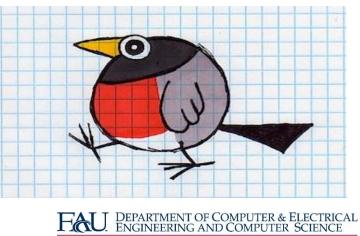
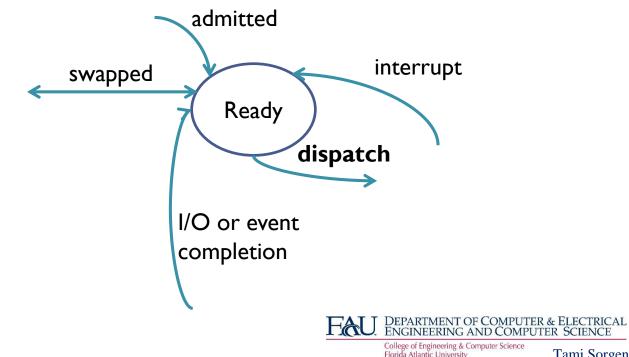
Operating systems Module 5 More CPU scheduling PART I

0


College of Engineering & Computer Science Florida Atlantic University

Tami Sorgente

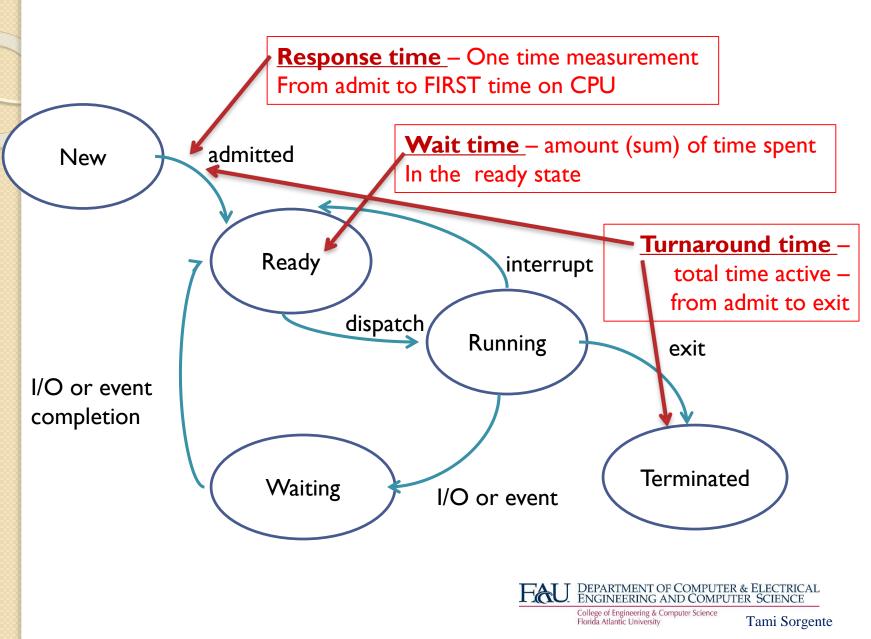
UNIT 5 – CPU SCHEDULING


- CPU scheduling calculations
- CPU scheduling algorithms
- CPU scheduling Practice
 - Round Robin
 - Shortest remaining Time (SRT)

CPU SCHEDULING

 <u>Short term scheduler (CPU scheduler)</u> selects from among the processes in ready queue, and allocates the CPU to one of them

CPU SCHEDULING


• **<u>CPU burst</u>** – time on the CPU

CPU scheduling Calculations –

- <u>CPU utilization-</u>
 - % CPU works Sum of actual work time/total time
- <u>Throughput</u>
 - number of processes completed in amount of time
- <u>Turnaround time</u> -
 - from time of admit to time of completion
 - Sum of periods spent waiting, ready queue, I/0, CPU
- <u>Waiting time</u>
 - o sum of periods spent waiting (in **ready** state)
- <u>Response time</u>-
 - From time of submission until first response

PROCESS STATES

CPU SCHEDULING ALGORITHMS

<u>Nonpreempitve</u>

FCFS –

SJF -

Priority -

<u>Preemptive</u>

Round Robin

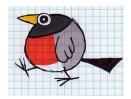
SJR – shortest remaining time

Preemptive priority

Combination algorithms :

MLQ – Multilevel Queue

(stay in the same queue)

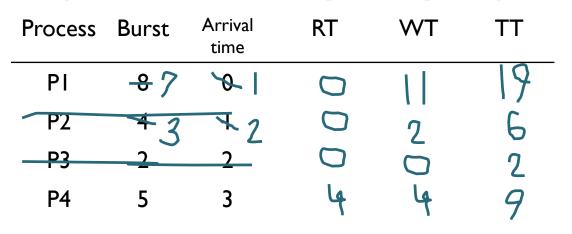

MLFQ - Multilevel Feedback Queue

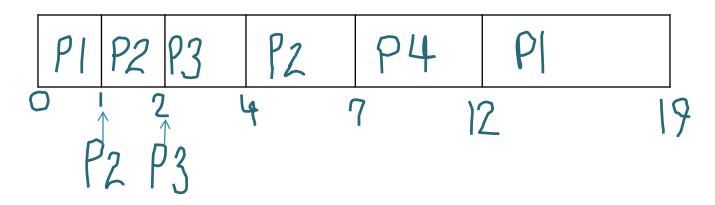
(may migrate to another queue)

College of Engineering & Computer Science Florida Atlantic University

CPU SCHEDULING PRACTICE

<u>preempitve example (using Gantt chart):</u> Round Robin (TQ 5)



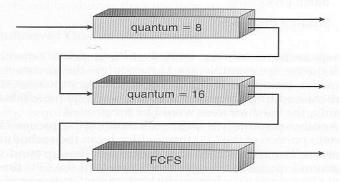


CPU SCHEDULING PRACTICE

preempitve examples (using Gantt chart):

SRT – Shortest remaining time (shortest job first preemptive)

Operating systems Module 5 More CPU scheduling PART II


0

College of Engineering & Computer Science Florida Atlantic University

MODULE 5 – CPU SCHEDULING

- CPU scheduling calculations
- CPU scheduling algorithms
- CPU scheduling Practice
 - Multilevel Queue (MLQ)
 - Multilevel Feedback Oueue (MLFO)

CPU SCHEDULING PRACTICE

Combination algorithms : MLQ – Multilevel Queue

(stay in the same queue)

MLFQ - Multilevel Feedback Queue

(may migrate to another queue)

Tami Sorgente

College of Engineering & Computer Science Florida Atlantic University

MLQ - CPU SCHEDULING PRACTICE

Apply multilevel queue scheduling (MLQ) consisting of two queues (Queue I has higher priority over queue 2).
Both queues use Round Robin scheduling, with TqI=4 (Priority queue I) and Tq2=3 (Priority queue 2).

Process	CPU burst	Arrival	Priority	RT	ТТ	WT	
	time	time	queue				
PI	10	0	2	0	34	24	
P2	7	3	1	0	7	0	
P3	6	4	2	13	32	26	
P4	5	12	1	0	5	0	
P5	8	18	1	0	8	0	
			AVG	2.6	17.2	10	

	ΡI	P2	P2	PI	P4	P4	P 3	P5	P5	PI	P3	PI	P3	
C)	3 7	7	0 1	2 1	6 I	7	8 2	2 2	6 2	93	2 3	34 3	

CPU SCHEDULING PRACTICE EXERCISE

- I. FCFS
- 2. SJF
- 3. Multi-level Feed Back Queue with three queues (higher priority queues have absolute priority) Queue I - Round Robin with time quantum 4 (highest priority) Queue 2 – Round Robin with time quantum 7 Queue 3 – First Come First Serve
- 4. Preemptive priority (I is highest priority) (USE PRIORITY COLUMN)

Process	CPU, I/O, CPU	Arrival Time	Queue	Priority	RT	тт	WT
PI	5, 6, 7	0	I	3			
P2	4, 2, 3	3	I	2			
P3	2, 3, 4	4	I	I.			
P4	5, 2, 7	7	I	3			
P5	3, 2, 4	14	I	2			

