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SUMMARY

Engineering clinically relevant cells in vitro holds
promise for regenerative medicine, but most pro-
tocols fail to faithfully recapitulate target cell pro-
perties. To address this, we developed CellNet, a
network biology platform that determines whether
engineered cells are equivalent to their target tis-
sues, diagnoses aberrant gene regulatory networks,
and prioritizes candidate transcriptional regulators
to enhance engineered conversions. Using CellNet,
we improved B cell to macrophage conversion, tran-
scriptionally and functionally, by knocking down
predicted B cell regulators. Analyzing conversion of
fibroblasts to induced hepatocytes (iHeps), CellNet
revealed an unexpected intestinal program regulated
by the master regulator Cdx2. We observed long-
term functional engraftment of mouse colon by
iHeps, thereby establishing their broader potential
as endoderm progenitors and demonstrating direct
conversion of fibroblasts into intestinal epithelium.
Our studies illustrate how CellNet can be employed
to improve direct conversion and to uncover unap-
preciated properties of engineered cells.

INTRODUCTION

The in vitro manufacture of clinically relevant cells offers a po-

tential strategy for regenerative therapy and permits disease

modeling, toxicology testing, and drug discovery. Current

approaches aim to engineer cell identity by means of directed

differentiation from a pluripotent state or by transcription fac-

tor-driven conversion between differentiated states (Morris and

Daley, 2013; Vierbuchen and Wernig, 2011). Directed differenti-

ation typically comprises multiple steps, is time-consuming

and inefficient, and commonly yields immature cells correspond-

ing to embryonic counterparts rather than mature adult cells

(Cohen and Melton, 2011). By comparison, direct conversion is

relatively straightforward and rapid, but there is evidence for

incomplete conversion, especially between divergent cell types

(Morris and Daley, 2013; Willenbring, 2011).

Many examples of direct conversion between differentiated

states have been reported in mouse and human, for example,

from fibroblasts to cardiomyocytes, hepatocytes, and neurons

(Huang et al., 2011; Ieda et al., 2010; Sekiya and Suzuki, 2011;

Son et al., 2011; Vierbuchen et al., 2010). More recently, several

groups have described direct conversion to progenitor states,

including hematopoietic, neuronal, and hepatic progenitors (Lu-

jan et al., 2012; Pereira et al., 2013; Yu et al., 2013). These engi-

neering strategies predominantly employ transcription factor

overexpression as a means to drive fate conversion.

Current conversion strategies are often unable to fully specify

a defined cell fate. For example, hepatic gene expression is not

fully extinguished in neural cells derived from hepatocytes, and

macrophages derived from fibroblasts harbor the originating

cell signature and are prone to dedifferentiation (Feng et al.,

2008; Marro et al., 2011). Furthermore, conversion of fibroblasts

to cardiomyocytes yields cells that do not fully recapitulate

the profile of neonatal cardiomyocytes (Ieda et al., 2010). These

observations are concerning since the extent to which an

in vitro engineered cell population resembles its in vivo correlate

transcriptionally and functionally is seldom assessed in a

comprehensive or standardized manner. Measuring functional

engraftment via transplantation into animal models lacks

rigorous quantitation and the transcriptional similarity of engi-

neered cell populations is commonly assessed by expression

profiling followed by simple hierarchical clustering analysis.

Such global analyses do not provide a quantitative means for

Cell 158, 889–902, August 14, 2014 ª2014 Elsevier Inc. 889



assessing deficiencies of engineered cells, nor do they provide a

systematic approach to prioritize interventions to improve fate

specification.

To address this, we developed a computational platform, Cell-

Net, which reconstructs gene regulatory networks (GRNs) using

publically available gene expression data for a range of cell types

and tissues, and then classifies engineered cells according to

establishment of GRNs for particular target cells, providing a

precise metric of cell similarity. CellNet also identifies regulatory

nodes at which engineered cells are distinct from target cells,

and provides a ranked list of transcription factors whose manip-

ulation is predicted to bring the engineered cell closer to the

target. In an accompanying study, we have analyzed expression

data for over 200 derived cell populations from 56 published re-

ports and found that cells generated through directed differenti-

ation more closely resemble their in vivo correlates compared to

cells engineered via direct conversion,mainly due to failure of the

converted cells to extinguish the expression programs of the

starting cell type. Unexpectedly, we discovered that the estab-

lishment of GRNs associated with alternate fate was common

to nearly all engineering strategies (Cahan et al., 2014).

Here, we apply CellNet to two distinct cell fate engineering

paradigms: conversion of B cells to macrophages, and fibro-

blasts to hepatocyte-like cells (iHeps). CellNet revealed that

neither strategy generated fully converted cells; B cell identity

was not extinguished in induced macrophages, whereas a

progenitor state was transiently and partially established. Engi-

neering the conversion to macrophages by knocking down Cell-

Net-prioritized candidates improved target cell fate and function.

iHeps, unlike primary hepatocytes, demonstrate impaired hepa-

tocyte function, are immortalized, and exhibit progenitor marker

expression that is extinguished following transplantation (Sekiya

and Suzuki, 2011). In agreement with this, CellNet revealed that

iHeps manifest minimal liver identity. Surprisingly, CellNet un-

veiled considerable hindgut identity harbored by iHeps, regu-

lated by Cdx2. We were able to demonstrate their long-term

functional colon engraftment, indicating that iHeps in fact repre-

sent an endoderm progenitor rather than a differentiated cell

type as previously thought. CellNet is thus a potent tool for reas-

sessing and refining established conversion protocols.

RESULTS

Application of the CellNet Network Biology Platform to
Assess Direct Conversion
GRNs govern the steady-state expression program of a partic-

ular cell type and thus act as major molecular determinants of

cell identity (Davidson and Erwin, 2006). Measuring the estab-

lishment of cell and tissue-specific GRNs in engineered popula-

tions serves as both a robust metric of cellular identity and as a

tool to detect the establishment of alternate GRNs. We designed

CellNet to classify engineered cell populations by their similarity

to target cells and tissues, to assess the extent to which target

GRNs are established, and to score transcriptional regulators

according to their likelihood of improving the engineered popula-

tion (Figure 1A). The CellNet platform is fully detailed in our

accompanying paper and is publically available (Cahan et al.,

2014, http://cellnet.hms.harvard.edu).

B cell to macrophage conversion is a major paradigm for un-

derstanding principles of direct cell fate conversion (Bussmann

et al., 2009). Application ofCellNet revealed that enforced expres-

sion of the transcription factor C/EBPa converts freshly harvested

B cells into macrophages, following a time-dependent extinction

of B cell identity and acquisition of a strong, exclusive macro-

phage classification score (Di Tullio et al., 2011; mean scores, B

cell: 0.012,macrophage: 0.73; Figure 1B). In contrast to this, con-

version of a cultured pre-B cell line engineered with estradiol-

inducible C/EBPa (C10 cells, Bussmann et al., 2009; Figure 1C)

fails to fully extinguish B cell identity, yielding cells that only

partially classify as macrophages 48 hr postconversion (mean

scores: B cell: 0.65, macrophage: 0.54; Figure 1D). Interestingly,

no significant changes in DNA methylation have been observed

during this conversion, which may indicate that the C10 cell line

harbors conversion barriers unique to in vitro cultured cell lines

(Rodrı́guez-Ubreva et al., 2012). Despite this limitation, the induc-

ible C10 cell line represents a robust system to interrogate the

molecularmechanisms of direct conversion and a valuablemodel

for applying CellNet to enhance cell fate conversion.

To enable identification of GRNs that fail to extinguish or are

incompletely or aberrantly established in engineered cells, we

devised a metric of GRN status. We assessed the expression

of each gene in a GRN relative to its expected value and then

weighted each gene by its importance to the network and to

the associated cell and tissue classifier (Figure 2A). To prioritize

transcriptional regulator interventions that might improve engi-

neering strategies, we computed a network influence score

that integrates the expression level of the regulator in the target

cell or tissue, the extent of dysregulation of the regulator and its

predicted targets in the query sample, and the number of pre-

dicted targets (Figure 2B). We applied these functions of CellNet

to the estradiol-inducible C10 B cell to macrophage conversion.

Assessment of GRN status revealed that the macrophage GRN

was gradually but not completely established over 48 hr,

whereas the B cell GRN remained intact (Figure 2C). These

data were in contrast to the almost complete conversion of

native B cells (Figures 1B and S1A available online). Interestingly,

CellNet also exposed the partial and transient establishment of a

hematopoietic stem and progenitor cell (HSPC) GRN during con-

version of C10 cells (Figure 2C), and similarly in the conversion of

native B cells (Figure 1B; Di Tullio et al., 2011), raising the provoc-

ative possibility that expression of C/EBPa induces a transient

wave of progenitor GRN reactivation from which macrophages

ultimately emerge.

Engineering Cell Fate
In an attempt to improve conversion of C10-induced macro-

phages, we extended the duration of C/EBPa expression to

4 days, but neither B cell nor macrophage statuses improved,

suggesting that the partial conversion was not due to insufficient

duration of C/EBPa expression (Figure S1B). B cell GRN persis-

tence was striking in the converted cells, thus we consulted

CellNet to score transcriptional regulators of B cell identity. Cell-

Net-prioritized Pou2af1 (Pou2 associating factor 1) and Ebf1

(Early B cell factor 1) as transcriptional regulators associated

with B cell identity that remained expressed at inappropriately

high levels in the converted cells (Figure 2D). Ebf1 promotes
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B cell fate and blocks alternate fates (Nechanitzky et al., 2013),

whereas Pou2af1 coactivates Oct1 and Oct2 on B-cell-specific

promoters and is important for B cell activation and maturation

(Lins et al., 2003).

In our experiments, conversion of the C10 B cell line was highly

reproducible, with the majority of cells gaining Mac1 positivity

and losingCD19 expressionwithin 48 hr (Figure S1C). To facilitate

investigation of CellNet-enhanced conversion, we identified

CD302 as a cell surface antigen that was inadequately expressed

on induced relative to native macrophages (Figure S1D). We then

knocked down Ebf1 or Pou2af1 using lentivirally delivered

shRNAs, resulting in an �80% reduction in target gene expres-

sion (Figure S2A). Next, we initiated conversion with b-estradiol

and after 72 hr analyzed expression of Mac1 and CD302 by

flow cytometry. Knockdown of either Ebf1 or Pou2af1 signifi-

cantly expanded the Mac1brightCD302+ population relative to

A

B C D

i

Figure 1. Application of CellNet Classification to the Direct Conversion of B Cells to Macrophages

(A) Adapted from Cahan et al. (2014) We designed CellNet to query gene expression profiles of engineered cell populations to classify input samples by their

similarity to target cells and tissues, in order to assess the extent to which cell type and tissue GRNs are established and to score transcriptional regulators

according to their likelihood of improving the engineered population. GRNs were used to construct a cell type classifier which was initially used to assess

C/EBPa-mediated conversion of B cells to macrophages.

(B) Each row in the classifier represents one cell or tissue type and each column represents one expression array. Higher classification scores indicate a higher

probability that a query sample expresses the target GRN genes at a level indistinguishable from the same cell or tissue in the training data; classification heatmap

of primary B cell to macrophage conversion shows that converted cells classify exclusively as macrophages (Di Tullio et al., 2011).

(C) C10 estradiol-inducible B cell to macrophage conversion (Bussmann et al., 2009).

(D) Cell and tissue classification heatmap showing that conversion is not complete with induced macrophages maintaining B cell classification and only partially

classifying as macrophages.

See also Figure S1.
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scramble shRNA-treated cells (Figure 2E). We then tested the

macrophage-associated functions ofEbf1 andPou2af1-depleted

cells. Cell migration, formation of lamellipodia and filopodia, and

phagocytosis were all significantly enhanced relative to untreated

and scramble-treated cells (Figures 2F, S2B, and S2C). Quantita-

tive PCR analysis showed a decrease in expression of some

B cell-specific genes whereas others were paradoxically upregu-

lated; however, there was a more consistent increase in macro-

phage-specific gene expression (Figure S2D). We reapplied

CellNet to the engineered cells and found that knockdown of

Ebf1 or Pou2af1 fortified their macrophage classification, corrob-

orating their improved in vitro function (Figure 2G; mean scores:

Scramble: 0.39, Ebf1 knockdown: 0.52, Pou2af1 knockdown:

0.54). However, although macrophage GRN status significantly

improved (Figure 2H: Ebf1 knockdown: p = 0.029, Pou2af1

knockdown: p = 0.011), detailed analysis revealed that the

B cell GRN was not extinguished following knockdown of these

factors, perhaps due to the existence of feedback loops reinforc-

ing B cell identity. To explore this, we searched CellNet GRNs for

regulatory loops in which Pou2af1 loss is predicted to increase B

cell factor expression. Indeed, we found several such loops,

including one connecting Pou2af1 downregulation to the upregu-

lation of the master B cell regulator Pax5, and Ebf1 itself through

Runx2 and Runx3 (Figures S2D and S2E). These data suggest

that residual expression of Ebf1 and Pou2af1 in the converted

cells serves primarily to repress macrophage fate.

We explored the possibility that Ebf1 and Pou2af1 mutually

repress myeloid-associated GRNs, as previously reported for

Ebf1 (Nechanitzky et al., 2013). Examining targets directly linked

to Ebf1/Pou2af1 in the overall GRN, as well as targets of tran-

scription factors that Ebf1/Pou2af1 target themselves, we found

that the set of macrophage genes upregulated by B cell factor

knockdown were significantly enriched in genes that CellNet

predicted to be repressed by Pou2af1 or Ebf1 (p % 0.005 and

0.05, respectively, Tables S1 and S2; Figure S2F). Thus, the

improved in vitro function of Ebf1/Pou2af1-depleted cells

following C/EBPa-induced conversion of C10 cells is at least in

part due to the repressive actions of these B cell regulators on

macrophage gene expression programs.

B cell to macrophage conversion demonstrates the utility of

CellNet to dissect cell identity and prioritize candidates to

improve fate specification iteratively. Conversion of B cells to

macrophages represents a conversion between closely related

cells. To investigate a dramatic change in fate between more

disparate germ layers, we focused on conversion of meso-

derm-derived fibroblasts to endoderm-derived hepatocytes.

CellNet: Induced Hepatocytes Fail to Classify as Liver
Mouse embryonic fibroblast (MEF) to hepatocyte-like cell con-

version has been reported by two independent groups: Sekiya

and Suzuki employed Hnf4a, with either Foxa1, 2, or 3, while

Huang and colleagues utilized Gata4, Hnf1a, and Foxa3 in con-

cert with inactivation of p19(Arf) (Huang et al., 2011; Sekiya and

Suzuki, 2011). In both reports, the resulting induced hepatocytes

were capable of engrafting fumarylacetoacetate hydrolase-defi-

cient (Fah–/–) mice, a tyrosinemia model of liver failure. However,

unlike primary hepatocytes, iHeps demonstrated impaired hepa-

tocyte function and were unable to fully repopulate Fah–/– mice.

Liver function remained abnormal, resulting in reduced survival

rates. Curiously, iHeps were immortalized and expressed pro-

genitor markers such as Alpha-fetoprotein (Afp), whose expres-

sion ceased following transplantation (Sekiya and Suzuki, 2011).

We reproduced the Sekiya and SuzukiMEF to iHep conversion

(Figure 3A). Careful analysis of the derived cells showed that we

attained comparable derivation efficiency and that the cells ex-

pressed E-cadherin and albumin, stored glycogen, took up

low-density lipoprotein (LDL), secreted albumin, and produced

urea (Figures S3A–S3F). As previously reported, we observed

emergence of epithelial-like iHep colonies 3 weeks following

transduction and culture on collagen-coated plates. Moreover,

these cells were immortalized, in accordance with the previous

report, and we have been able to continuously passage estab-

lished iHep lines for over a year. These analyses confirm that

our iHeps appear equivalent to those previously reported (Sekiya

and Suzuki, 2011). Ex vivo cultured primary hepatocytes are

known to dedifferentiate (Strain, 1994). qPCR analysis of key

liver markers in iHeps showed very weak hepatic gene expres-

sion relative to both freshly isolated primary and dedifferentiated

hepatocytes, and much higher levels of Afp and E-cadherin (Fig-

ure S3G). The failure of iHeps to reach expression levels of even

dedifferentiated primary hepatocytes suggests that their inade-

quacy is not due to culture conditions alone.

We next transcriptionally profiled our iHeps and applied the

classification function of CellNet. iHeps classified predominantly

Figure 2. Application of the CellNet GRN Status Metric and Candidate Prioritization Functions to B Cell to Macrophage Conversion

(A) Adapted fromCahan et al. (2014) To identify cell and tissue-specific GRN establishment, we devised a precise metric of GRN status. We defined this metric as

the closeness of the expression of each gene in a GRN to its expected value, and then weighted each gene (g1–g6) by its importance to the network and its

importance in the associated classifier.

(B) To prioritize transcriptional regulator interventions, we devised a Network Influence Score integrating the target expression level of the regulator, the extent of

dysregulation of the regulator, and its predicted targets in the query sample, and the number of predicted targets. We applied these functions of CellNet to the

estradiol-inducible B cell to macrophage conversion.

(C) The B cell GRN is not extinguished and themacrophage GRN not fully established following conversion. The HPSCGRN is transiently and partially established

during conversion. Data are represented as mean ± SD.

(D) CellNet prioritization of B cell transcriptional regulators whose expression is maintained in induced macrophages.

(E) C/EBPa induced direct conversion of C10 B cells tomacrophages following shRNA knockdown of Ebf1 andPou2af1: flow cytometry plots ofMac1 andCD302

expression 3 days after conversion. The Mac1BrightCD302+ population is expanded following Ebf1 and Pou2af1 knockdown.

(F) Cumulative distance migrated by induced macrophages increases following knockdowns: still images of cell morphology from timelapse imaging. Scale bars,

10 mM. *** = p < 0.001. Data are represented as mean ± SEM.

(G and H) Cell and tissue classification heatmap following knockdowns (G) and corresponding B cell andmacrophageGRN establishment (H). * = p < 0.05, t-Test.

Macrophage identity is fortified following knockdown. Data are represented as mean ± SD.

See also Figure S1 and S2 and Tables S1 and S2.
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as fibroblasts and barely manifested any liver classification (Fig-

ure 3B; mean scores: 0.186 and 0.049, respectively). CellNet

analysis of GRN status in these cells confirmed that fibroblast

status was not extinguished while liver identity was only weakly

established (Figure 3C). This classification was not accounted

for by incomplete conversion nor the persistence of fibroblasts,

as the rapidly dividing iHeps dominate the culture. Considering

our accompanying findings that alternate cell fates are estab-

lished in most fate engineering protocols, we assessed all

alternate identities suggested by CellNet (Cahan et al., 2014).

Unexpectedly, CellNet detected the partial establishment of an

intestinal GRN, relating to colon (Figure 3D).
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Figure 3. Application of CellNet to Direct Conversion of Fibroblasts to Hepatocytes

(A) Overview of Foxa1- and Hnf4a-driven generation of induced hepatocytes

(B) Cell and tissue classification heatmap of three independently derived iHep lines, fetal liver, and adult liver: iHeps poorly classify as liver.

(C) Liver and fibroblast GRN status in iHeps, fetal liver, and adult liver: the fibroblast GRN is not extinguished and liver GRN not fully established in iHeps. HSPC

classification of the fetal liver reflects its role as a hematopoietic organ at this stage.

(D) Partial establishment of a colon sub-GRN (424 genes) in iHeps. Data are represented as mean ± SD.

(E) Prioritization of transcriptional regulators of the colon GRN overexpressed in iHeps relative to native liver, led by the master intestinal regulator, Cdx2.

(F) Confirmation of intestine-specific gene expression in iHeps relative to native fibroblasts, liver, and colon. Data are represented as mean ± SEM.

See also Figure S3.
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Intestinal Fate Specification in iHeps
During endoderm development, liver is derived from foregut

and intestine from hindgut (Sheaffer and Kaestner, 2012).

Considering our findings that knockdown of B cell transcriptional

regulators could derepress macrophage fate, we reasoned that

factors responsible for a hindgut program in iHeps may act to

repress specification of foregut fate. We consulted CellNet and

found that the homeobox transcription factor Cdx2 emerged as

the top prioritized regulator of colon fate in iHeps (Figure 3E).

Cdx2 is a regulator of Hox gene expression that is required for in-

testinal cell lineage specification in early endoderm (Gao et al.,

2009). Interestingly, CellNet also revealed several Hox genes as

prioritized regulators of the colon GRN, suggesting that iHeps

were aberrantly patternedwith respect to theHox code.Whereas

freshly-isolated adult hepatocytes did not express Cdx2, we

confirmedexpression ofCdx2 and additional CellNet-nominated,

intestine-specific marker genes in three independent iHep lines,

consistent with expression data previously reported for iHeps

(Sekiya and Suzuki, 2011; Figures 3F, S4A, and S4B).

Cdx2 Is Required for the Generation of iHeps
Cdx2 expression in posterior gut epithelium antagonizes foregut

differentiation (Gao et al., 2009). Thus we proceeded to knock

down Cdx2 in iHeps in an attempt to fortify their liver identity.

As predicted, we observed significant loss of CellNet-appointed

intestine-specific gene expression, with more efficient Cdx2

knockdown resulting in reduced intestinal marker expression

(Figures 4A and S4C: Cdx2low, �85% knockdown). Moreover,

knockdown ofCdx2 resulted inmoderate increases in expression

of the liver markers Albumin, Afp, and alpha-1 antitrypsin (a1AT)

(Figure 4B). Functionally, following Cdx2 knockdown, albumin

expression and urea secretion significantly increased (Figures

4C and 4D). Additionally, Cdx2 knockdown resulted in higher

gene expression associated with liver functions and appeared

to alter the Hox code to favor anterior gene expression (Fig-

ure S4D). However, neither liver classification nor liver GRNstatus

improved following Cdx2 knockdown (Figure S4E). Interestingly,

these gains in liver-specific gene expression and function were

more evident for the weaker Cdx2 knockdown: Cdx2mod (Fig-

ure S4C: Cdx2mod, �60% knockdown). Cdx2 disruption has

been shown to disrupt Hnf4a occupancy at Cdx2-bound en-

hancers (Verzi et al., 2013) and analysis of our iHep microarray

data revealed that expression of endogenous Hnf4a was lost as

Cdx2 expression decreased, suggesting coordinate regulation

of these two factors during iHep induction (Figure 4E).

To furtherprobe the roleofCdx2 infibroblast to iHepconversion,

we attempted to derive iHeps from MEFs carrying exon 2 of the

Cdx2 gene flanked by loxP sites (Verzi et al., 2010; Figure S5A).

Following transductionwith EGFP-Cre to knock outCdx2, we initi-

ated direct conversion to iHeps with Foxa1 and Hnf4a. In the GFP

control, iHep colonies began to emerge after 7 days, whereas no

colonies were detected following Cdx2 knockout, demonstrating

that Cdx2 is necessary for the establishment of iHeps (Figure 4F).

Levels of Foxa1 and Hnf4a Are Important for Hepatic or
Intestinal Fate Specification
To understand how intestinal fate might be specified in iHeps,

and to identify candidate factors to further engineer the cells,

we consulted CellNet to score transcriptional regulators of the

endoderm, liver, and colon GRNs. Interestingly, we found the

transcription factors used to generate iHeps to be putative reg-

ulators of a broad endoderm GRN, and Foxa1 in particular to

be more heavily biased toward targets in the endoderm and co-

lon GRNs than the liver GRN (Figure 5A). Surveying Foxa1 and

Hnf4a expression over all CellNet target cells and tissues reveals

their expression across a range of endoderm-derived tissues

and restriction of coexpression to liver, colon, and small intes-

tine. Indeed, the highest levels of Foxa1 expression are found

in the colon (Figure 5B). These data highlight the roles of these

transcription factors in both liver and intestinal tissues (Garrison

et al., 2006; Parviz et al., 2003). Together, this suggests that the

conversion factors employed in this protocol fail to establish a

unique liver fate but instead specify endoderm tissues more

broadly. This indicates that higher levels of Foxa1 and Hnf4a

may target a much broader endoderm GRN, resulting in the

establishment of colon GRNs in addition to liver GRNs.

To further investigate the effect of variable levels of reprogram-

ming factor expression, we employed retroviral infection at low

(6–12) and high (15–30) multiplicities of infection (MOI) for

Foxa1 and Hnf4a to drive conversion to iHeps. Low MOI pro-

moted conversion to cells that resemble native hepatocytes—

binucleate, possessing an orthogonal morphology distinct from

the epithelial morphology reported for iHeps (Sekiya and Suzuki,

2011; Figure 5C). In contrast, high MOI conditions, equivalent to

the conditions employed by Sekiya and Suzuki, generated col-

onies with characteristic iHep morphology that were capable

of expanding indefinitely (Figure 5C). Monitoring the behavior

of low MOI iHeps over the course of 6 days revealed that these

cells became quiescent after limited cell division, corresponding

to ex-vivo-cultured primary hepatocytes. Moreover, qPCR anal-

ysis of low MOI iHeps revealed reduced Cdx2 expression and

enhancedAlb expression relative to highMOI iHeps (Figure S5B).

Supplementing low MOI Foxa1 and Hnf4a infection with exoge-

nous Cdx2 permitted the establishment of large iHep colonies,

whereas in the absence of Cdx2 no E-cadherin-positive epithe-

lial colonies were generated (Figure 5D and S5C).

These data further corroborate the importance of Cdx2

expression for the conversion of MEFs to iHeps, and suggests

that different levels of Foxa1, Hnf4a, and Cdx2 might establish

alternate endodermal cell fates. Furthermore, our analysis shows

a greater number of Foxa1 and Hnf4a targets in the endoderm

and colon, relative to liver. Given the close association of these

transcription factors to hindgut fate, we decided to further inves-

tigate the intestinal potential of iHeps.

Intestinal Fate and Function of iHeps
To explore the potential for iHeps to form epithelial structures

in vitro, we cultured iHeps as 3D organoids, which could be

expanded from single cells in matrigel to form large spherical

structures possessing epithelial polarity and whose formation

was dependent on Cdx2 expression (Figures 6A and S6A). How-

ever, neither prolonged culture nor the addition ofWnt3a resulted

in budding structures characteristic of organoids grown from

adult intestinal stemcells (Yui et al., 2012; Figure S6A).Moreover,

Lgr5 positive cells, indicative of adult intestinal stem cells, were

only rarely detected in iHeps cultured under these conditions,
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and their culture could be maintained in the absence of R-spon-

din and Wnt3a (Figure S6B). Although distinct from intestinal

stem cells, the morphology and behavior of iHeps was reminis-

cent of fetal enterospheres, whichmay represent transient devel-

opmental intestinal progenitors (Fordham et al., 2013).

iHeps Functionally Engraft Colon
iHeps can functionally engraft liver, and over time within this

in vivo niche, they cease to divide and their hepatocyte gene

expression signature matures (Sekiya and Suzuki, 2011).

Considering that our iHeps formed spheroids and resembled
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(E) Correlation between endogenous Hnf4a and Cdx2 expression in several iHep lines.
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expression does not impair generation of iHeps. Scale bars, 50 mM. Data are represented as mean ± SEM.

See also Figure S4 and S5.
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intestinal progenitors in 3D matrigel culture, we wondered if they

might differentiate further toward mature intestine. We again

consulted CellNet for candidate transcriptional regulators to

drive iHeps closer to intestine and identified Klf4 and Klf5, whose

functions are known in the differentiated epithelium and dividing

crypt cells, respectively (McConnell et al., 2007). We then drove

the conversion of MEFs to an intestinal fate using high-MOI

Hnf4a and Foxa1 supplemented with either Klf4 or Klf5. Addition

of either Klf transcription factor dampened liver marker expres-

sion and strongly fortified intestinal identity, without altering

fibroblast-specific gene expression significantly (Figure 6B).

Taken together, these data show that iHeps generated by the

published protocol of Sekiya and Suzuki can differentiate toward

both liver and intestine, suggesting that iHeps are actually

induced endoderm progenitors, ‘‘iEPs.’’ To test the potential

for iHeps/iEPs and Klf-matured cells (termed ‘‘Klf-iEPs’’) to

differentiate toward functional intestinal cells in vivo, we trans-

planted GFP-labeled iHeps/iEPs, Klf-iEPs, and fibroblasts into

superficially damaged mouse colon, a model recently employed

to assess the functional engraftment of ESC-derived intestinal

stem cells (Yui et al., 2012; Figure 6C). Following 6 days of

DSS-induced colitis and 48 hr of recovery, 5 million cells were

delivered into the lumen of the colon, twice over a 2 day period,

and the colon was examined for cellular engraftment 12 days

later. During this period control animals receiving fibroblasts

had not returned to their original weight, demonstrated ongoing

colitis resulting in death of 2/6 mice, and showed no engraft-

ment. In contrast, iHep/iEP recipient animals returned to their

original weight significantly faster, showed no sign of colitis after

12 days, and instead revealed the presence of numerous GFP+

donor-derived cells integrated into the colonic epithelium (Fig-

ures 6C–6E). Klf-iEPs did not engraft the colon (Figure S6C),
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probably because mature intestinal epithelial cells cannot fulfill

this role (Zhou et al., 2012). At 12 days, crypts contained a mix

of GFP+ and GFP� colonocytes, as the known cell turnover

would predict (Figure 6D). By 7weeks after transplantation, how-

ever, five of eight recipient mice carried patches of GFP+ colonic

crypts (Figure S6D), which signifies competent reconstitution of

the damaged mucosa by iHep/iEPs. The patchy pattern of GFP+

crypts strongly indicates clonal repopulation by cells with intes-

tinal stem-like self-renewal (Figures 6F and 6G), and the lack of

Lgr5 expression in iHeps in vitro is compatible with low Lgr5

gene activity in native mouse colonic crypts, distinct from the

small intestine (Barker et al., 2007).

To evaluate if iHeps/iEPs could mature in vivo, we harvested

colonic crypts from recipient animals 12 days posttransplanta-

tion, dissociated the colonic epithelium, and profiled gene

expression in GFP+ cells purified by flow cytometry (Figure S6E).

By CellNet analysis, colon-engrafted iHeps/iEPs received a high

colon classification score, significantly stronger than iHeps

cultured in vitro prior to engraftment (average colon scores

0.79 and 0.07, respectively) and a weaker small intestine classi-

fication score of 0.33 (Figure 6H). Both the fibroblast GRNpersis-

tent in iHeps/iEPs and their weak liver GRN were significantly

silenced, with an accompanying slight increase in small intestine

GRN status and striking fortification of the colon GRN to 90% of

the native colon status (Figure 6I). To rule out fusion of iHeps/

iEPs with native colonic cells, we transplanted EGFP-Cre trans-

duced iHeps/iEPs into Rosa26-Lox-STOP-Lox-Tomato trans-

genic mouse colons: engrafted cells did not exhibit tomato fluo-

rescence, dismissing this formal possibility (Figure S6F). The

long-term functional engraftment of iHeps/iEPs into superficially

damaged mouse colon, along with the previously reported func-

tional engraftment within mouse liver (Sekiya and Suzuki, 2011),

establishes that these cells represent progenitors with broad

endodermal rather than hepatocyte-restricted potential. Thus

we demonstrate how the CellNet network biology platform

guided a direct conversion strategy to generate endoderm pro-

genitors capable of functional intestinal repopulation.

DISCUSSION

Here, in a practical application of CellNet to two distinct cell fate

conversion protocols, we document the incomplete specifica-

tion of macrophage fate in a B cell line, and the unexpected

establishment of intestinal identity in fibroblasts reportedly con-

verted into liver. CellNet analysis yielded the surprising discovery

that iHeps in fact represent an induced endoderm progenitor

(‘‘iEP’’), which is capable of long-term functional engraftment

of the mouse colon. Additional manipulation of CellNet-priori-

tized candidates, Klf4 and Klf5, promoted intestinal maturation

in vitro, but these differentiated ‘‘Klf-iEP’’ cells failed to engraft

damaged colon, indicating that cell populations engineered

in vitro must be transplanted at a specific stage that is amenable

to functional end organ engraftment (Figure 7).

Our findings establish CellNet as a potent tool for assessing

the fidelity of cell fate conversions and for revealing unexpected

properties of cells engineered in vitro. CellNet analysis calls into

question the underlying premise that direct conversion bypasses

progenitor or stem cell intermediates. First, in B cell to macro-

phage conversion, we found that progenitor GRNs were partially

and transiently engaged, suggesting that C/EBPa has the ca-

pacity to establish a progenitor-like program from which macro-

phage fate emerges. Second, we demonstrate that iHeps are

endoderm progenitors, iEPs, rather than mature hepatocyte-

like cells as previously reported (Sekiya and Suzuki, 2011).

Additionally, there have been several reports describing the gen-

eration of progenitors from direct conversion of fibroblasts: he-

matopoietic, neural, and hepatic progenitors (Lujan et al.,

2012; Pereira et al., 2013; Yu et al., 2013). The capture of a pro-

genitor state in vitro may be facilitated by selection for these

expandable populations over nondividing differentiated cells.

The existence of iHeps as endoderm progenitors rather than

differentiated cells explains their failure to exclusively classify

as a unique cell or tissue until they mature within the colon niche.

Our accompanying study shows that cells derived via directed

differentiation more faithfully establish the desired target GRNs

relative to direct conversion (Cahan et al., 2014). It is possible

that cells generated via direct conversion classify poorly

because this approach frequently specifies progenitors that

must be subsequently differentiated. The resolution and power

of CellNet to accurately identify these intermediates will continue

to improve as sufficient training data sets are collected for em-

bryonic lineages. At present, we can assert that in vitro cultured

iHeps/iEPs are neither mature liver nor colon but behave as a

progenitor, although their in vivo equivalent is unclear.

Pancreas and lung GRNs were not detected in iHeps/iEPs,

suggesting that their potential may be restricted to liver and

Figure 6. iHeps Are an Endoderm Progenitor Harboring Intestinal Identity and Can Functionally Engraft Mouse Colon

(A) Culture of iHeps as spheroids and determination of cell polarity by immunofluorescence staining of E-cadherin.

(B) qPCR analysis of fibroblast, liver and intestinal gene expression following three-factor driven conversion to ‘‘Klf-iEPs’’ with Hnf4a, Foxa1, and Klf4 or Klf5. Data

are represented as mean ± SEM.

(C) Functional engraftment of GFP-expressing iHeps into mice with DSS-induced colitis. Weight gain following DSS withdrawal in GFP-iHep/iEP recipient ani-

mals: the latter regain weight significantly faster than recipients of GFP-fibroblasts, ** = p < 0.01, *** = p < 0.001, t test. Data are represented as mean ± SEM.

(D) Immunohistochemistry and immunofluorescence of short-term engrafted GFP-iHeps/iEPs in serial sections of colon 12 days after transplantation.

(E) Whole-mounts of engrafted GFP-iHeps/iEPs. Engraftment of GFP-fibroblasts is not observed. Scale bars, 0.5 cm.

(F) Long-term engrafted GFP-iHeps/iEPs in the colon 7 weeks after transplantation. Goblet cells are visualized by PAS staining. Scale bars, 100 mm.

(G) Detail of long-term engrafted crypt.

(H) CellNet classification of engrafted iHeps/iEPs recovered 12 days following transplantation. Colon classification is strongly fortified in engrafted iHeps/iEPs,

comparable to native colon, relative to in vitro cultured iHeps/iEPs.

(I) Fibroblast, liver and broad colon GRN status in colon-engrafted iHeps/iEPs: Fibroblast and liver GRNs are extinguished where colon GRN status is fortified

following maturation in vivo. Data are represented as mean ± SD.

Scale bars as indicated. See also Figure S6.
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intestine. Hnf4a is required for development of the liver (Parviz

et al., 2003) and colon (Garrison et al., 2006). Similarly, Foxa1

is involved in liver and intestinal development and function (Ber-

nardo and Keri, 2012). Foxa1 is a pioneer factor, capable of re-

modeling chromatin and facilitating binding of other transcription

factors, such as Hnf4a (Zaret and Carroll, 2011). In a variation

to the protocol of Sekiya and Suzuki, we found that lower ex-

pression of Foxa1 and Hnf4a generates cells resembling native

hepatocytes. In contrast, high levels of Foxa1 may facilitate a

permissive chromatin state accessible to Hnf4a thus establish-

ing an embryonic endoderm progenitor state (Figure 7).

CellNet prioritized Cdx2 as an intestinal fate regulator in iHeps/

iEPs, leading to the finding that Cdx2 is essential to establish the

endoderm progenitor state in these cells. Cdx2 specifies embry-

onic intestinal epithelium and is required for intestinal gene

expression, including Hnf4a (Gao et al., 2009). By E9.0 emer-

gence of Cdx2 in the hindgut and Sox2 in the foregut demarcates

the endoderm (Sherwood et al., 2009), suggesting that iHeps/

iEPs may more resemble a hindgut progenitor. iHep/iEP behavior

in vitro is reminiscent of recently reported fetal enterospheres

(Fordhamet al., 2013), a transient intestinal progenitor population,

rather than adult intestinal stem cells, further supporting the

notion that high levels of Foxa1 and Hnf4a install a hindgut pro-

genitor state. The capacity of iHeps to engraft liver raises the pos-

sibility that a foregut progenitor is concomitantly specified,

although our failure to isolate any expandable progenitor popula-

tion in the absence of Cdx2 expression does not support this.

Likewise, any lowMOI hepatocyte-like cells are unlikely to engraft

liver due to their scarcity and selection against in vitro. It must also

be emphasized that direct conversion is an artificial situation

where high levels of pioneer factor expressionmay open inacces-

sible chromatin domains to endow cells with enhanced plas-

ticity—thus iHeps/iEPs may not possess a true in vivo correlate.

In addition to assigning a metric of cell identity and thereby

providing a measure of the fidelity of cell fate conversions,

CellNet prioritizes candidates for interventions to help improve

cell-fate specification. At present, predicting gene expression

in GRNs remains challenging and is limited to simplified net-

works. Here, knockdown of prioritized B cell candidates,

Pou2af1 or Ebf1, improves the classification and function of

induced macrophages. Moreover, CellNet prioritization of regu-

lators of the colon GRN established in iHeps led to the discovery

that Cdx2 is required for the generation of iHeps, an instru-

mental finding helping reveal their full potential. Furthermore,

CellNet assisted in the identification of Klf4 and Klf5 as factors

to differentiate iHeps further toward mature colon in vitro. These

results demonstrate the utility of CellNet to dissect and enhance

cell engineering strategies. However, it is clear from the

outcome of our interventions that refining cell identity is not triv-

ial, as illustrated by the persistence and fortification of B cell

GRNs following knockdown of prioritized B cell regulators.

Due to this complex feedback regulation within GRNs, attempt-

ing to refine engineering strategies will require a painstaking,

rational, iterative approach.

Undoubtedly, the best strategy to capture a desired fate har-

nesses the in vivo niche. In our accompanying study, our analysis

shows that cardiomyocyte-like cells generated from cardiac fi-

broblasts in situ (Fu et al., 2013) show a markedly higher heart

classification than those converted in vitro (Cahan et al., 2014).

Similarly, here we have shown that following engraftment into

colon, iHeps exhibited stem cell behavior to reconstitute the in-

testinal epithelium, maturing in vivo to increase their colon clas-

sification, associated with 90% colon GRN establishment and

silencing of liver and fibroblast GRNs. Achieving such a high

degree of tissue identity in vivo may be ideal for therapeutic ap-

plications of engineered cells, but for in vitro applications in toxi-

cology testing and disease modeling, it will be essential to

develop more robust cell fate conversions. Understanding how

in vivo cues mature fate will assist in this endeavor, as will bioen-

gineering approaches designed to recapitulate the niche in vitro.

CellNet analysis will be of great assistance in developing these

strategies.

Figure 7. Model: Foxa1 and Hnf4a Specify an Endoderm Progenitor State

Left: In this studywe find that low levels of Foxa1 andHnf4a expression in fibroblasts in vitro specifies cells bearing the hallmarks of differentiated hepatocytes. High

levels of Foxa1 and Hnf4a specifies a progenitor state, ‘‘iHeps/iEPs’’ from which differentiation toward an intestinal fate, ‘‘Klf-iEPs,’’ can be coaxed by Klf4/5

expression. Right: iHeps/iEPs can engraft mouse liver (as in Sekiya and Suzuki, 2011) or mouse colon. Transplantation into colon leads to differentiation of pro-

genitors to support long-term engraftment suggesting that iHeps/iEPs possess intestinal stem-like properties.
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This study establishes CellNet as a powerful platform for as-

sessing and refining engineered cell populations. In addition to

providing a metric for the establishment of target cell identity,

CellNet can reveal the unanticipated hybrid or intermediate iden-

tity of cells, which can be easily overlookedwith current methods

of broad transcriptional profiling and functional assays. This

approach has revealed the unrealized potential of iHeps as an

endoderm progenitor and establishment of intestinal fate from

a direct conversion strategy. In the future, we anticipate

continued refinement of CellNet and greater potential to marshal

cellular engineering toward more precise and impactful applica-

tions in regenerative medicine.

EXPERIMENTAL PROCEDURES

Extended Experimental Procedures are available online.

Mice

Strains used in this study: C57BL/6J (The Jackson laboratory: 000664),

C;129S4-Rag2tm1.1Flv Il2rgtm1.1Flv/J (The Jackson laboratory: 014593),

B6.129P2-Lgr5tm1(cre/ERT2)Cle/J (The Jackson laboratory: 008875), B6;129S6-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (The Jackson laboratory: 007905), and

Cdx2Flox/Flox (Verzi et al., 2010). All animal procedures were based on animal

care guidelines approved by the Institutional Animal Care and Use Committee.

Direct Conversion of B Cells to Macrophages

The C10 pre-B cell line was converted to induced macrophages, as in Buss-

mann et al. (2009). Briefly, C10 cells were grown in RPMI 1640 without phenol

red (Lonza) supplemented with 10% charcoal/dextran-treated FBS (Hyclone)

and 50 mM 2-mercaptoethanol (GIBCO). They were induced by the addition

100 nM of b-estradiol (Sigma) and grown with 10 nM IL-3 and mCSF-1

(Peprotech).

Direct Conversion of MEFs to iHeps

MEFs were converted to iHeps as in Sekiya and Suzuki (2011). Briefly, MEFs

were prepared from E13.5 embryos and serially transduced with Foxa1 and

Hnf4a or Hnf4a-t2a-Foxa1 retroviruses over a 5 day period, followed by cul-

ture on gelatin for 2 weeks in hepato-medium (DMEM:F-12, supplemented

with 10% FBS, 1 mg/ml insulin (Sigma), 10�27M dexamethasone (Sigma-Al-

drich), 10 mM nicotinamide (Sigma-Aldrich), 2 mM L-glutamine, 50mM b-mer-

captoethanol (Life Technologies), and penicillin/streptomycin, containing

20 ng/ml hepatocyte growth factor (Sigma-Aldrich), and 20 ng/ml epidermal

growth factor (Sigma-Aldrich), after which the emerging iHeps were cultured

on collagen. iHeps generated with mono- and bicistronic constructs were

indistinguishable both transcriptionally and functionally.

Lenti- and Retrovirus Production

Open reading frames were cloned into the lentiviral vector, pSMAL-GFP or the

retroviral vector, pGCDNsam. Lentiviral particles were produced by transfect-

ing 293T-17 cells (ATCC: CRL-11268) with pCMV-dR8.2 dvpr (Addgene

plasmid 8455), and pCMV-VSVG (Addgene plasmid 8454). Virus was har-

vested 48 and 72 hr after transfection and PEG concentrated. Constructs

were titered by serial dilution on 293T cells. Foxa1, Hnf4a, and Hnf4a-t2a-

Foxa1 retroviruses were packaged with pCL-Eco (Imgenex), titered on

MEFs, and cells transduced according to Sekiya and Suzuki (2011).

Gene Expression Microarray

The RNAeasy Microkit (QIAGEN) was used to collect and prepare total RNA for

microarray analysis. The Ovation Picokit (Nugen) was used for preamplifica-

tion, where required. Gene expression profiling was performed on Affymetrix

430 2.0 gene chips per standard protocol.

Conditional Cdx2 Knockout

E13.5 MEFs were derived from Cdx2Flox/Flox embryos (Verzi et al., 2010),

transduced with either EGFP or EGFP-Cre retrovirus (Addgene plasmid

24064), cultured for 48 hr, and then GFP+ cells were flow sorted and

cultured on gelatin. The cells were then transduced with Foxa1 and Hnf4a

retroviruses.

Immunohistochemistry and Immunostaining

Cultured cells were fixed with 4% PFA, permeabilized, blocked in 10% FCS

and incubated with the following antibodies: mouse anti-E-cadherin (BD

Biosciences) and rabbit anti-Albumin (Biogenesis). After washing, samples

were incubated with Alexa 568-conjugated secondary antibody (1:500;

Molecular Probes) with DAPI and far-red phalloidin (Molecular Probes) for

immunofluorescence staining. Colon tissue was fixed with 10% formalin

and paraffin sectioned. After rehydration and blocking in 10% goat serum,

the sections were incubated with rabbit anti-GFP antibody (Abcam:

ab6556). For immunofluorescence analysis, the sections were incubated

with Alexa 488-conjugated secondary antibody (1:500; Molecular Probes)

and DAPI and imaged with a Zeiss LSM 710 confocal microscope. For

immunohistochemistry, samples were processed using the Vectastain

ABC system and DAB kit (Vector Laboratories), and PAS staining was per-

formed with a kit (Sigma).

Intracolonic Transplantation of iHeps

Colitis was induced in Rag2gc�/� mice by administration of 2.5% Dextran So-

dium Sulfate (DSS, MP Biomedicals) in the drinking water for 6 days, followed

by 2 days of recovery. On day 8, animals losing between 15%–20% of their

original body weight were selected at random to receive delivery of 5 million

cells (GFP-labeled iHeps, fibroblasts or Klf4-iEPs) into the lumen of the colon.

In a modification to the procedure reported in Yui et al. (2012), the cells were

resuspended in Matrigel (BD Biosciences) and 100–150 ml of the suspension

was delivered via a 22G angiocatheter (BD Biosciences). Transplantation of

cells was repeated on day 10 and the colons were examined for engraftment

on day 20 and week 7 postinitiation of DSS treatment. For recovery of GFP-ex-

pressing iHeps, transplanted colons were cut into small pieces and incubated

in HBSS with 30 mM EDTA at 37�C to liberate crypts. The crypts were then

dissociated with 0.25% Trypsin and the resulting single-cell suspension was

flow sorted to recover engrafted iHeps.
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Graf, T. (2011). CCAAT/enhancer binding protein alpha (C/EBP(alpha))-

induced transdifferentiation of pre-B cells into macrophages involves no overt

retrodifferentiation. Proc. Natl. Acad. Sci. USA 108, 17016–17021.

Feng, R., Desbordes, S.C., Xie, H., Tillo, E.S., Pixley, F., Stanley, E.R., and

Graf, T. (2008). PU.1 and C/EBPalpha/beta convert fibroblasts into macro-

phage-like cells. Proc. Natl. Acad. Sci. USA 105, 6057–6062.

Fordham, R.P., Yui, S., Hannan, N.R.F., Soendergaard, C., Madgwick, A.,

Schweiger, P.J., Nielsen, O.H., Vallier, L., Pedersen, R.A., Nakamura, T.,

et al. (2013). Transplantation of expanded fetal intestinal progenitors contrib-

utes to colon regeneration after injury. Cell Stem Cell 13, 734–744.

Fu, J.-D., Stone, N.R., Liu, L., Spencer, C.I., Qian, L., Hayashi, Y., Delgado-Ol-

guin, P., Ding, S., Bruneau, B.G., and Srivastava, D. (2013). Direct Reprogram-

ming of Human Fibroblasts toward a Cardiomyocyte-like State. StemCell Rep.

1, 235–247.

Gao, N., White, P., and Kaestner, K.H. (2009). Establishment of intestinal iden-

tity and epithelial-mesenchymal signaling by Cdx2. Dev. Cell 16, 588–599.

Garrison, W.D., Battle, M.A., Yang, C., Kaestner, K.H., Sladek, F.M., and Dun-

can, S.A. (2006). Hepatocyte nuclear factor 4alpha is essential for embryonic

development of the mouse colon. Gastroenterology 130, 1207–1220.

Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X., and Hui, L.

(2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by

defined factors. Nature 475, 386–389.

Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau,

B.G., and Srivastava, D. (2010). Direct reprogramming of fibroblasts into func-

tional cardiomyocytes by defined factors. Cell 142, 375–386.
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