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ABSTRACT

We employ the generalized inverse matrix of Moore-Penrose to study the existence and
uniqueness of the solutions for over- and under-determined linear systems, in harmony with the least
squares method.
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1. INTRODUCTION

For any real matrix A,,,,, Lanczos [1, 2] introduces the matrix:

0 A
S(n+m)x(n+m) = (AT 0)’ (1)

with AT denoting the transpose matrix, and studies the eigenvalue problem:
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Sw = 1w, @)
where the proper values are real because S is a real symmetric matrix. Besides:
rank A = p = Number of positive eigenvalues of S, (3)

such that 1 < p < min(n,m). Then the singular values or canonical multipliers follow the
scheme:

AIPAZP'")AZ)P_AIP —/12,...,—/1p,0, O,...,O, (4)
that is, A = 0 has the multiplicity n +m — 2p. Only in the case p = n =m can occur the

absence of the null eigenvalue.
The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form:

=

Bnemr = (5) 5)
then (1) and (2) imply the Modified Eigenvalue Problem:
ApymUmx1 = A Unx1 Amenﬁnxl = A V1 (6)
hence:
ATAG = 1?3, AATE = 2%, ()

with special interest in the associated vectors with the positive eigenvalues because they
permit to introduce the matrices:

Unxp = (l_'ilt a“)21 ey l_'ip)’ mep = (1_7)1, 1_7)2, ey 'l_;p), (8)
verifying UTU = V'V = I,,,, because:
Uj g = Uy " Uy = Gjic )

therefore ; - Wy = 28, j,k =1,2,...,p. Thus, the Singular Value Decomposition (SVD)
express [1-5] that A is the product of three matrices:

Anxm = Uniep Dprp VT pem A = Diag (14,23, ..., 4,). (10)

This relation tells that in the construction of A we do not need information about the
null proper value; the information from A =0 is important to study the existence and
uniqueness of the solutions for a linear system associated to A. Golub [6] mentions that the
SVD has played a very important role in computations, in solving least squares problems [7],
in signal processing problems, and so on; it is just a very simple decomposition, yet it is of
fundamental importance in many problems arising in technology.
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It is important to observe that the symmetric matrices (UUT) . @and (VVT) pm are

identity matrices for arbitrary vectors into their respective spaces of activation [5], that is:
UUTd =14, V uecColl, VVTo =9, V ¥ e ColV; (11)

besides, (10) allows obtain the SVD of the Gram matrices:

(A AT pn = UNZUT, (ATA) pym = VAZVT, (12)

such that p = rank A = rank (4A7) = rank (AT A). From (10) and (12) we observe that:
Col A= Col (AAT) = Col U, Col AT = Col (ATA) = Col V. (13)

The eigenvectors associated with 2 = 0 verify the equations:

A =0 j=1,...,m—p, ATuk=O k=1,..,n—p,
(14)
U U =0, V71,j, U, -, =0, Vtk
therefore:
VT =0, Vj UTd, =0, Yk,
(15)

AX € ColU and ATAX € ColV, V X € E™,
ATy € ColV and AATy € ColU, V y € E™

In Sec. 2 we exhibit the Moore-Penrose’s pseudoinverse of A [8-13] via the
corresponding SVD [14-16], which is useful in Sec. 3 to study the solutions of over- and
under-determined linear systems [2, 5] in the spirit of the least squares method [7, 17].

2. GENERALIZED INVERSE

The Moore-Penrose’s inverse [2, 8-13] is given by:

A+mxn = mep Az_aylcp UTpxn ) (16)

which coincides with the natural inverse obtained by Lanczos [2, 5]. The matrix (16) satisfies
the relations [10, 11, 13]:

AATA=4, A*AAY =A%,  (AADT =AAY, (ATA)T = A%4, 17)

that characterize the pseudoinverse of Moore-Penrose. In particular, from (10), (11) and (16):
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AAt=U0UT AAYU=1U V Ue€eColl,
(18)
AtA=Vv VT ATAv =7, VY v € ColV.

The use of (8) and (10) into (16) implies the following expression for the Lanczos
generalized inverse:

. NONON W _
A =(t1 tz " tn), tJ:A_lvl_i_Z 172+"' +E vp, ]=1,...,n, (19)

where u,(cj) means the j th- component of 1, ; similarly:

) (o) )
AT = (F 7 = By Fe= 2ty + 2t + +21,, k=1,..,m (20)
A A2 A
therefore:
Col A* = Col V, Col (AT = Col (UANVT) = Col U. (21)

We can use (16) to construct the pseudoinverse of each Gram matrix, in fact [13]:

AT =V AV, (AATY* =UA2UT, (22)
with the interesting properties:
(ATATAT = AT, AADHYTA=(ADT, ATAHTATA) =ATA=V VT (23)

Each matrix has a unique inverse because every matrix is complete within its own
spaces of activation. The activated p-dimensional subspaces (eigenspaces / operational
spaces) are uniquely associated with the given matrix [5].

3. LINEAR SYSTEMS

We want to find X e E™ verifying the linear system:
A%=h, (24)
for the data A,,,,, and b e E™. Itis convenient to consider two situations:

a). Over-determined linear system [2,5]: In this case we have more equations than unknowns,
that is, m < n.

Lanczos [18] comments that the ingenious method of least squares makes it possible to
adjust an arbitrarily over-determined and incompatible set of equations. The problem of
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minimizing (Aic’—E)Z has always a definite solution, no matter how compatible or
incompatible the given system is. The least square solution of (24) satisfies [5, 17]:

ATAZ=A"b, %€ ColV, =m, 25
p

and the remarkable fact about (25) is that it always gives an even-determined (balanced)
system, no matter how strongly over-determined the original system has been.

The system (25) is compatible because from (13) and (15) we have that ATb is into
Col (ATA) = Col V. Now we multiply (25) by (ATA)* and we use (11) and (23) to obtain the
solution:

% =A*D, (26)

which is unique because p = m, that is, Col V = E™, then in (14) the system Aﬁ; only has the
trivial solution; hence the Moore-Penrose’s inverse gives the least square solution of (24). The
expression (26) is in harmony with the results in [19-22].

We have eliminated over-determination (and possibly incompatibility) by the method of
multiplying both sides of (24) by A”. The unique solution thus obtained coincides with the
solution generated with the help of A™ [5].

b). Under-determined linear system [2, 5]: There are more unknowns than equations, that is,
n<m.

In this case we may try the least square formulation of (24), that is, to accept (26),
however, now the solution is not unique because p < m and the system Aﬁ; has m — p non-
trivial independent solutions; an under-determined system remains thus under-determined,

even in the least square approach.
An alternative process is to transform the original X into the new unknown Z via the
relation [5]:
X=ATZ (27)

then (24) acquires the structure AATZ = b whose least square solution is given by the
pseudoinverse of Moore-Penrose:

Z=(AAN* b+ 327 ¢ 7, (28)

where the quantities ¢; are arbitrary and the Z; are n — p independent vectors generating the
Kernel (AAT) = Kernel (AT) [13], that is:

ATZ; =0, j=1,..,n—p. (29)

Thus, from (16), (22), (23), (28) and (29) we have that the solution of (27) is given by:
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% = AT(AAT)* b = VA~UTD = A*b,

in agreement with (26).
Although that (26) is not unique for the under-determined case, we can say that it is the
‘natural solution’ for the linear system (24).

4. CONCLUSIONS

Our study shows the importance of the SVD [1-6, 14-16] of a matrix and of the
corresponding Moore-Penrose’s inverse [8-13], to elucidate the least square solution [7, 17-
22] for over- and under-determined linear systems [2, 5].
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