new entry

is selected pseudorandomly, U2 is generated from that entry, and so on. If the congruential

generator produced i.i.d. uniform random variables, so would the shuffled generator, and

shuffled generators extend the upper bound on cycle length to mq; but the analytical

properties of the shuffled generator are harder to evaluate. (This option is provided

conveniently in IMSL.) In another elaboration on the basic approach, one may combine two
pseudorandom sequences {X,} and {Y,} from the congruential generator to produce a third

sequence {4} that is then mapped into U„ U,=Z,Im, in one of two ways: (a)

4 .(X,±Y,)modm; or, (b) use {Ira } to randomly shuffle {X,} and then set {4} to the

shuffled sequence. Both of these generators extend cycle length, but subtle issues arise in

the combination of sequences; one should consult Wichmann and Hill (1982) or L'Ecuyer

(1986) for (a), Marsaglia and Bray (1968) or Knuth (1981, p. 32) for (b).

Analytical and even simulation studies of the properties of pseudorandom sequences

are limited to situations much simpler than those in which these sequences are applied in

computational economics, and the typical computational economist has neither the time,

inclination nor qualifications to undertake such studies for the particular application at hand.

Fortunately it is much easier to avoid most problems. First, one should use only software

that has been designed specifically for the hardware on which it is implemented, and that is

completely documented with reference to published evaluations. Such software is now

widely available. Second, questions of execution time (often discussed in documentation)
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are irrelevant in computational economics: subsequent computations using pseudorandom

uniform random sequences take much longer than the most elaborate variants on linear

congruential generators, so that even if execution time for these generators could be reduced

to zero there would be no significant improvement in overall execution time. Third, one

should ensure that cycle length is substantially greater than the length of the pseudorandom

sequence to be generated. (The shuffled variant of the IMSL generator has cycle length

over 10", more than sufficient for most problems; one due to L'Ecuyer (1986) has cycle

length over 10's .) Finally, any publicly reported result based in part on a sequence of

pseudorandom numbers should be checked for sensitivity to the choice of generator. This

does not imply numerical analysis that takes the investigator far from the problem of

interest. A key advantage of Monte Carlo methods, to be discussed in Section 4, is that

measures of accuracy are produced as a byproduct based on the i.i.d. uniform model for the

pseudorandom sequences. Results obtained using variants of methods for producing these

sequences should agree within these measures of accuracy. For example, computations can

be executed with different seeds, with different values of c in (3.1), and with or without

shuffling. This requires only minor changes in code for most software.

3.2 General methods for nonuniform distributions
Through this section, x will denote a random variable with cumulative distribution

function (c.d.f.) F and support C, and u will denote a random variable with uniform

distribution on the unit interval. If x is continuous, its probability density function (p.d.f.)

will be denoted by f. We turn first to several general methods for mapping u into x.

Inverse c.df. Suppose x is continuous and consequently the inverse c.d.f.
Fiji) = {c: P(x c) = p}

exists. Then x and F-' (u)have the same distribution: P[F -1 (u) 5 cd= P[u F(d)]= F(d).

Hence pseudorandom drawings of x may be constructed as Flu! ), where } is a

sequence of pseudorandom uniform numbers.

A simple example is provided by the exponential distribution with probability density
f (x) = A exp(–Ax), x z 0.

Correspondingly F(x) = 1 – exp(–Ax), F -1 (p)= –log(1– p)1.1. and consequently

x =

The inverse c.d.f. method is very easy to apply if an explicit, closed form expression

for the inverse c.d.f. is available. Since most inverse c.d.f.'s require the evaluation of

transcendental functions, the method may be inefficient relative to others. (That is the case

in the foregoing example; see von Neumann (1951) or Forsythe (1972) for a more efficient

alternative.) In some cases, evaluation of the c.d.f. is superficially closed form to the user of
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a mathematical software library but in fact involves nontrivial numerical integration of the

kind discussed in Section 2! A leading example is provided by the standard normal

distribution, for which specialized methods can be applied to the computation of (Hart

et al., 1968; Strecok, 1968), but for which acceptance and composition methods (discussed

below) are more efficient.

Discrete distributions. Suppose that the random variable X takes on a finite number
of values, without loss of generality the integers 1,...,n, and P(X = 	 p,. The preferred

methods will depend (among other things) on the number of draws to be made from the

distribution. If only a few draws are to be made (as may be the case with the Markov chain

Monte Carlo methods discussed in Section 6) then the obvious inverse mapping from the

unit interval to the integers 1 ..... n can be constructed, and then used to search for the

appropriate integer corresponding to the drawn u. The disadvantage of this method is that

the search time can be substantial. If many draws are to be made, then the alias method due

to Walker (1974) and refined by Walker (1977) and Kronmal and Peterson (1979) is more

efficient. The basic idea is to draw an integer i from an equiprobable distribution on the
first n integers, choose i with probability r, and its "alias" a, with probability 1– r,. If the

values of a, and r, are chosen correctly then the resulting choice probabilities are p, for i

(i = 1 , 	 n). Setting up the table of r, and a, requires 0(n) time (see Bratley, Fox, and

Schrage (1986), pp. 158-160, for an accessible discussion); whether this overhead is

worthwhile depends on the value of n and the number of draws to be made from the

discrete distribution. The aliasing algorithm is implemented in many mathematical software

libraries.

Acceptance methods. Suppose that x is continuous with support C. Let g be the

p.d.f. of a different continuous random variable z, from whose distribution it is possible to

draw i.i.d. random variables, and for which
supiEc if (x)/g(x)] = a <co.

The function g is known as an envelope or majorizing density of f, and the distribution with
p.d.f. g is known as the source distribution. To generate x„

(a) Generate u;

(b) Generate z;
(c) If u> f(z)l[ag(z)], go to (a);

(d) x, = z.

The unconditional probability of proceeding from step (c) to step (d) in any pass is

f (z )4 a g(z)ll g(z)dz a-1 ,

and the unconditional probability of reaching step (d) with value at most c in any pass is
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(z)/[a g( z)[} g(z)dz = a-` F(c).

Hence the probability that x, is at most c at step (d) is F(c).

The principle of acceptance sampling is illustrated in Figure 2. The two essentials
of applying this procedure are the ability to generate z, and the finite upper bound on
f(x)/g(x). The efficiency of the method depends on the efficiency of generating z, and the
unconditional probability of acceptance which is just the inverse of the upper bound on
f(x)/g(x). (In this respect acceptance sampling is closely related to importance sampling
discussed in Section 4.3.) The great advantage of acceptance sampling is its ability to cope
with arbitrary probability density functions so long as the two essential conditions are met
and efficiency is acceptable for the purposes at hand. Notice that the method will work in
exactly the same way if f(x) is merely the kernel of the p.d.f. of x (i.e., proportional to the
p.d.f.) so long as a = suP1ec[f(9/8(x)] (although in this case a' no long provides the

unconditional acceptance probability). This property can be exploited to advantage to avoid
numerical approximation of unknown constants of integration.

Specific examples providing insight into the method may be found in the family of
truncated univariate normal distributions. As a first example consider the standard normal
probability distribution truncated to the interval (0,.5):

f(x) = (.1915)`pnripexpEx2/2 x) = 2.082 exp(—x2/2), 0 < x 5.5.

The standard normal distribution itself is a legitimate source distribution, but since
supo<x� .5 [f (x)/g(x)[ = (.1915)', the efficiency of this method is low. On the other hand, for
a source distribution uniform on (0, .5], suPocts.df (-0/0x)] 2.08325/2.0 =1.0416: the
unconditional probability of acceptance is (1.0416)' =.96. As a second example consider
the same distribution truncated to the interval (5, 8]:

f (x)= (2.8665 x 10 -7 1' (2 x)-'12 exp(—x2/2) = (1.3917 x10 6 )exp(—x 2/2), 5 < x 5 8

The standard normal fails as a source distribution since the acceptance probability is
2.8665 x10-4 . A uniform source density yields an acceptance probability of only .0645.
An exponential distribution translated to the truncation point is for many purposes an
excellent approximation to a severely truncated normal distribution (Marsaglia, 1964;
Geweke, 1986), and for the exponential source density setting the parameter equal to the
truncation point is an optimal or near optimal choice (Geweke, 1991). One can readily
verify that the acceptance probability for the source density

g(x) = 5 exp[-5(x — 5)], 5 < x 5 8,

is .964.
Optimizing acceptance sampling. In general, suppose that it is desired to draw i.i.d.

variables from a distribution with target density kernel f(x; 9), 9 e 0, having support C(9)
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c 91"; the parameter vector 0 indexes a family of density kernels f( • ). Suppose that a

family of distributions with source density g(x; a), as A g 91 p , having support D(a), has

been identified, with the property that for all 0 E 0, there exists at least one a for which
sup.c(0) f (x; 0)/g(x; a) < 00. To accomplish the goal of i.i.d. sampling from f(x; 0), draws

from g(x; a) are retained with probability q(a, el)f (x; 0)Ig(x;a), where

q(a, 0) s. [supnc(0) f (x; 0)/g(x; a)1.
Suppose the family of source densities g( • ; • ) has been fixed, but not the value of a, and

that the objective is to maximize the unconditional probability of accepting the draw from

the source distribution. Just as in the foregoing examples, this probability is

La)[q(a,0)f(x; 0 )/g(x; a)] g(x; a)dx = q( a, 0).

Hence the problem is to determine the saddle point

mina., {max xec(o [log f (x; 0) – log g(x; a)]} .

Given the usual regularity conditions a necessary condition is that a be part of a solution of
the (pn + p)-equation system

d[log f(x; 0)– log g(x; a)]/dx = 0
dlog g(x; a)/da = 0.

As an example, consider the target density kernel

f(x;T, n).(x12)Th12 [F(.42)] T exp(-11x),

which arises as a conditional posterior density kernel for the degrees-of-freedom parameter

in a Student-t distribution (Geweke, 1992b, Appendix B). For the exponential family of
source densities g(x; a) = aexp(–ax) the regular necessary conditions are

(172)Elog(x/2) + 1 – ty(x/2)]+ (a – n). 0,

x – cel = 0,
where v(•). r(• )/F( .) is the digamma function. The desired value of a is the solution

of
(T/2)[– log(2 a)+ 1– 1/41/2 a)1+ ( a – n). 0,

which may be found using standard root-finding algorithms. Acceptance rates of about .15

are reported in Geweke (1992b).

Adaptive methods. It may be possible to improve upon a source distribution, using

information about the target distribution acquired in the sampling process itself. A very

useful application of this idea has been made to the problem of sampling from distributions

with log-concave probability density function. It is especially attractive when it is costly to

evaluate the target density kernel at a point, or when known source densities are inefficient

or nonexistent. The exposition here closely follows Gilks and Wild (1992) who build on
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some earlier work by Devroye (1986); see Wild and Gilks (1993) for a published

algorithm.
Let h(x) = log f(x). The support D of f(x) is connected, and h(x) is differentiable

and weakly concave everywhere in D , i.e., h'(x) is monotonically nonincreasing in x on D .
Suppose that h(x) and h'(x) have been evaluated at k points in D, xl �... � xk , k 2.

We assume that if D is unbounded below then litt l )> 0, and that if D is unbounded

above then h'(x,) < O. Let the piecewise linear upper hull u(x) of h(x) be formed from

the tangents to h( • ) at the x) , as shown in Figure 3. For j =1	 k —1 the tangents at xj

and xj., intersect at

h(xj+,) — h(xj )— xj+lh'(xj+,) + li(x))
w =

h'(xj)—h
	

)

Further let we denote the lower bound of D (possibly —00) and wk the upper bound of D

(possibly +00). Then

u(x) = hk )+ — xj )h f(Xj ), X E (Wry Wil.

Similarly the piecewise linear lower hull 1(x) of h(x) is formed from the chords between
the xj,

44= (Xj+1 - x)h(xj )+ (x —xj)h(xj.,)
X E (XJ,Xpril.

x;+I	 j

For subsequent purposes it is useful to extend the definition to include
i(x)= —co, x < xi or x> xt.

At the start of an acceptance/rejection iteration the function exp[u(x)] forms a source

density kernel, and exp[1(x)] is a squeezing density kernel. The iteration begins by

drawing a value z from the distribution with kernel density function exp[u(x)]. This may

be done in two steps:

(a) Compute II, = P(wri < x � w.,)= I II (1=1,...,k) where

ilexp[h(xj )— xj li t(xlexp[h'(xj )wj—exp[hlxj )wrilk(xj ) if h'(;) � 0

h(xf )(iv / —wrI ) if 111X) ) = 0

and I = L`_1 1) . Choose an interval (wrows ] from this discrete distribution as

described above.

(b) Conditional on the choice of interval the source distribution is exponential. Draw

z from this distribution as previously discussed.

The draw z is accepted or rejected by means of the acceptance sampling algorithm

described above, but using the following shortcut. Having drawn 14, we know that z will be
accepted if tt � expte(z)— u(z)1 and in this case no further computations are required. If
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u> exp[t(z)- u(z)b then evaluate h(z) and h i(z) and accept z if and only if

u 5 exp[h(z) – u(z)]. In the latter case add z to the set of points (x1 	x,), reordering the

xi 's, and update u( • ) and €(-), unless z is accepted and no more draws from the target

distribution are needed. This completes the acceptance/rejection iteration.

Notice that this algorithm is more likely to update the source and squeezing densities

the more discordant are these functions at a point. As the algorithm proceeds the

probability of acceptance of any draw increases toward 1, and the probability that an

evaluation of h will be required for any draw falls to 0.

Composition algorithms. Formally, composition arises from a p.d.f. representation

f (x) = gy(x)dH(y).

A random variable Y from distribution H is generated, followed by a random variable X
with p.d.f. gy . . This method goes back at least to Marsaglia (1961), who used it to generate

normal random variables. It is also the natural method to use for mixture distributions. For
example, suppose that x is drawn from a N(0,.12 ) distribution with probability .95 and a

N(0,102 ) distribution with probability .05. The probability density,

.95(2/042 (•1 )-' exp(–xl. 02)+. 05(2 g)-'a (10)-' exp(–x2/200)

is strongly leptokurtic and not well suited to acceptance sampling. But the construction of

the random variable in fact corresponds to a composition with

P(Y = 0) =.95, P(Y =1) =.05,

gy_ (x) = (2 gra (. 0-' exp(-.,x2/.02), g, (x)=. 05(270-v2 (10)-' exp( –x 2/200 ).

3.3 Selected univariate distributions.

In most cases there is associated with each of the classical univariate distributions a

substantial literature on the generation of corresponding pseudorandom variables. Good

mathematical and statistical software libraries have drawn on this literature and are widely

available. In many cases the most efficient and accurate routines are not simply

implementations of the constructions that appear in the mathematical statistics literature, and

the user is well advised to take advantage of the capital embodied in good libraries. The

discussion here is limited to illustrating how the techniques discussed in Section 3.2 are

used in specific cases. More thorough surveys in the literature are provided by Bratley,

Fox and Schrage (pp.164-189) and Devroye (1986). All of the methods discussed here are

implemented in good software libraries, which should always be used. This discussion is

not intended to form the basis of reliable code.

Binomial distribution. The binomial distribution indicates the probability of k

successes in n independent trials if p is the probability of success in any given trial:
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P(k ) = (:)Pk (1 an-a
'

The definition provides a direct method for generating the random variable k, but is

acceptably rapid only if n is small. For small values of tip, the inverse c.d.f. method is

practical since p(k) will typically require evaluation for only a few values of k. In all other

cases, however, composition algorithms with acceptance methods are more efficient.

Examples are given by Ahrens and Dieter (1980) and Kachitvichyanukul (1982).

Univariate normal distributions. Inverse c.d.f methods for the standard normal have

already been mentioned. Acceptance sampling methods are not hard to design, especially if

one exploits the exponential source distribution as first noted by Marsaglia (1964). Related

and succeeding work by Marsaglia and Bray (1964), Marsaglia, MacLaren and Bray

(1964), and Kinderman and Ramage (1976) combining acceptance sampling and

composition form the basis for the generation of standard normal variables in most software

libraries.
Box and Muller (1958) showed that if Ul and U2 are mutually independent standard

uniform random variables, then
X = cos(27rUOV-2 log U2 , Y -= sin(2 trU, )V-2 log U2

are independent standard normal random variables. (The key to the demonstration lies in a

transformation to polar coordinates.) The combination of this method with the linear
congruential random number generator produces a pathology, however. If U, and 	 are

successive realizations of (3.1)-(3.2),
(.1,.1.(amU,+ c)mod m

cos(2KU,., 1 ) = cos[27r(aU, +	 sin(2/rU,.,1)= sin[2z(aU, +c/m)]

and hence

X, = cos[27r(aU, + c/m)]1-21ogU, , Y, = sin[27r(aU, + clm)N-21ogU, .

All possible values of (X„Y,) fall on a spiral. As an approximation to a pair of

independent variables the distribution of (X„Y,) could hardly be worse. On the other hand

if one discards Y, the sequence {X, } suffers from no known problems of this kind. This is

one of the reasons that acceptance sampling and composition rather than the Box-Muller

transformation is used in statistical libraries. It illustrates the risks involved in seemingly

straightforward combinations of distribution theory with pseudorandom uniform variables.
Given a sequence of standard normal random variables {z,}, a sequence from the

general univariate normal distribution N(p,o-2 ) can be generated through the familiar

transformation x, = p + o-z,.

Gamma distributions. The gamma distribution is important in its own right, for

included special cases like the chi-squared, and as a building block for other distributions
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like the beta. The gamma distribution with scale parameter A and shape parameter a has

probability density

f(x) = A exp(–Ax)(Ax)°-' /1-(a), x 0

In general, random variables from this distribution may be generated efficiently using

composition algorithms and acceptance methods. Fast and accurate methods are

complicated but readily available in statistical software libraries. For example, IMSL uses

the composition-acceptance methods of Ahrens and Dieter (1974) and Schmeiser and Lal

(1980). A few special cases are worth note.

(a) If a = 1, then the distribution is exponential with parameter A. and the inverse

c.d.f. method discussed above is much more efficient
(b) If a= 0.5, then x = z 2/2, z	 2.2).

(c) If A = 0.5, then x x 2 (v), v = 2a. If a is an integer, then x is the sum of a

independent exponentially distributed random variables each with parameter
A = 0.5. If v is an odd integer, then x is the sum of [ v/2] independent

exponentially distributed random variables plus the square of an independent

standard normal. For integers up to v =17 these representations provide the

basis for more efficient generation from the chi-squared distribution, but for larger

integers it is more efficient to use the more general composition-acceptance

methods.

3.4 Selected multivariate distributions

Generation of random vectors typically builds upon the ability to generate univariate

random variables. Just how this should be done is not always obvious, however, and

sometimes the obvious method is not the most efficient. The examples that follow are

intended only to illustrate this fact. Statistical software libraries should be consulted for

implementation of these methods.
Multinomial distribution. The multinomial distribution indicates the probability of 15

realizations of outcome j, from m possible outcomes, in n independent trials. If pi is the

probability of outcome j in any given trial then

P (k	
m kni n ,

n ki ll 'p''	
r.,	 0 and L k. = n.

jk.1

.1c1

The generation of kJ from this distribution may be decomposed into a sequence generation

of m-1 drawings from binomial distributions: k, is drawn from the binomial distribution

)	 (nk)
Peco =	 (I -pi )	 , 0 .� ki n,
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..., and conditional on	 the random variable lc, is drawn from the binomial

distribution

p(
, 	11 	 .-1	 -1

Ici )= ( ,1/3/il – fij ) (11) - '), 0 � ki � hi , where it j a n – ilc,, fri E plil – IA).
'5	 iml	 4=1

Multivariate normal distribution. The generation of a multivariate normal random
vector x from the distribution N(p, I) is based on the familiar decomposition,

nixl

z N(0,14, X = /I ± Az with AA' = E.

While any factorization A of E will suffice, it is most efficient to make A upper or lower

triangular so that m(m + 1)/2 rather than ne products are required in the transformation

from z to x. The Cholesky decomposition, in which the diagonal elements of the upper or

lower triangular A are positive, is typically used.
HD

Wishart distribution. If x,	 N(0,E), the distribution of A = E.1 (x, – Tt)(x, –
mx1

is Wishart, with p.d.f.

expH tr A) 
f (A) =	 „q„,_0/40(.-orrn ri l (n –2 2	 IL., LT

for brevity, A – W(E,n –1). (For obvious reasons this distribution arises frequently in

simulations. It is also important in Bayesian inference, where the posterior distribution of

the inverse of the variance matrix for a normal population often has this form.) Direct

construction of A through generation of ix, Li becomes impractical for large n. A more

efficient indirect method follows Anderson (1984). Let I have lower triangular Choleski
decomposition E = LL', and suppose Q	 n – 1). Then LQL' W(E,n –1)

(Anderson, 1984, pp. 254-255). Furthermore Q has representation
Q = UU'	 uv = 0(i < j < n)

u„, –N(0,1)	 ; z2 (n – i)

(i = 1,...,n), with the u1 mutually independent for i � j (Anderson, 1984, p. 147). Even if

n is quite small this indirect construction is much more efficient than the direct

construction.
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4. Independence Monte Carlo

Building on the ability to produce sequences of vectors that are well described as i.i.d.

random variables, return to the integration problem, with particular attention to high

dimensions. There are two distinct but closely related problems that arise in economics and

econometrics.

Probleml is to evaluate

I= fp f(x)dx

Problem E is to evaluate
E= E[g(x)],

where x is a random vector with c.d.f. P(x). To simplify notation, assume that P is

absolutely continuous and that x has a probability density function p(x). It is implicit in

Problem E that SD g(x) p(x)dx is absolutely convergent in its domain D.

If a random vector z has p.d.f. p(z) then any function r(z) proportional to p(z) is said

to be a kernel density function for z. In order to express some key moments compactly, let
E r [g(z)] denote the expectation of g(z) if z has kernel density function r(z); similarly

var 1 [g(z)] for variance.

Many of the procedures discussed in this section are straightforward applications of

two results in basic mathematical statistics. The strong law of large numbers states that if
{37,} is an i.i.d. sequence from a population with a finite first moment then

Yr/ = 1'7	 --a .>E(Y),

i.e., P[IimN_,_ YN = E(y)] = 1. If the same population also has a finite variance a 2 then the

central limit theorem establishes
E(y)1-->

i.e., lim„_PC-Visi[j,„ — E(y)] 5 ca} = (1)(c), where 4:1:0(•) is the c.d.f. of the N(0,1)

distribution. In this case the strong law of large numbers implies

sN2 = rl (371 MYN )2 -12.—> 

a2

4.1 Simple Monte Carlo

In the case of Problem I, suppose that

f(x) = g(x)p(x),

with p(x) � 0 and Lp(x)dx = p where p is a known positive constant. Then p(x) is a

kernel density function. Suppose further that it is possible to draw pseudorandom vectors

20



from the distribution whose probability density function is p(x)/p * , as described in Section

3. Since

I = 5 f(x)dx = Lp g(x)[p(x)/p1dx = Ep [ps g(x)],

it follows that

INmN'p* 	g(x,)	 I.	 (4.1.1)

The requirement that p* is known may be weakened, by replacing p s with a sequence

pN	 p. in the last expression. (Some practical methods of producing p; at

essentially no incremental cost are taken up in Section 4.2.)

If in addition 5 g 2 (x)p(x)dx is absolutely convergent, this result can be extended to

provide a measure of the accuracy of IN . Let

a2 = varp [p. g(z)] = p*-1 L[g(x) — /]2 p(x)dx.	 (4.1.2)

Then

1117(1,-	 NO,	 Is1-1 p* Etk(x, ) — /N 12 1=> a2.

(The result may be extended to include cases in which p * is approximated by a sequence of

, but some changes are required; see Section 4.2.) This result makes exact the intuitive

notion that p(•) should be chosen to mimic the shape of f (•).

The solution of Problem E by simple Monte Carlo is even simpler, so long as it is
possible to construct an 	 sequence from the probability distribution of x in E[g(x)] ,

for then EN m %EN  1 g(x, )—	 E. It is not necessary to know the integrating constant of

the kernel probability density for x. 	 If a2 = var[g(x)] exists, then

-4-1\7(EN E)=1 * N(0, se) as well.

As an example, consider the problem

I= f (x)dx = g(x)p(x)dx = g(x) exp[- (x — p H(x	 — p)]dx

where H is positive definite. Since p(x) is the multivariate normal kernel density function,
HD

IN = (2 g)kRIlliv2	 g(x, ), x, —N(2,11-1).

Because p(x) OVx E /N --11 / regardless of the form of f(x). However,

convergence will be impractically slow if g(x) is ill conditioned, or (equivalently) p and H

are chosen so that p(• ) poorly mimics f ( .). If var il,g(x)] exists, then

a2 = (21r)klifivarp[g(x)]

provides the pertinent measure of the adequacy of IN as an approximation of I. Only this

expression -- not the dimensionality k -- matters.
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4.2 Acceptance methods

Acceptance methods may be used to evaluate integrals in much the same way as they

are used to produce pseudorandom numbers. In Problem I, suppose that 0 5. g(x) 5 a
Vx E D. Let {x i } be an i.i.d. sequence drawn from a distribution function with p.d.f. p(x),

and let u, be a corresponding Bernoulli random variable,

u=0 or 1, 13(u, = 1) = ci z g(x,).
Then

1,, N'at..,u,—s> 1, Arls	 1]—`--> N(0, 02),
csa = al —72, aim IN2 (72. (4.2.1)

This method may be extended to g(x) for which —00 < Q 5 g(x) 5 u < 00, by defining

g+ (x) = sup[O, g(x)], g (x) = — inf [0, g(x)], and approximating fo gs (x )dx and Lg"(x)dx

separately.

In Problem E, acceptance methods may be applied to draw from the distribution with

probability density p(x). If h(x) is a source density as described in Section 3.2,

0 5 p(x)/h(x) 5 a <	 x E D, then a sequence of i.i.d. draws from the distribution with

p.d.f. p(x) may be constructed. If we take 	 to be the accepted draws, then

	

EN 
=N riri g(x, )-	 E,	 7 (Es E)--d--> N(0,02),

a2 = varp [g(x)]• sN = r., [g(x, )— El2IN	 a2	 (4.2.2)
If we take 1;1: to be draws from the source density, and u, = 1 if z, is accepted and

u, = 0 if not, then
rN	 /rN

EN =	 u, g(z,	 u,-="4—>E, 1511EN E)=I—> NO, o-2),

a2 = alp [g(z) - Er p(z)dz, at.i g [g(z, ) -	 u, as— 2.	 (4.2.3)

Which expression is more relevant depends on the particulars of the problem. We shall

return to this topic in Section 4.4

The acceptance method just describes assumes that the probability density is known,

including its constant of integration -- i.e., Jo p(x)dx = 1. this assumption is rather strong in

practice. In Problem I, one may recognize p(x) as a probability density kernel, not

knowing the constant of integration. Acceptance or adaptive methods might be applied to
draw from the distribution with kernel density p(x); these methods do not require that one

know the constant of integration for p(x). Taking p(x) to be the kernel and denoting

p" = ID p(x)dx , it is then the case for acceptance methods in Problem I that

N I1/41 -1 apt u	 I.
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Whether or not consistent evaluation of p* is possible depends on the method used to

draw variables from the distribution with kernel p(x). If the method is acceptance sampling

or a variant on acceptance sampling (e.g., the adaptive method for log-concave densities

described in Section 3.2) one can approximate p . using the methods just described so long

as the actual probability density (not just the kernel) of the source distribution for the target
kernel p(x) is known.. This produces a sequence p,. with the property

pp,* a N'r p* --2-4—>'. p . . In this case clearly
t.1	 I

IN a N-1 ap it i u, =1., >I, . 4 N (Is I)=1.> N(0, a2 ),

but a2 is affected by the substitution of X for p'.

One may work out expressions for a2 and a corresponding consistent (in N)

approximation of a2 , as has been done already in several cases. Such expressions are quite

useful in the analytical comparison of approximation methods. But if the goal is simply to

assess approximation error, straightforward asymptotic expansion is much simpler. To

illustrate the method, return to the case of simple Monte Carlo integration with p * unknown,

(4.1.1). Let M be the number of i.i.d. draws from source density h(z) for target density

p(z), define a = supD[p(z)/h(z)], and let

y, = p(z,)/h(z,)

{1 with probability p(z, )1a h(z, ),

Defining Ym F.--- M i-1 M yi , rim a WI: u,UM 	 a M-triwe,

I m a ym vT,pp /t7m --?=.—> I

So long as Le (x)p(x)dx is absolutely convergent, VÄTI (I m I)—>d N(0, cr2 ), and

r	 �rir(y, )vir (w, )	 vir(u, )	 2 cOv(y„ iv,) 2 cev(y, , u,) 2 cev(wo u,) a , 0.2

M	
+	 +

M[

 

YM
	 w m	 um	 Y m IT m .)' mg m WmUm

(The terms vir(y,), div(y„ w ,) , etc., are computed in the usual way from ty„w„u,17.)

4.3 Importance Sampling

The method of importance sampling may be used to solve Problem I or Problem E,

under similar circumstances: one has available a probability distribution with p.d.f.

somewhat similar to the integrand f (x) in Problem I or the probability density function

p(x) in Problem E, and wishes to use an independent, identically distributed sample from

this distribution to approximate I or E. Rather than use acceptance to generate an i.i.d.

sample from the distribution with p.d.f. p(x), importance sampling uses all of the draws

=
0 otherwise

we = ueg(ze)
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from the source probability distribution but weights that sample to obtain a convergent

approximation. In this method the probability density function of the source distribution is

called the importance sampling density, a term due to Hammersly and Handscomb (1964)

who were among the first to proposed the method. It appears to have been introduced to the

economics literature by Kloek and van Dijk (1978). We shall denote the importance

sampling density j(x).

Suppose that for Problem I one can draw an i.i.d. sequence of random vectors {x,}

from the importance distribution, and that the support of this distribution includes D. Then

(x)/j(x,)] = L[f (x )/j(x)] j(x)dx = f (x )dx = 1.

Since f (x,)/j(x,) is also an i.i.d sequence,

IN a N1 X,N Ef(x V../(01 a.,.1=1	 I

by the strong law of large numbers. This result is remarkable for its weakness: no upper

bound on f(x)/j(x) is required as is the case for f(x)/h(x) in acceptance sampling. The

requirement that the support of j(x) include D is necessary and usually trivial to verify.

In Problem E importance sampling may be attractive if there is no simple method of
constructing pseudorandom numbers drawn from the distribution P( . ) underlying the

expectation operator. If the constant of integration for the probability density is known then

EN bIEti[g(x,)p(x,)/j(x,)]="4E

so long as the support of the importance sampling distribution includes that of P(• ). If the

constant of integration is not known and p(x) is merely the kernel of the probability density

function, JD p(x)dx = p* , then

N- , E ,N=1 [g(x, ) p(x )/j(x,	 [p(x, )/j(x,)j as. >p* ,
hence

EN I,.,[g(xi)P(xi)/i(x)1 	 E. (4.3.1)
E.,[p(xj)/j(xi)]

In either case w(x) = p(x)/j(x) may be regarded as a weight function, large weights being

assigned to those g(;) for which the importance sampling distribution assigns smaller

probability than does the probability distribution P( . ).
To assess the accuracy of importance sampling approximations using a central limit

theorem more is required. In the case of Problem I, suppose that L[f 2 (x)/j(x)Px is

absolutely convergent. Then f(x i )/j(;) is an i.i.d. sequence and

a- 1) =1-4IN -2.--41, lITI(IN N(0,a2),
2

D	 j(x)	 i(x)	 '13 (xi)
a2 =1 [—f2(x) idx –	 s,,,.iv--, 1P.	 f	 )	 a	 o-2.	 (4.3.2)
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It is therefore practical to assess the accuracy of IN as an approximation of I. The

convergence of L[f 2 (x)/j(x)Idx must be established analytically, however. If If(x)/j(x)1 is

bounded above on D or if D is compact and f2 (x)/j(x) is bounded above then

convergence obtains. If neither of these conditions is satisfied then verifying convergence

may be difficult. In choosing an importance sampling density it is especially important to

insure that the tails of j(x) decline no faster than those of f(x). If these conditions are not

met, but one still proceeds with the approximation, then convergence is usually quite slow.

Violation of the central limit theorem convergence condition then may be evidenced by
values of sN2 that increase with N.

Assessing the accuracy of EN as an approximation of E is complicated by the ratio of

terms in (4.3.1). If both

Ep [w(x)] = f [p2 (x)/j(x)Idx and E p [g2 (x)w(x)] = [g 2 (x)p(x)Idx	 (4.3.3)

are absolutely convergent, then
I,1,111(IN	 a2 )

a2 = E, f[g(x) — Er 
w(x)}
 

=l 
p.L.1 

D I
{rex)	w(x) p(x)}dx,

(4.3.4)

2 	 EI
2
 w(x,)	 20.

SN -	 [zi w(x, )12

(Derivations are given in Geweke (1989).) This result provides a practical way to assess

approximation error and also indicates conditions in which the method of importance
sampling will work well for Problem E. A small value of EAw(x)1, perhaps as reflected in

a small upper bound on w(x), combined with small var p[g(x)], will lead to small values of

62 . As in the case of Problem I, central limit theorem convergence conditions must be

verified analytically.

There has been little practical work to date on the optimal choice of importance

sampling distributions. Using a result of Rubinstein (1981, Theorem 4.3.1) one can show
that the importance sampling density with kernel Ig(x)— Elp(x) provides the smallest

possible value of a2 . This is not very useful, since drawing pseudorandom vectors from

this distribution is likely to be awkward at best. There has been some attention to

optimization within families of importance sampling densities (Geweke, 1989), but

optimization procedures themselves generally involve integrals that in turn require numerical
approximation. Adaptive methods use previously drawn x, to identify large values of

f(x)/j(x), w(x), or g 2 (x)w(x) and modify j(x) accordingly (Evans, 1991). Such

procedures can be convenient but are limited by the fact that x 1 is least likely to be drawn
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where j(x) is small. Informal, deterministic methods for tailoring j(x) have worked well in

some problems in Bayesian econometrics (Geweke, 1989).

In Problem I the objective in choosing the importance sampling density is to find j(x)

that mimics the shape of f (x) as closely as possible; the relevant metric is (4.3.2). Finding

j(x) f(x) will drive a2 to zero, but this amounts to analytical solution of the problem

since Jo j(x)dx = 1. In Problem E the relevant metric (4.3.3) is more complicated, involving

both the variance of g(x) and the closeness of j(x) to p(x) as reflected in

w(x) = p(x)/j(x). So long as var p [g(x)] > 0 no choice of j(x) will drive cr2 to zero, and if

varp[g(x)] = 0 the Problem E reduces to Problem I. If j(x) cc p(x) then a2 = varp[g(x)],

which can serve as a benchmark in evaluating the adequacy of j(x). The ratio

o-Yvarp [g(x)] has been termed the relative numerical efficiency of j(x) (Geweke, 1989): it

indicates the ratio of iterations using p(x) itself as the importance sampling density, to the

number using j(x), required to achieve the same accuracy of approximation of E. Relative

numerical efficiency much less than 1.0 (less than 0.1, certainly less than 0.01) indicates
poor imitation of p(x) by j(x) in the metric (4.3.4), possibly the existence of a better

importance sampling distribution, or the failure of the underlying convergence conditions

(4.3.3).

4.4 A note on the choice of method

There is considerable scope for combining the methods discussed in this and the

previous section. For example, the pseudorandom number generation in making draws
from the population with probability density h(x), in the case of acceptance sampling, or

j(x), in the case of importance sampling, generally will involve several of the methods

discussed in Section 3.2. In even moderately complex problems the investigator needs to

tailor these methods, balancing computational efficiency against demands for the

development and checking of reliable code.

Acceptance sampling and importance sampling are clearly similar. In fact, given a

candidate source density one has the choice of undertaking either acceptance or importance

sampling. A straightforward comparison of approximation errors indicates the issues

involved in the choice. In Problem I, the variance in acceptance sampling is

ai2 -a k[g(x)— p(x)dx = g2 (x)p(x)dx —

if by "draw" we mean accepted draw. But if instead we mean every draw from the source

distribution, the variance is
al — 1 2 , a = suppg(x),
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from (4.2.1). In importance sampling, where all draws are used but differentially

weighted, the variance is

E t g2 (x)p(x)dx – .

Importance sampling is clearly preferred: it conserves information from all draws, whereas

the rejected draws in acceptance sampling require execution time but do not further improve

the accuracy of the approximation.

For Problem E the situation is different. The variance is

[g(x) – E]
2 
p(x)dx

for acceptance sampling (see (4.2.2)) if we count only accepted draws, and

aL[g(z) – E]2
 
p(z)dz, a = supap(z)/h(z)]

if we count all draws (see (4.2.3)). For importance sampling, expressing (4.3.2) in the

notation of acceptance sampling we have

L[g(x) – E]
2 
w(x)p(x)dx, w(x) = p(x)/h(x).

Since oi2,' 662 a choice between acceptance and importance sampling on grounds of

computational efficiency rests on the particulars of the problem. If evaluation of g(x) is

sufficiently expensive relative to evaluation of p(x)/h(x), acceptance sampling will be

more efficient; otherwise importance sampling will be the choice.

In fact one may combine acceptance and important sampling. Let c be any positive

constant, and define
p(z,)/h(z,) if p(z,)/h(z, ) 	 c

w(z,) = 1 with probability p(z,)/h(z,)if p(z,)/h(z,) < c

0 otherwise

Then	 w(z,)g(z,)/	 w(z ) `-=>c. E. For any given problem there will be a value
s=1	 t=-1

of c that minimizes the variance of approximation error relative to required computing time.

This may be found experimentally; or, for some analytical methods see Milner (1991,

Chapter 2). The hybrid method can result in dramatic increases in efficiency when

computation of g(x) is relatively expensive (or there are many such functions to be

evaluated) and the weight function w(x) is small with high probability.

27



5. Variance reduction

In any of the independence Monte Carlo methods a single draw can be replaced by the

mean of M identically but not independently distributed draws. For example in simple

Monte Carlo for Problem I,

' brit {m it g(x1./j=1.

For any i # k xu and xm are independent, whereas x4 and x are dependent. Since all x1

are drawn from the distribution with probability density p(x),

2

N(0, a2),

j=i g x,„ ,	 SN = g(xu) – IN2 ] =E--->c• a'.

The idea is to set up the relation among ;1 x„, in such a way that an <	 varp[g(x, )1.

If the cost of generating the M-tuple is insignificantly greater than the cost of generating
M independent variables from p(x), then k m provides a computationally more efficient

approximation of I than does IN.

There are numerous variants on this technique. This section takes up four that account

for most use of the method: antithetic variables, systematic sampling, conditional

expectations, and control variables. The scope for combining these variance reduction

techniques with the methods of Section 4 or Section 6 is enormous. Rather than list all the

possibilities, the purpose here is to provide some appreciation of the circumstances in which

each variant may be practical and productive.

5.1 Antithetic Monte Carlo
This technique is due to Hammersly and Morton (1956) and has been widely used in

statistics, experimental design, and simulation (e.g. Mikhail, 1972; Mitchell, 1973; Geweke,

1988). In antithetic simple Monte Carlo integration M= 2 correlated variables are drawn in

each of N replications. Then,

= tvar[g(x,,I)]+ cov[g(xd )g(x, 2 )]} .

So long as cov[g(x„),g(x,2)] < 0, antithetic simple Monte Carlo integration with N/2

replications will have smaller error variance than simple Monte Carlo iteration with N

replications, and the computational requirements will be about the same.

To focus on the main ideas, consider the situation in which p(x) is symmetric about a

point p in Problem I set out in Section 4. In this case x d = + w 1 , x, 2 = – w , describes

a pair of variables drawn from the distribution with p.d.f.p(x) with correlation matrix –I.

If g(x) were a linear function then varl[g(xd ) + g(x, 2 )J} = 0 , and variance reduction
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would be complete. (Clearly I = gp); this case is of interest only as a limit for numerical

integration problems.) At the other extreme, if g(x) is also symmetric about p then

varigg(x,,) + g(x,ill = var[g(x)]: N replications of antithetic simple Monte Carlo

integration will yield as much information as N replications of simple Monte Carlo, but will

usually require about double the number of computations. As an intermediate case, suppose
that d(y) = g(xy) is either monotone nondecreasing or monotone nonincreasing for all x.

Then g(x, i ) –1 and g(x,2 )– I must be of opposite sign if they are nonzero. This implies

covig(x, i ),g(x, 2)] < 0, whence a.2 4var[g(x)] = a2/2, and so antithetic simple Monte

Carlo integration produces gains in efficiency.

The use of antithetic Monte Carlo integration is especially powerful in an important

class of Bayesian learning and inference problems. In these problems x typically

represents a vector of parameters unknown to an economic agent or an econometrician, and
p(x) is the probability density of that vector conditional on information available. The

integral I could correspond to an expected utility, or a posterior probability. If the available

information is based on an i.i.d. sample of size T, then it is natural to write p r (x) for p(x).

As T increases, the distribution I), (x)generally becomes increasingly symmetric and

concentrated about the true value of .the vector of unknown parameters, reflecting the
operation of a central limit theorem. In these circumstances g(x) is increasingly well

described by a linear approximation of itself over most of the support of p T (x), as T

increases. Suppose that the agent or econometrician approximates I using simple Monte

Carlo with accuracy indicated by cr;., or by antithetic simple Monte Carlo with accuracy

indicated by a*T2 . Given some side conditions, mainly continuous differentiability of g(x)

in a neighborhood of the true value of the parameter vector x and a non-zero derivative of

g(x) at this point, it may be shown that art /6r -4 0 (Geweke, 1988). Given additional

side conditions, mainly twice continuous differentiability of g(x) in a neighborhood of the

true value of the parameter vector x, it may be shown that TcrT*2167.2 converges to a constant.

The constant is inversely related to the magnitude of dg(x)/ax and directly related to the

magnitude of d2 g(x)/dxdx', each evaluated at the true value of the parameter vector x

(Geweke, 1988). This result is an example of acceleration, because it indicates an

interesting sequence of conditions under which the relative advantage of a variance reduction

method increases without bound.

Application of the method of antithetic variables with techniques more complicated than
simple Monte Carlo is generally straightforward. In the case of importance sampling, x,1

and xa are drawn from the importance sampling density j(x). In Problem I the term

29



Uf (0/ j(xii ) + f(x,2 )/ j(xi2)1 replaces f (x WOO .	 In problem E, define

w(x) = p(x)/j(x) as before. Then

r. [g(x ii )w(x ii )± g(xiow(xi,)]
EN = 1- 1	 —°•=>E, 11-1■ i(EN E)=1.> N(0, an),

L,[w(x ii )± w(x12)]

*2	 [g(xii)w(x4)+g(xi2)w(x
i2	 E

]2 w(xiI )+ w(x,2)
= EP

w(xa )+ w(xi2 )	 2

2
NEN, g( ,1) )w(x, 1 )+ g(x, 2 ) w(x,2)

EN  [w(x, 1 )+ w(x,2)1
vi(x4+ w(x,2)2SN —

4/1 [w(x11)+ w(x,2)1
2

These results are valid for any antithetic variables algorithm, even if j(x) is not symmetric

and even if the variance of the approximation error a l is increased rather than decreased in
moving to the use of antithetic variables. The essential requirement is that the x,1 's be

drawn from the importance sampling distribution and that x,1 and x la be independent for

i*k.

In complex problems involving multivariate x, pseudorandom variables often may be

generated by use of successive conditionals for x' = (x'(

P(x) = P(x(1))P(x(2)1x(0/ • •13 (x(m)l x (0' • • xt.-1))*

In such cases a pair of antithetic variables x, 1 and x, 2 may be created by constructing a pair

for a single, convenient subvector x(0) . Especially if g(x) = g(x (1) ), the benefits of antithetic

Monte Carlo will then be realized in both Problem I and Problem E.

5.2 Systematic sampling

Systematic sampling (McGrath, 1970) combines certain advantages of deterministic

and Monte Carlo methods. The former achieve great efficiency by systematically choosing

points for evaluation in specific low-dimensional problems; the latter produce indications of

accuracy as a byproduct and are amenable to high-dimensional problems. Systematic

sampling specifies an m - tuple of points as a deterministic function of a random vector u ,
xj = fj (u) (j =1,...,m),

with the property that the induced distribution of every x j is that of the probability density

function p(x).

As a leading example consider the case of univariate x, with pseudorandom variables

from the distribution of x constructed using the inverse c.d.f method (Section 3.2). Denote
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F(c) P[x d, suppose u,	 1, 	 ,N) are independently and uniformly distribution on

the unit interval, and take

	

x‘j = F-I	 + Ind) (j =
where " [ • ]" denotes greatest fractional part. Clearly the method need not be limited to

evenly spaced grids; e.g., Richtmeyer's method (Section 2.3) could just as easily be applied.

Extension to higher dimensions is straightforward, but is subject to all of the problems of

deterministic methods there. The advantage of systematic methods is that approximation
error is generally 0(m -I ) whereas that in Monte Carlo is O f, (N-1/2).

In high-dimensional problems systematic sampling can be advantageous when

confined to a subset of the vector x that is especially troublesome for Monte Carlo and/or is

an important source of variation in the function g(x). As an example of the former

condition suppose it is difficult to find an importance sampling density that mimics p(x),

but x' = (oNx„,x„' ,), a good importance sampling density for the marginal p.d.f. p(x( ,) )) ) is

available, and the inverse c.d.f. 	 (+(1) ) of the conditional distribution can be evaluated.

One may generate x i(;) together with corresponding importance sampling weight w, ; draw

(u,,..., u„,2 ) independently distributed on the unit interval; create the systematic sample

x(2),J,	 =	 Os, + fljk l	 [u„,, + ji j„,j) (.4 =1„4;k = 1 	 m2).

One then records yrs,

	

A =[rr:,tk]	 •

v
Lii,,,ri gkX ( 1 )0 X (2)14	 )

along with each weight w1 . Previous expressions in Section 4.3 for IN , a2 , and sN are then

valid with g, in place of g(x,).

5.3 The use of conditional expectations

Suppose there is a partition of x, x' = (x'w , x(12) ), such that

g(x) = g(x(),x(2)) = g (x(o)f(x(2))

where 4 . ) is linear; p(x) = p(x (, ) , x (2) ) = p(x(o)p(x(2)Ix(,)); it is possible to draw

pseudorandom vectors from the marginal distribution for x (,) with p.d.f. p(x(, ) ); and

E[x (2) 1x(0 1 is known analytically. Then

fo g(x ) p(x )dx = Li (x (1) )p(x () )f[E(x (2) Ixoldx0) .	 (5.3.1)
By the Rao-Blackwell Theorem (REFERENCE),

var kio li(x (0 )4E(x0) Ixoll varpoo [g(x)].p 
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Consequently application of Monte Carlo methods directly in (5.3.1) will produce an

approximation error with smaller variance than would Monte Carlo in the general

framework set forth in Section 4.

The use of conditional expectations in fact bears a close relationship to antithetic Monte
Carlo integration. In particular, if one could draw antithetic variables x (2),1 and x(2),2 from

the distribution with p.d.f. p(x(2)Ix(I)) with perfectly negative correlation, then

4(1(2)11 + x(2),2) = E(x(2)1x(0), and exactly the same result would be obtained.

More generally, whenever g(x) is in fact only a function only of x,„ it is usually worth

noting whether in

g(x(o) = E[g(x(0)1x(2)] + n
the regression E[g(x, 0 )Ix (2) ] can be evaluated analytically and pseudorandom variables can

be drawn from the distribution of 11. If that is the case then the variance of approximation

error can be reduced by introducing the additional step of evaluating E[g(x(Jx(2)] and

simulating 17. Efficiency increases by a factor of 1/(1— R 2 ), where

R2 = var	 {E[g(x(0)1x,21}/varP
(.0))

[g(x(1)1
Pkx(2)/

Against this improvement should be balanced the time required for the additional
computations, which are generally of no further use in generation of the x,; this time is

usually small.

5.4 Control variables

It is often the case that one is able to solve approximations to Problem I or Problem E

analytically. For example, if the mean p of the distribution with p.d.f p(x) is known and

one has available a linear approximation g(1) (x) of the function g(x), then the mean of
X 

igt°(x) is g(1)0i). Moreover if is a pseudorandom sample drawn from the

distribution with p.d.f.. p(x) then g(x, ) and gm (xi will be positively correlated if the linear

approximation is good for most x,. In this situation the method of control variables,

introduced by Kahn and Marshall (1953) and Hammersly and Handscomb (1964), can be
used to reduce the variance of the approximation error in IN or EN.

We develop the specific method for simple Monte Carlo integration in problem I;
extension to more involved methods is straightforward. Let 4 be an approximation of 1

based on Ix, , with known mean J. (In the example given 4 = w'r g u) (x, ) and

J= g(m).) Consider approximations of the form

IN = IN +ficfN
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It is the case that IN >1 , and so long as varP (JN ) exists a central limit theorem may

still be used to evaluate numerical accuracy. One can easily verify that var(4) is

minimized by fl = –cov(4,1,)/var(J,,,) and in this case

cov2(.1N,IN)
	var(4) = var(4) 	 = var(//4[1– COTr2 N"N)].var(4)

Usually the parameter is unknown. It may be estimated in the obvious way from the

replications.

This method is easily extended to the case in which a vector of estimates

J N -= (4 ) ..... 47 ) ) with known mean J = (Y"...., Js) ) is available. If we denote

= var(J N ), c = cov(IN,4),

	

qxq	 qxl

then the variance of the approximation

is minimized by (3=E-1c and in this case

c't-tc
var(4) = varVN – c'E-1c = varVN 1

var(4)].
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6. Markov chain Monte Carlo methods

All of the independence Monte Carlo methods for integration assume the ability to

efficiently generate pseudorandom variables from a distribution with specified probability

density function p(x). But in many economic problems it is often difficult or impossible to

find a generation algorithm that is sufficiently efficient to be practical. An instructive

limiting case is the one in which the constituents of x are independently distributed,

P( x) = 1-1 = , Pi (x).

One could construct an acceptance sampling algorithm with a source density h, (z, )

corresponding to each p,(z,), and accept the draw with probability p(z)/a h(z), where

a = sup,[p(z)/h(z)] =	 a,= sup; [p(z, )/h(z,)] (i = 1,...,m).

Since a is directly proportional to the time required to obtain an accepted draw (see Section

3.2) this expression makes clear that acceptance sampling can be subject to its own curse of

dimensionality if the source density is constructed element-by-element. Essentially the

same difficulty can arise in importance sampling, where it is manifested in only a few
weights w(9) accounting for the sum.

This example is of interest only as a limiting case. If the x, really were independent,

one could employ acceptance sampling element-by-element, and computation time would

the be proportional to L i a,. An obvious extension of this idea to the general case is to

write

p(x)=p(x,)11:,P,Ii. 	 • • • • • • xt-1)

and employ acceptance or importance sampling for each conditional. The difficulty here is

that construction of probability density kernels for the marginal in x, and all but the last

conditional require analytic integration. Notable simple cases aside, this is not possible,

and it remains impossible for subvectors as well as individual components.

This section takes up a recently developed generalization of independence Monte Carlo

that has become known as Markov chain Monte Carlo. The idea is to construct a Markov

chain with state space D and invariant distribution with p.d.f. p(x). Following an initial

transient or burn-in phase, simulated values from the chain form a basis for approximating
Ep [g(x)], thus solving Problem I or Problem E. What is required is to construct an

appropriate algorithm and verify that its invariant distribution is unique, with p.d.f. p(x).

Markov chain methods have a history in mathematical physics dating back to the

algorithm of Metropolis et al. (1953). This method, which is described in Hammersly and

Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7) was generalized by

Hastings (1970), who focused on statistical problems, and was further explored by Peskun
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(1973). A version particularly suited to image reconstruction and problems in spatial

statistics was introduced by Geman and Geman (1984). This was subsequently shown to

have great potential for Bayesian computation by Gelfand and Smith (1990). Their work,

combined with data augmentation methods (Tanner and Wong, 1987), has proven very

successful in the treatment of latent variables and other unobservables in economic models.

(Examples are given in Sections 7.1 and 7.3.) Since 1990 application of Markov chain

Monte Carlo methods has grown rapidly and new refinements, extensions and applications

appear almost continuously.

This section concentrates on developing the methods, deferring serious examples to

Section 7. We begin with a heuristic introduction to two widely used variants of these

methods, the Gibbs sampler and the Metropolis-Hastings algorithm (Section 6.1). Some

theory of continuous state Markov chains required to demonstrate convergence is given in

Section 6.2. Easily verified sufficient conditions for convergence of the Gibbs sampler are

set forth in Section 6.3 and for convergence of the Metropolis-Hastings algorithm in

Section 6.4. Some practical issues in assessing the error of approximation are treated in

Section 6.5. Much of the treatment here draws heavily on Tierney (1991a, 1991b) who

first used the theory of general state space Markov chains to demonstrate convergence, and

Roberts and Smith (1992) who elucidated sufficient conditions for convergence that turn

out to be applicable in a wide variety of problems in economics.

6.1 Two Markov chain Monte Carlo algorithms
Motivated by the role of p(x) in Problem I or Problem E, discussion here proceeds

assuming that x is continuously distributed. However, there is no harm in regarding x as

discrete on a first reading. A full development covering both the continuous and discrete

cases is given in Section 6.2.

The Gibbs sampler begins with a partition, or blocking, of x , x' =	 x'(,)). For
mxi

i =	 k, x'(,) = (x„,..., x un(;) ) and m(i) � 1; I:mM= m; and the	 are the components

of x.	 Let p(x(olx(_,)) denote the conditional p.d.f.'s induced by p(x), where

xo) = {x(,),./

x°, xm) (7e0	 ,x'° ), from the distributionSuppose we were given a single thawing (1),"	 k)

with p.d.f. p(x). Successively make drawings from the conditional distribution as

follows:
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yew 	 lx°H))

'42)	 P ( • l x (o' x(3)' • • x(k))

1	 0	
	  °xo_ o , x xxo)	 P • ko) .....

X(k)
	 p( • ix-k))

This defines a transition process from x° to x'. The Gibbs sampler is defined by the

choice of blocking and the forms of the conditional densities induced by p(x) and the

blocking. Since x° p(x), x l p(x).

Iteration of the algorithm produces a sequence x°, which is a realization of

a Markov chain with probability density function kernel for the transition from point x to

point y given by

KG(x,y)= Hit p[y (o ix ( j) ( j > 1),y(i) (j <

Any single iterate x' retains the property that it is drawn from the distribution with p.d.f.

p(x)•

Of course, it is generally difficult or impossible to make even one initial draw from the

distribution with p.d.f. p(x). The purpose of that assumption here is to marshal an

informal argument that p(x) is the p.d.f. of the invariant distribution of the Markov chain.

The leading practical problem is to elucidate conditions in which the distribution of x' will

converge to that corresponding to p(x) for any choice of x° in the domain D.
The Metropolis-Hastings algorithm begins with an arbitrary transition probability

density function q(x,y) and a starting value x°. If x' = x the random vector generated

from q(x,y) is considered as a candidate value for x' + '. The algorithm actually sets x' = y

with probability

a(x,y)= mini P(31)(1(Y ' x) li•
p(x)q(x,y)'

otherwise, the algorithm sets yet1 = x = x'. This defines a Markov chain with a generally

mixed continuous-discrete transition probability from x to y given by

q(x,y)a(x,y) if y x
K(x,y) =

1— q(x,z)a(x,z),:/z ify#x
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This form of the algorithm is due to Hastings (1970). The Metropolis et al. (1953)
form takes q(x,y) q(y, x). A simple variant that is often useful is the independence chain

(Tierney, 1991a, 1991b), q(x,y) = j(y). Then,

a(x,y) = min{ PWi(x) ,1} – mintL±L)1}
P(x) j (Y)	 w(x)

where w(x) = p(x)/j(x). The independence chain is closely related to acceptance sampling

(Section 4.2) and importance sampling (Section 4.3). But rather than place a low (high)

probability of acceptance or a low (high) weight on a draw that is unlikely (too likely)

relative to p(x), the independence chain assigns a high (low) probability of moving to the

candidate for the next draw.

The simplest specific example of the Metropolis-Hastings algorithm arises when the

distribution is discrete with support consisting of two points x and y. The distribution is

fully characterized by either of p(x) or p(y), p(x)+p(y) =1. Without loss of generality

suppose that p(y)q(y, x)/p(x)q(x, y) � 1. Then

K(x,y) = p(y)q(y, x)/p(x) and K(y, x) = q(y,x).

Since

[P(x) P(31[
1 – K(x,y)	 K(x, y)

	 [P(Y) P(x)1,
K(y,x)	 1– K(y,x)

[p(x), p(y)] is the invariant distribution of the Markov chain.

6.2 Mathematical background

Let tx,r=0 be a Markov chain defined on D c3im with transition kernel

K:D x D -+ 9I + such that, with respect to a a-finite measure v on the Sorel a-field of

atm , for v-measurable A,

P(x t e Aix`-1 = x) = J K(x,y)dv(y) + r(x)I[x e Al

where r(x) =1– LK(x,y)civ(y).

The measure v will be Lebesgue for continuous distributions and discrete for discrete

distributions.

The transition kernel K is substochastic: it defines only the distribution of accepted
candidates. Assume that K has no absorbing states, so that r(x) <1 V x e D. The

corresponding substochastic kernel over t steps is then defined iteratively,

(x,y) = 5Kt`-')(x, z) K(z, y)dv(z)+K(`-')(x,y)r(y)+[1–r(x)]`-' K(x,y).
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This describes all t-step transitions that involve at least one accepted move. As a function
of y it is the p.d.f. with respect to v of x r , given x° = x, excluding realizations with

x t = x V j =1,...,t.

An invariant distribution for the Markov chain is a function p(x) that satisfies

P(A) = 5 p(x)dv(x) = L{LK(x,y )dv(y ) + r(x)I[x e Aildv(x)

	.tp(x , E	 = x)p(x)dv(x)

for all v-measurable A . Let D* = E D: p(x) > 01. The kernel K is p -irreducible if for

all x E D', P(A) > 0 implies that P(x' e Aix° = x) > 0 for some t 1. It is aperiodic if
p--1

there exists no v-measurable partition D us=OB, (r 2) such that

P[x` E A modm Ix° = x E B0 ) = 1 V t.

Define Ifs= 5 If (x)Idv(x) for all v-measurable functions f defined on D. If K is p-D
irreducible and aperiodic, then

(A) For all x° e D,	 = 0;

(B) If g is p-integrable, then for all x° E D,

	

N'El i g(x 1 )	 > g(x)p(x)dv(x).

(Tierney (1991b) based on Numelin (1984))
The kernel K is Harris recurrent if P[x` E B i.o.] =1 for all v-measurable B with

5 p(x)dv(x)> 0 and all x° e D. (A general discussion of recurrence is provided by

Numelin (1984, Chapter 3).) If K is p-irreducible and Harris recurrent, then

(C) The invariant probability distribution p(x) is unique.

(Numelin (1984, Corollary 5.2); Tierney (1991b, Section 3.1)). Harris recurrence

eliminates situations like the one shown in Figure 4, where the support is disconnected and

the Markov chain is the Gibbs sampler. In the situation portrayed there, there are two

invariant distributions, one for D1 (reached if x° E D1 ) and one for D2 (reached if

E D2).

6.3 Convergence of the Gibbs sampler

The Gibbs sampler requires that the conditional probability density functions

p[x0) IxEd = p(x)fizo p(z)dv(k )) (i =1,...,k)

be well defined on their supports. In this case the transition kemel density is

KG (x,y) =-	 p[y(1)1x())(j >	 yo ) (j < 01.
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If x° e D then p(x) is the density of an invariant distribution of the chain defined by KG:

LKG(x,y)p(x)dv(x)

= 1)(3 (k)13 (-k))1P[31(k-1)1X(k), y(i)( j < – 1)] .1 p y_[ (k_dx (k ), X (k_wy	 < k – 2)]

jp[3, (2) 1 37 (1) ,x0) (j > 2)]f p[y ( , ),Ixop > oif p[x (0 1x (i) (j > l)]dvi (x(0)

p]x(2)1x(1)( j > 2)Pv2 (x (2) )p]x(3) Ixo) ( j > 3)],c/v3(x(3))

•• • p[x(k_nlx(,)]dv,_,(x(,_,))p[xikjdvk (x(0)

P(Y (013 (-0)S P [ (k-I)IX(k),Y	 < k 1)lip[y(k_2) x(0,x(k_o,y0)( j < k – 2)]

J p[y (2) 1y (0 ,x ( j) ( > 2)1 1  p[y (0 1x (i) (j> 2)Ip[x (31x0) ( j > 3)]dv3 (x(3))

•• • p[x(k_0lx(k)idvk_1(x(k_o)pix(oldvk(x(k))

P(Y(0137(-0).1p[y(k_olx(k) y(i) (j < k – olf p[y(k_2)1x(,),x(k_i),y(i) (J < k– 2)}

.11" 537 (1),y(2)1x0)(i> 3)]	 p[x(k_olx(oldvk_1(x(k_o)p[xvoldv,(x(0)

= P(Y (k)IY (-k) ),I P[Y (k-dx (kr Y0P < k 1) ] fP[31 (k-2)1X(k)' X (k- 37 ()) (J < k 2)]

•p[yo) , y(2),...,y(k_3dx(k_o, x (0 1 p[x (k_ o x (opyk_ 1 (x (R _, ) )p[x(k) ]c/v, (x(k)

= P(Y (k) 1Y (m)f P[Y(k-oix(k),YuP < k 1 )1P[Y0. ) , Y(2), • ",31(k-dx(k)1P[X m]dv k (x(0)

= 13 (Y (k )1Y(-0)4Y(0' 3T (2)'" Y(k-1)1 = P(3).

If v is discrete then KG is well defined and Harris recurrent. The fact that

KG (x, x) > 0 for all x E D means that KG is aperiodic. Consequently p-irreducibility of

KG is sufficient for results (A), (B), and (C) in Section 6.2.
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The continuous (Lebesgue measure) case is technically more difficult, but it may be

shown that three simple conditions are jointly sufficient for results (A), (B), and (C)

(Roberts and Smith, 1992):
(1) p(x) is lower semicontinuous at 0;

(2) if p(x)dx, is locally bounded (i = 1,...k);

(3) Ds is connected.

A function h(x) is lower semicontinuous at 0 if, for all x with h(x) > 0, there exists
an open neighborhood /s/,‘ x and e > 0 such that for all y E N „, h(y) e > O. This

condition rules out situations like the one shown in Figure 5, where the probability density

is uniform on a closed set and the point "A" is absorbing.

The local boundedness condition, together with lower semicontinuity at 0, ensures that

the Markov chain is aperiodic. It does so by guaranteeing that for the sequence of support

sets g (x) = ty E Dt : KNx,y) > 01, (x) c	 (x) for all t>_1 and all x E .

Connectedness of D', together with conditions (1) and (2), implies that the Gibbs

sampler is p-irreducible (Roberts and Smith (1992, Theorem 2)). Conditions (2) and (3)

further imply that the probability measure P corresponding to p(x) is absolutely

continuous, and consequently (Tierney (1991b, Corollary 1) the Gibbs sampler is Harris

recurrent. Therefore p(x) is the unique invariant probability density of the Gibbs sampler.

These conditions are by no means necessary for convergence of the Gibbs sampler;

Tierney (1991b) provides substantially weaker conditions. However, they are satisfied for

a very wide range of problems in economics and econometrics, and are much easier to

verify than the weaker conditions.

6.4 Convergence of the Metropolis-Hastings algorithm
Take the transition probability density function q(x,y) of Section 6.1 to be a Markov

chain kernel with respect to v, q: D' x Ds -4 9r . Defining a: D' x D s [0,1] as before,

define K„: D ' x D s 9r by

K ll (x,y) = q(x,y)a(x,y)•

This is the substochastic kernel governing transitions of the chain from x to y that are

accepted according to the probability a(x,y). The distribution p(x)dv(x) is invariant if

for all v-measurable sets A,

P(A) = tp (x )dv( x ) = fp P[y E Aix] p(x)dv(x).

Recalling that

P[y e A ix] =.10/CH(x,Y)dv(Y)+ [ I – LK „(x,z)dv(z)11[x € A],
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50 P[y e Alxjp(x)dv(x)

=Li KH(X,Y)dV(Y)P(X)dV(X)

±LI[x E A]p(x)dv(x)_LLK H (x,z)dv(z)I[x E A]p(x)dv(x)

.LLK,,(x,y)dv(y)p(x)dv(x)

p(x)dv(x) — Jo LKH(x,z)dv(z) p( x )dv(x ) = Lp(x)dv(x).

From this derivation it is clear that invariance is unaffected by an arbitrary scaling of
K H (x,y) by a constant c. The choice of c affects the properties of the Metropolis-

Hastings algorithm in important practical gays. Larger values of c result in fewer rejected

draws but slower convergence to p(x), whereas smaller values of c increase the

proportion of rejected candidates but accelerate the rate of convergence to p(x).

Roberts and Smith (1992) show that the convergence properties of the Hastings-
Metropolis algorithm are inherited from those of q(x,y): if q is aperiodic and p-irreducible,

then so is the Hastings-Metropolis algorithm. If q(x,y) is constructed as a Gibbs sampler

(as is often the case) then the conditions set forth in Section 6.3 may be used to verify

aperiodicity and p-irreducibility. A Hastings-Metropolis chain is always Harris recurrent,

and therefore the invariant distribution p is unique.

6.5 Assessing numerical accuracy and other practical matters

For practical use, convergence results alone are not enough. Markov chain Monte

Carlo as implemented must converge rapidly enough that computation times are not

excessive, and there should be a reliable indication of numerical accuracy. Beyond

verifying convergence conditions analytically, one must also be aware of circumstances in

which convergence may be slow. A leading cause of slow convergence is multimodality of

the probability distribution, for example as shown in Figure 6 for a Gibbs sampler. In the

limit multimodality approaches disconnectedness of the support. This difficulty is

essentially indetectable given a single Markov chain: for a chain of any fixed length, one

can imagine multimodal distributions for which the probability of leaving the neighborhood

of a single mode is arbitrarily small.

This sort of convergence problem is precisely the same as the multimodality problem

in optimization, where iteration from a single starting value can by itself never guarantee the
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determination of a global optimum. Multimodal disturbances are difficult to manage by any

method, including those discussed in Section 4. In the context of the Markov chain Monte

Carlo algorithms, the question may be recast as one of sensitivity to initial conditions: x°A,

x°B and 4 will lead to quite different chains, in Figure 6, unless the simulations are

sufficiently long. Sensitivity to initial conditions aside, there is the further problem that the

output of a Markov chain Monte Carlo algorithm will exhibit serial correlation, and

consequently central limit theorems based on i.i.d. draws are irrelevant.

A Markov chain Monte Carlo algorithm can be made fully robust against sensitivity to

initial conditions by constructing many very long chains. Just how one should trade off the

number of chains against their length for a given budget of computation time is problem

specific and as a practical matter not yet full understood. Many of the issues involved are

discussed by Gelman and Rubin (1992), Geyer (1992), and their discussants and cited

works. In an extreme variant of the multiple chains approach the chain is restarted many

times, with initial values chosen independently and identically distributed from an

appropriate distribution. But finding an appropriate distribution may be difficult: one that is

too concentrated reintroduces the difficulties exemplified by Figure 6; one that is too diffuse

may require excessively long chains for convergence. These problems aside, proper use of

the output of Markov chain Monte Carlo in a situation of multimodality requires specialized

diagnostics; Zellner and Min (1992) have obtained some interesting results of this kind. At

the other extreme a single starting value is used. This approach provides the largest

number of iterations toward convergence, but diagnostics of the type of problem illustrated

in Figure 6 will not be as clear.

In specific circumstances a central limit theorem applies
(
 to

'NI-1\7(k,	 g N = Ar'EN g(xl, G = og(x)p(x)dx.

To develop one set of such circumstances, suppose that the Markov chain is stationary.

This could be guaranteed by drawing x° from the stationary distribution. Such a drawing

would be time consuming (if not, i.i.d. sampling from p(x) is possible) but only one is

required. Alternatively, one could iterate the chain many times beginning from an arbitrary

initial value, discard all but the last iteration, and take this value as drawn from the
stationary distribution to begin a new chain. Suppose var p [g(x)] is finite and denote

cov[g(x t , x i ' )]. A Markov chain with kernel K is reversible if K(x,y) = K(y,x) for

all x,y e D. Hastings-Metropolis chains are always reversible; Gibbs sampling chains are

not (Geyer, 1992, Section 2). If the Markov chain is stationary, p-irreducible and

reversible, then

N var(g,)
	

=	 '
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and if 62 < oo, then
Ci(gN 0-9—> N(0, al

(Kipnis and Varadhan, 1986).

In the absence of reversibility known sufficient conditions for central limit theorems

are strong and difficult to verify. For example, if for some m <00

P(X"m E Aix' = x)/Lp(x)dv(x) is bounded below uniformly in x then D is a small state

space and tx t is uniformly ergodic (Tierney, 1991b, Proposition 2). Then if varp[g(x)]

is finite, there exists a2 < «, such that -■11■1(gN G)-->d N(0, an) The boundedness

condition, however, is generally difficult to establish.

In neither circumstance is there a known sufficient condition for approximation of the

variance term cr2 of the central limit theorem. The problem is formally quite similar to

estimating the variance of the sample mean ft, = Nz of a stationary time series {z,}.
r=1

In the time series problem well-established mixing conditions (rates of decay for
cov(z„z„) are sufficient for consistent estimation of var(! N ) (e.g. Hannan (1970, pp.

207-210)). In time series applications these conditions remain assumptions. The difficulty

in applying these conditions to Markov chain Monte Carlo is that they cannot be established

from verifiable fundamentals.

Nevertheless, application of the time series procedures as if sufficient mixing conditions

obtain appear to give quite reliable results for real problems in economics. That is,

applying a central limit theorem as if the output of the Markov chain Monte Carlo algorithm

were stationary process satisfying the mixing conditions yields accurate probability

statements about the output of the same algorithm applied to the same problem with a new

starting value and initial seed for the random number generator (Geweke, 1992a; Geyer,

1992). This leads to a conservative but practical procedure for assessing the accuracy and

reliability of Markov chain Monte Carlo. First, execute several short runs -- a burn-in of

50 to 100 iterations follows by a chain of length N = 500 or N = 1000 is sufficient for
many problems. Examine the gN and their standard errors as assessed by conventional

time series procedures for a single time series to see whether the scatter of each gN across

the short runs is consistent with these standard errors. If necessary increase the length of

the short runs until this consistency is achieved. Second, choose the last value of one of

the short runs, and use it as the starting value of a long run of from N = 10° to N =106

iterations. As a final check, compare the gN from the single long run with the confidence

intervals implied by the short runs. Report the final value of gN , together with its

numerical standard error as computed by time series methods for a single series.

43



7. Some examples

The usefulness of all of these methods lies as much in their appropriate combination as

in the application of any one individually. We turn now to some examples that illustrate

some useful combinations, and in the process treat a few topics closely related to

integration and simulation.

7.1 Stochastic volatility

Models in which the volatility of asset returns varies smoothly over time have received

considerable attention in recent years. (For a survey of several approaches see Bollerslev,

Chou and Kroner (1992).) Persistent but changing volatility is an evident characteristic of

returns data. Since the conditional distribution of returns is relevant in the theory of

portfolio allocation, proper tretment of volatility is important. Time-varying volatility also

affects the proporties of real growth and business cycle models.

A simple model of time-varying volatility is the stochastic volatility model, whose

descriptive properties have been examined by a series of investigators beginning with

Taylor (1986). The appropach here closely follows that of Jacquier, Polson, and Rossi
(1994). Let r, denote the one-period return of a single asset and let x, be a vector of

deterministic time series such as indicators for day of the week, holidays, etc. A simple

stochastic volatility model is
r, =	 + E„ e,= h,v2u,	 (7.1 .1)

log h, = a + Slog	 + ay,	 (7.1.2)

(ti,j1lo
N(0, I 2 ).	 (7.1.3)

V,

At time T an economic agent is concerned with future returnsr r+„...,rT+q through an

expected utility function

E[V(rr+1,...rT+q; 	 E[V(rq; —OTT

Evaluation of this expected utility function requires the solution of an integration

problem. We will consider this problem for three different specifications'of the information

set (D T in turn. Denoting r r =	 , x nq = (x1,...,xT+q) ,	 =(/J/,a,(5,cry) and

hr. = (hi 	 hi ) ,these are

0:1319 =	 0, h T}; (14 ) =	 x„„ el; 014 ) frT , xT„}.

As one may readily verify, deterministic approximations of the type discussed in Section 2

are inconvenient for this problem. Even explicit expressions of the integrals in closed form

are awkward and unrevealing. Simulation methods are much more direct, and have the

(7.1.4)
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added advantage that one set of simulations can suffice for several alternative values of the

other arguments "..." in (7.1.4). These arguments might include taste parameters, or the
values of decision variables which themselves do not affect r q . (Section 7.2 provides an

example involving explicit optimization.)
The solution for the problem for 4:1:1P is simple. In the notation of Section 4, repeated

period-by-period simulation of x = r q provides an independent identically distributed

sample { I. an whose probability density p(x) = p(rdcb (P) we have not even expressed.

Then,

E[V(r„„...r„q; ...)14)T]= g(x)p(x)dx

where g(x) = V(x;...) =	 Consequently

The problem for cb is more difficult. Rather than h T itself the agent has available

only

p(hT 1rT , xT , e) = p(h T , rT Ix T , 0)/p(rT )

= P(rrih r, XT, 0)P(hTlxT, 6 )1P(r	 P(rrihnxT,0)P(hTlx7,0)

= (2 gri2117 lihr-112exp[–E:i e,2/2h,1(27r)-T/2 OCT exp[–r_i(log h, – a– log k_1)2/2621

fr_ihiv2 exp[–ITt.i e,2 /2k] expl–r_i (log h, – a– Slog h,_, )2 /2 a,,21	 (7.1.5)

where e, = r, – O'x,. The simple Monte Carlo solution of the previous problem could be

extended to this one if one could draw an i.i.d. sample fiiVI from the distribution
:=1

implied by the last kernel. This is clearly not possible, nor are there obvious source or

importance sampling distributions for the methods of Sections 4.2 or 4.3.

This problem can be solved in a number of ways, and a comparison of three

alternatives is instructive. All begin with the kernels of the conditional probability densities
for individual h, implied by (7.1.5). For t= 2,...,T –1 the kernel is

p[h, Ik(t s),19,edec ht-v2 exp(–e,2 /2h, )exp[–(log h, – p, )2/2 al	 (7.1.6)

where

= 1+82	 1+ 52
(Similar expressions for k and hr may be constructed.)

The first two approaches construct a Gibbs sampler for the he drawing and

successively replacing h,, k,...k. Each cycle of drawing and replacement produces the

next realization of I19 in the Markov chain.	 Note from (7.1.5) that

a(1– 8) + S(logh,„ + log ht , t ) 62 = cr2
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1im,y_op(h,lr„x„0)= 0 for any t=1,...,T , and since the support of h r. is the positive

orthant of 9tT the probability density function of h r is lower semicontinuous at 0. The

remaining sufficient conditions for convergence of the Gibbs sampler are clearly satisfied.

Conditional on each h (79 in the chain, draw 1.(: ) as in the problem for 'VP. Since

P ( 11(;) ) —POITIrrxr,61—>13, it follows that Ip(1. 4' ) )— pkirT , xn.q ,11--> O. Both

approaches work directly with the conditional distribution of H, = log h„ which from

(7.1.6) is given by

log p(H,11-1,(s � t),9,e,)=—exp(-6,2/2)exp(—H,)— (H,— p i* )2 /2 o-2	(7.1.7)

(up to an additive constant) where p: = p—.5a, but differ in the method for obtaining H,.

The first approach is to use acceptance sampling. A reasonable source distribution is
N(p: ,a2 ), for which the accpetance probability is

exp[—(E,2 /2)exp(—H, = exp(—e;/2h,).

The acceptance probability falls below .01 if and only if c,2 1h, exceeds 9.2, which is

highly unlikely if the model reasonably well describes the distribution of the returns r,.

The acceptance probability could be improved somewhat using the optimizing procedures
set out in Section 3.2, but given the favorable acceptance probabilities for the N(p:,a2)

source distribution the additional overhead might not be warranted.

The second approach is to note that the log conditonal kernel densities (7.1.7) are

strictly concave, and apply the adaptive method of Gilks and Wild (1992). Their algorithm
(described in Section 3.2) may be initialized by noting that H, = p lies to the left of the

mode of the log-conditional and a solution of —(1— H, + 1-1,2 /2)exp(—e,212) — (H, —	 o-2

lies to the right of the mode. Except for the method of drawing H, the solution of the

problem proceeds as in the first approach.

The third approach is to construct a Metropolis-Hasings independence chain. This is
done by forming a Metropolis step M, for each	 and then combining all T steps into a

single transition M = . At each M, either a candidate new value is accepted or

the old value of h, is retained. Thus, when M operates on the old h T it generally produces

a mixture of old and new h, in the new h r . The transition kernel M is p-irreducible and

aperiodic, and an argument like the one in Section 6.4 shows that p(h T irT , x T , 0) is the

invariant distribution of M (Jacquier, Polson, and Rossi, 1994, Section 2). A useful

distribution for the Metropolis- Hastings independence chain is the gamma distribution for
1C` with shape parameter a= [1— 2 exp(o-2)[/[1 — exp(a 2 )]+.5 and scale parameter

A = (a — 1) exp(p, +.50-2 )+.5y,2 . Combined with an appropriate scaling of the transition
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kernel, as discussed in Section 6.4, this chain produces convergence at a practical rate (see

Jacquier, Poison, and Rossi (1994, Section 2.4) for details).

The solution of the problem for (1:0 T(2) is directly usable in the solution of the problem

for cD(� ) , in the context of the Gibbs sampler. From the form of (7.1.1)-(7.1.3) the

probability density kernel for B and h T underlying the expectations operator in (7.1.4) is

(7.1.8)
•oCT exp[–ETi(logh,– 	 Slogh,_,)2 12alp(13,a,(5,av)

where p(fi,a,S,o-„) is the prior probability density function of 0' = (fiCa,S,o-v ). A

Gibbs sampler with blocking OI T A will alternate drawing and substitution for

h T irT ,x T , 0 and OirT ,xT ,hT . The drawing for h T is the same one constructed to solve the

problem for 1142) . The second drawing is facilitated by noting that the kernel of (7.1.8) in

0 may be expressed

11T ex
t=1

p r (r -,TX,)(2/2h,

• CY,-, 
(T +1) exp[–I =1 (log h, - a- Sloght_,)2 /R 2avi

if the prior probability distribution has the conventional improper kernel
p(fi,a,8,a,) oc 5,7 1 . Thus, fi and (a,(3,Q) are conditonally independent. In each case

the distribution follows from standard treatments of Bayesian learning about a linear model

(e.g. Poirier (1994, Section 9.9)):

f3 - 1\413,Q-

for /3 and

S2/a2 x 2 (T –2), (a03) N(c, ot,P-1)

P = 	
L;T

log hs.,	 c=	

Er
log h,_,

=1r i log 2 /4_,	 1logh, log h,_,

rT

S2 = L (log h, – – c, log h,_,
r=1

for (a,3,0„).

ft /2 exp[-
vT 

(r -13'0 2 12h1
)=1	 Lt.' •

11 ; Q=	 1 /2,-2 x,x„ b =	 ET=1
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Figure 1. The set D c 9t2 is the support set of the integral in each case.

Figure 2. The target density is f (x), the source density is g(x), and a = sup[f(x)/g(x)].



Figure 3. The function h(x) = logf(x), where f(x) is a log-concave p.d.f. The lower hull
1(x) is formed by the chords joined at the x; , and the upper hull u(x) is formed by the

tangents at the x j which are joined at the wo,

Kt id

Figure 4. The disconnected support D = Di v D2 for the probability distribution implies

that a Gibbs sampler with blocking (x(I),x(2)) will not be Harris recurrent. In the example

shown it cannot converge from any starting value.



	> toy

Figure 5. The probability density p(x) is uniform on the closed set D and consequently is
not lower semicontinuous at 0. The point A is absorbing for the Gibbs sampler, so if
xo	 0= A convergence will not occur. 	 66)chtt (X),2/)

xoi

Figure 6. Iso-probability density contours of a multimodal bivariate distribution are
shown. (Arrows indicate directions of increased density.) Given sufficiently steep
gradients the Gibbs sampler will converge very slowly.
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