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ABSTRACT 

We employ the generalized inverse matrix of Moore-Penrose to study the existence and 

uniqueness of the solutions for over- and under-determined linear systems, in harmony with the least 

squares method. 
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1.  INTRODUCTION 

                     

For any real matrix     , Lanczos [1, 2] introduces the matrix: 

 

                             (   ) (   )   (
  
   

),                                                     (1) 

 

with     denoting the transpose matrix, and studies the eigenvalue problem: 
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                           ⃗⃗    ⃗⃗                                                                  (2) 

 

where the proper values are real because S is a real symmetric matrix. Besides: 

 

                                                                         (3) 

 

such that        (   )  Then the singular values or canonical multipliers follow the 

scheme: 

 

                                                                                 (4) 

 

that is,     has the multiplicity          Only in the case         can occur the 

absence of the null eigenvalue. 

The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form: 

 

                          ⃗⃗ (   )   (
 ⃗⃗ 
 ⃗ 
)
 
 

 ,                                                   (5) 

 

then (1) and (2) imply the Modified Eigenvalue Problem: 

 

                       ⃗                       
 
    ⃗                                       (6) 

 

hence: 

 

                                                   ⃗     ⃗                                         (7) 

 

with special interest in the associated vectors with the positive eigenvalues because they 

permit to introduce the matrices: 

 

        ( ⃗    ⃗      ⃗  )                     (             )                             (8) 

 

verifying                because: 

 

                                    ⃗    ⃗                                                                    (9) 

 

therefore  ⃗⃗    ⃗⃗                        Thus, the Singular Value Decomposition (SVD) 

express [1-5] that A is the product of three matrices: 

 

                       
 
                        (          )                     (10) 

 

This relation tells that in the construction of A we do not need information about the 

null proper value; the information from     is important to study the existence and 

uniqueness of the solutions for a linear system associated to A. Golub [6] mentions that the 

SVD has played a very important role in computations, in solving least squares problems [7], 

in signal processing problems, and so on; it is just a very simple decomposition, yet it is of 

fundamental importance in many problems arising in technology.  
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It is important to observe that the symmetric matrices (   )    and  (   )    are 

identity matrices for arbitrary vectors into their respective spaces of activation [5], that is: 

 

       ⃗   ⃗              ⃗                                                                        (11) 

 

besides, (10) allows obtain the SVD of the Gram matrices: 

 

   (    )      
                            (   )      

                             (12) 

 

such that                (   )       (   )  From (10) and (12) we observe that: 

 

          (    )                              (   )                         (13) 

 

The eigenvectors associated with      verify the equations: 

 

    
   ⃗                                     ⃗  

   ⃗                    

                                                                                                              (14) 

       
                                 ⃗    ⃗  

               

 

therefore: 

 

     
   ⃗                                 ⃗  

   ⃗              

                                                                                                                             (15) 

                                                          
                                                       

 

In Sec. 2 we exhibit the Moore-Penrose’s pseudoinverse of   [8-13] via the 

corresponding SVD [14-16], which is useful in Sec. 3 to study the solutions of over- and 

under-determined linear systems [2, 5] in the spirit of the least squares method [7, 17]. 

 

 

2.  GENERALIZED INVERSE 

 

The Moore-Penrose’s inverse [2, 8-13] is given by: 

 

                      
         ,                                               (16) 

    

which coincides with the natural inverse obtained by Lanczos [2, 5]. The matrix (16) satisfies 

the relations [10, 11, 13]: 

 

                                    (    )                (   )                  (17) 

 

that characterize the pseudoinverse of Moore-Penrose. In particular, from (10), (11) and (16): 
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                                    ⃗   ⃗            ⃗             
                                                                                                                                   (18) 

                                                                
 

The use of (8) and (10) into (16) implies the following expression for the Lanczos 

generalized inverse: 

 

      (                ) ,           
  
( )

  
     

  
( )

  
           

  
( )

  
                            (19) 

 

where    
( )

  means the  j th- component of   ⃗     similarly: 

 

(  )  (                )         
  
( )

  
  ⃗   

  
( )

  
  ⃗         

  
( )

  
  ⃗                       (20)   

  

therefore:   

 

                                   (  )      (      )                  (21) 

 

We can use (16) to construct the pseudoinverse of each Gram matrix, in fact [13]: 

 

(   ) 
   

                                (    ) 
   

                           (22) 

 

with the interesting properties: 

 

  (   )             (    )   (  )       (   ) (   )                      (23)  

 

Each matrix has a unique inverse because every matrix is complete within its own 

spaces of activation. The activated p-dimensional subspaces (eigenspaces / operational 

spaces) are uniquely associated with the given matrix [5]. 

 

 

3.  LINEAR SYSTEMS  

 

We want to find             verifying the linear system: 

 

                   ⃗                                                                 (24)   

 

for the data      and   ⃗           It is convenient to consider two situations: 

 

a). Over-determined linear system [2,5]: In this case we have more equations than unknowns, 

that is,      
 

Lanczos [18] comments that the ingenious method of least squares makes it possible to 

adjust an arbitrarily over-determined and incompatible set of equations. The problem of 
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minimizing (     ⃗ )  has always a definite solution, no matter how compatible or 

incompatible the given system is. The least square solution of (24) satisfies [5, 17]: 

 

          ⃗                                                                        (25) 

 

and the remarkable fact about (25) is that it always gives an even-determined (balanced) 

system, no matter how strongly over-determined the original system has been. 

The system (25) is compatible because from (13) and (15) we have that    ⃗  is into 

    (   )         Now we multiply (25) by  (   )  and we use (11) and (23) to obtain the 

solution: 

 

                               ⃗                                                              (26) 

 

which is unique because    , that is,           then in (14) the system     
  only has the 

trivial solution; hence the Moore-Penrose’s inverse gives the least square solution of (24). The 

expression (26) is in harmony with the results in [19-22]. 

We have eliminated over-determination (and possibly incompatibility) by the method of 

multiplying both sides of (24) by     The unique solution thus obtained coincides with the 

solution generated with the help of    [5]. 

 

b). Under-determined linear system [2, 5]: There are more unknowns than equations, that is, 

     
 

In this case we may try the least square formulation of (24), that is, to accept (26), 

however, now the solution is not unique because     and the system      
   has      non-

trivial independent solutions; an under-determined system remains thus under-determined, 

even in the least square approach. 

An alternative process is to transform the original    into the new unknown    via the 

relation [5]: 

 

                                                                                                              (27) 

 

then (24) acquires the structure        ⃗  whose least square solution is given by the 

pseudoinverse of Moore-Penrose:  

 

                                (   )   ⃗  ∑    
   
      

 ,                                              (28) 

 

where the quantities    are arbitrary and the    
  are     independent vectors generating the 

       (   )         (  ) [13], that is: 

 

              
   ⃗                                                                  (29) 

 

Thus, from (16), (22), (23), (28) and (29) we have that the solution of (27) is given by: 
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     (   )   ⃗         ⃗     ⃗   
 

in agreement with (26). 

Although that (26) is not unique for the under-determined case, we can say that it is the 

‘natural solution’ for the linear system (24). 

 

 

4.  CONCLUSIONS 

 

Our study shows the importance of the SVD [1-6, 14-16] of a matrix and of the 

corresponding Moore-Penrose’s inverse [8-13], to elucidate the least square solution [7, 17-

22] for over- and under-determined linear systems [2, 5]. 
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