
10/17/17

1

Monte	Carlo	Tree	Search
CompSci 590.2

Ron	Parr
Duke		University

A	different	view	of	how	to	plan

• So	far,	we	have	(mostly)	assumed	that	we	can	compute	a	value	
function	or	policy	in	one	big	computation	and	use	them	for	execution
• Exception:	TD	Gammon
• Computes	value	function
• Combines	value	function	with	search	before	each	move

• What	if	we	emphasized	search	more?



10/17/17

2

Searching	before	acting	– “on	line	planning”

• Requires	an	accurate	simulator
• True	for	TD	Gammon
• Sensible	assumption	for	most	games

• Requires	time	to	plan/search	before	each	action	- may	not	be	
practical	for	control	problems
• Does	not	necessarily	require	planning	for	the	entire	state	space,	but
• Potentially	wastes	resources	by	continually	replanning

Straw	man

• Build	a	complete	search	tree	out	to	depth	d
• Alternate	between	action	nodes	and	chance	nodes
• Choose	d	so	that	gdRmax is	small
• Solve	for	policy	in	this	tree	recursive	from	leaves	to	root

• Problem:
• b	=	branching	factor	=	(#of	actions	x	#possible	next	states)
• bd nodes



10/17/17

3

Remove	dependence	on	#next	states

• Kearns	et	al.	introduced	trajectory	trees
• Instead	of	considering	all	next	states,	sample	next	states
• Still	branch	on	all	actions
• Generate	multiple	trees	instead	one	fat	tree
• Evaluate	potential	policies	against	trees	– value	of	policy	is	average	
value	across	trees	

• Replaces	dependence	on	#of	next	states	with:
• Dependence	on	VC	dimension	of	policy	space	(linear),	1/e2,	log(1/d)
• #	of	trees	needed	to	get	good	average	evaluation	of	policies

Trajectory	tree	example

Kearns	et	al.



10/17/17

4

Trajectory	tree	limitations

• Main	problem	remains	exponential	dependence	on	d

• Each	tree	can	still	be	very	big

• Even	if	the	number	of	trees	isn’t	as	bad	as	you	might	expect,	still	very	
expensive	to	do	in	practice

A	different	approach:	Bandits

• Bandit	problem:
• Multiple	slot	machines	with	unknown	expected	payoffs
• Need	strategy	for	playing	arms	so	that	learn	which	slot	machine	is	best	
without	too	much	opportunity	cost	of	learning

• Regret:	Difference	between	what	you	got	and	what	you	could	have	
gotten	if	you	played	optimally

• Goal:	Algorithms	with	bounded	regret



10/17/17

5

UCB1

From	Auer	et	al.,	who	show	that	UCB1	has	regret	logarithmic	in	n

Exploration	bonus

Application	to	online	planning

• Since	we	are	using	a	simulator,	we	don’t	care	so	much	about	regret

• BUT:	Don’t	still	don’t	want	to	waste	time

• Idea:	What	if	we	view	each	state	as	a	sort	of	bandit	problem	when	we	
explore	a	tree	of	possible	outcomes	from	our	current	state?



10/17/17

6

Generic	Monte	Carlo	Tree	Search

From	Kocsis &	Szepsesvari

Understanding	UpdateValue

• Update	value	computes	average	value	of	descendants	in	the	tree
• UCT	includes	an	exploration	bonus:
• 𝐶 "#$%(')

%(',*)
�

• C	=	sqrt(2)	for	bandits
• Issues:
• Unlike	bandits,	some	updates	can	include	“stale”	values	from	children,	i.e.,	
value	of	a	node	should	reflect	value	of	acting	optimally	for	node’s	children,	
but	we	update	as	we	learn,	so	child	values	may	not	be	right

• How	do	you	pick	C?
• Memory



10/17/17

7

Staleness

• K&S	show	that	for	sufficiently	large	C,	we	will	converge	to	the	correct	
values	and	and	action	at	the	root
• Intuition:
• Eventually,	the	leaf	values	will	start	converging	to	the	correct	values
• If	C	is	big	enough,	then	we’ll	get	enough	samples	for	parents	of	these	nodes	
to	converge,	overwhelming	errors	from	earlier	iterations

• Apply	this	idea	inductively

How	to	pick	C

• Not	much	practical	guidance	here
• In	practice,	this	will	need	to	be	very	large
• Why?
• Leaf	values	still	matter
• May	need	exponential	number	of	steps	to	find	leaf	values	with	high	rewards
• No	inherent	way	around	this

• In	practice:	
• Make	C	big	enough	so	that	you	burn	all	the	time	you	have
• Works	better	than	it	should	in	many	cases



10/17/17

8

Memory

• What	if	you	can’t	afford	to	maintain	value	estimates	for	every	node	
you	encounter?
• Note:	On	modern	computers,	you	can	run	out	of	memory	very	
quickly!
• When	you	hit	a	node	you	don’t	want	to	store	the	value	for:
• “Rollout”
• Forward	simulate	to	the	end	of	the	horizon	using	the	current	or	random	
policy,	and	use	this	value

• Does	this	make	sense?

Go

• Ancient	game	that	involves	placing	black/white	stones	on	a	lattice

• 9x9,	13x13,	19x19	(standard)	versions

• Surround	other	players	stones	to	capture	and	remove	from	board

• Objective:	Maximize	number	of	stones	of	your	color	on	the	board



10/17/17

9

Why	Go	is	hard

• ~200	moves	per	turn	vs.	~37	in	chess
• ~300	turns	per	game	vs.	~57	in	chess
• 10170 possible	positions	vs.	1047 in	chess

• Evaluation	is	subtle	– number	of	pieces	on	the	board	at	any	time	is	
not	in	itself	very	predictive	of	outcome
• Very	difficult	to	learn/invent	a	good	evaluation	function

MCTS	for	Go

• Classical	approaches	to	Go	did	not	do	very	well	– nowhere	close	to	
master	level	play
• MCTS	was	a	big	improvement
• Tricks:
• Parallelization
• When/how	to	do	rollouts
• What	policy	to	use	for	rollouts
• Sharing	information	across	subtrees
• Using	databases	of	expert	moves	when	possible



10/17/17

10

Go	Player	ranking	vs.	time

From	Gelly et	al.

Does	this	work	for	other	games?

• Kind	of,	but	not	all

• Not	a	big	win	for	chess

• What’s	happening?
• No	practical	way	to	pick	D	big	enough	to	satisfy	conditions	for	theoretical	
convergence	to	optimal	behavior

• Can’t	explore	the	entire	(remaining)	tree	except	very	close	to	end	of	game
• Rollouts	are	very	important	for	estimating	the	value	of	the	truncated	tree



10/17/17

11

Rollouts:	Chess	vs.	Go	speculation

• Go	positions	are	hard	to	evaluate,	but	perhaps	at	a	certain	point,	the	
good	ones	and	bad	ones	have	wide	paths towards	certain	outcomes	
that	are	hard	to	miss	with	sampling

• Chess	tends	to	have	very	narrow	paths,	so	that	even	towards	the	end	
of	the	game,	getting	towards	a	particular	outcome	can	be	like	
threading	a	needle	– hard	to	find	with	sampling


