

Project Location: Kent, Washington REI Project # R18-05-167

Prepared for: Morse Industries - Kent, WA 1/18/2019

Design Criteria:

The structural calculations contained within this report are not intended to be submitted as project specific structural calculations. Rice Engineering assumes no liability for use of calculations. If project specific calculations are required, please contact Rice Engineering, 920-617-1042. The analysis within this report provides an acceptable engineered design for Morse Industries to resist the specified loading, as well as the requirements outlined in IBC 2015.

1. Railing live loads per **IBC 2015**:

Guardrails

50 plf uniform load in any direction on handrails and top rails of guards

200 pound concentrated load in any direction on handrails and top rails of guards

* * * * * * * * * * * * *

- 50 lb concentrated load over 1 ft² of infill area
- Concentrated load and uniform loads need not be assumed to act concurrently
- 2. Railing deflections per ASTM E985 or IBC (Most Stringent)

7 7 7 7

- 3. Aluminum members designed per AA, "Aluminum Design Manual"
- 4. Stainless steel members designed per AISC Structural Steel Design Guide 27.
- 5. Railing design wind loads per IBC (ASCE-7 Components & Cladding): 10 PSF Interior Load
- 6. Member sizes, grade, alloy and strengths shall be as recommended in the calculation package
- 7. Stainless steel fasteners to be minimum Condition "CW", 300 Series, Fy= 65 ksi
- 8. All other fasteners shall be the size and strength as is recommended in the calculation package
- 9. Steel & stainless steel welds to be 70 ksi minimum tensile strength
- 10. Aluminum welds to be 5356 filler alloy unless otherwise noted
- 11. Concrete strength is assumed to be F'c= 4,000 psi, normal weight cracked concrete
- 12. Concrete anchors shall be as recommended in the calculation package. Installer is responsible for maintaining the fastener spacing, edge distance, end distance, embedment depth and minimum substrate thickness that is recommended in the calculation package
- 13. Concrete anchors shall be installed per manufacturer's recommended installation procedures, including recommended ambient temperatures for chemical/adhesive anchors
- 14. Concrete slabs, concrete curbs, structural steel, masonry units and all other anchorage substrates designed by others

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

PRELIMINARY DESIGN NOT FOR CONSTRUCTION

Engineers Design Approval Stamp:

Project Location: Kent, Washington REI Project # R18-05-167

Prepared for: Morse Industries - Kent, WA 1/18/2019

Design Criteria:

- 15. All glass is to be fully tempered laminated glass with 3/8" thick lites and 0.06" thick Dupont SentryGlas Plus Interlayer or noted in calculations.
- 16. Per IBC, glass has been designed using a safety factor of 4 in determining the allowable flexural stress (24,000/4= 6,000 psi)
- 17. Per IBC, glass panels need to be manufactured from an approved safety glazing material conforming to CPSC 16 CFR 1201 (II). The glass manufacturer is responsible to provide acceptable safety glass conforming to the IBC & CPSC provisions.
- 18. Whenever glass guards are used in overhanging applications, Rice Engineering recommends using fully tempered and laminated glass lites along with standard cap channels to protect the glass edges. Fully tempered glass is susceptible to breakage due to impact on the glass edge by airborne debris, as well as the possibility of spontaneous breakage due to nickel sulfide contamination. In the case of accidental breakage, laminated glass minimizes the risk of falling glass.
- 19. Shim dis-similar metals. Maximum recommended shim height for guardrails is 1/2", full bearing shims
- 20. Wood substrates are assumed to be Spruce Pine Fir or Equal, SG=0.42 minimum unless otherwise noted

Page:	Description:	Date:	Revision:
A1-A1A	Standoff Mounted	7/11/18	
	13/16" Lami. Glass		
A1B	Lag Screw Analysis	7/11/18	
	Hilti PROFIS	11/19/18	
	Glass Model Analysis		
B1-B1A	Standoff Mounted	7/11/18	
	11/16" Lami. Glass		
B1B	Lag Screw Analysis	7/11/18	
	Hilti PROFIS	12/5/18	
	Glass Model Analysis		

Disclaimer:	Engineers Design Approval Stamp:
This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:	
 Structural design of misc. hardware (latches, hinges, etc.). Structural design of concrete slabs and other masonry units Structural design of wood blocking or wood framing Structural design of all other anchorage substrates Glass breakage due to airborne debris or foreign objects The manufacture, assembly, or installation of the system. Quantities of materials or dimensional accuracy of drawings 	PRELIMINARY DESIGN NOT FOR CONSTRUCTION
Cover Page 2 of 3	

Inputs:				Detail Ref.	Sheet No:
WL := 10	psf	(wind load)	vind load) Standoff Mounted Glass		A1
P := 200	lb	(point load)			
W _h := 4.17	pli	(horizontal uniform load)			
h := 46	in	(height of rail above upper standoff)			
w := 60	in	(glass width)			
t := 0.719	in	(glass thickness)			

Calculations: (Reactions from RISA 3D FEA Model)

Point Load:

Point Load:				Use 13/16" Glass, Fully Tempered & Laminated
σ= := 17 50	nei	a		with polished edges (3/8" / 0.060" SGP/ 3/8")
op.= 4750	hai	0 all .= 0000 psi		Minimum Glass Lite Width: 3'-0" *
$\Delta_{p} \coloneqq 0.542$	in	$\Delta_{\text{all}} \coloneqq \frac{h}{24} + \frac{w}{96} = 2.5$	54 in	Maximum Glass Lite Width: 5'-0"
Uniform Load.	!:			
$\sigma_{u} \coloneqq 5050$	psi	oall;= 6000 psi		
$\Delta_{U} \coloneqq 0.644$	in	$\text{Add}:=\frac{h}{24}+\frac{w}{96}=2.5$	54 in	
Wind Load:				+- ↓ - <u></u> ,
$\sigma_{W} \coloneqq 2080$	psi	σall;= 6000 psi		
$\Delta_{\mathbf{W}} \coloneqq 0.212$	in	$\text{Add}:=\frac{h}{24}+\frac{w}{96}=2.5$	54 in	
Reactions f	from Po	int Load:		
V _p := 108	lb			
T _p := 1484	lb			
Reactions f	from Un	iform Load:		
V _u := 108	lb			
T _u := 1564	lb			
Reactions f	from Wi	nd Load:		
V _W := 108	lb			
T _W := 647	lb			
	r full design	load the rail will		
deflect about	11/16". this	is acceptable		Mining August 200

per ASTM E2358 deflection limits. Customer please verify the deflection is acceptable.

EP PR

10 -0.

e := 2.0625 in (Eccentricity)

D := 2 in (Diameter of Standoff)

Calculations:

$R_y := max(V_p, V_u, V_w) = 108$	lb	
$R_{Z} := \max(T_{p},T_{U},T_{W}) = 1564$	lb	(Worst Case Loads)

Chk Bolt into Standoffs:

 $M := R_y = 108$ lb

$$\begin{split} T_{\text{cl}} &= \frac{R_{y}{\cdot}e}{0.5{\cdot}D} + R_{z} = 1787 \qquad \text{ Ib} \\ V_{\text{cll}} &:= 1614 \qquad \text{ Ib} \\ T_{\text{cll}} &:= 3100{\cdot}\frac{0.25}{0.375} = 2067 \qquad \text{ Ib} \end{split}$$

$$I := \left(\frac{V}{V_{all}}\right)^2 + \left(\frac{T}{T_{all}}\right)^2 = 0.75 \quad < \quad 1.0$$

<u>Use 3/8" Dia. S.S. Flat Headed Threaded Rods</u> (300 Series S.S., Cond. CW, Fy = 65 ksi) as shown 1/4" Thread Engagement

Chk Anchors into Concrete:

$$\begin{split} &V_2 \coloneqq R_{y} \cdot 1.6 = 173 \qquad \text{lb} \\ &T_2 \coloneqq \left(\frac{R_{y} \cdot e}{0.5 \cdot D \cdot 0.85} + R_{z} \right) \cdot 1.6 = 2922 \qquad \text{lb} \end{split}$$

SEE HILTI PROFIS OR POWERS PDA DATA Use 3/8" Dia. SS HIT-Z-R Rod w/ Hilti HIT-HY 200 or Equal 300 Series Stainless Steel

Embedment: 2-3/8" Min. Edge Distance: 2-1/4" 2nd Edge Distance: 4" Spacing: 2-3/4" and 3-3/8" Min. Slab Thickness: 8" Concrete Strength: fc= 4,000 psi, Normal Wt. Cracked

Install per Manufacturer's instructions

Chk Bearing on Face of Glass:

$$\begin{split} A_f &:= \left(\frac{D}{2}\right)^2 \cdot \pi - \left(\frac{0.75}{2}\right)^2 \cdot \pi = 2.7 \qquad \text{in}^2 \\ P_f &:= \frac{R_y \cdot e}{D \cdot (0.67)} + R_z \qquad P_f = 1730 \qquad \text{lb} \\ f_{pf} &:= \frac{P_f}{A_f} \qquad \qquad f_{pf} = 641 \qquad \text{psi} \end{split}$$

F_{pf}:= 3000 psi

Glass Standoffs are Proprietary Design Glass Standoffs Designed By Others Use Standard Gaskets and Bushing to Protect Glass Edge

Chk Alum. Back Plate:

L1 := 4 in	D1 := 0.625	in
L2 := 4.625 in	D2 := 0.625	in
assume load is in the direction of L2	2	
$L := L2 - (2 \cdot D2)$	L = 3.38	in
$A := \frac{L - d}{2}$	A = 0.688	in
B := L - A	B = 2.688	in
₽:= T	P = 1787	lb
$M_{pl} := \frac{P \cdot L}{8}$	$M_{\text{pl}}=754$	in∙lb

$$t_{req} := \sqrt{\frac{M_{pl} \cdot 6}{28000 \cdot L1}}$$

 $t_{req} = 0.201$ in

Use 3/8" x 4" x 8" Plate 6061-T6 alloy

1.0

Chk Anchors into Wood:

$$V_1 := \frac{R_y}{6} = 18$$
 lb
 $T_1 := \left(\frac{R_y \cdot e}{0.5 \cdot D \cdot 0.85} + \frac{R_z}{6}\right) = 523$ lb

SEE SHEET A1 B

<u>Use 3/8" Dia. SS Lag Bo</u>	olts
300 Series Stainless St	eel
3" Min. Thread Penetrati	on
Edge Distance: 1-1/2"	,
Spacing: 2-3/4" and 3-3/	⁄8″
Spruce-Pine-Fir (SG = 0.4	42)

Chk Anchors into Steel:

$$\begin{split} &V_3 := R_y = 108 \ \text{Ib} \\ &T_3 := \frac{R_y \cdot e}{0.5 \cdot D} + R_z = 1787 \quad \text{Ib} \\ &V_{all3} := 1614 \quad \text{Ib} \\ &T_{all3} := 3100 \quad \text{Ib} \\ &I_3 := \left(\frac{V_3}{V_{all3}}\right)^2 + \left(\frac{T_3}{T_{all3}}\right)^2 = 0.34 \quad \quad < \end{split}$$

<u>Use 3/8"-16 Dia. S.S. Threaded Rods</u> (300 Series S.S., Cond. CW, Fy = 65 ks) 3/8" min. Thread Engagement Separate Dissimilar Metals as shown

DICE	DICE 105 School Creek Trail		105 School Creek Trail Project Description:		Job No: R18-05-167			
		Luxemburg, WI 54217 Phone: (920) 617-1042	Morso Industrios	Engineer:	JJW	Sheet No:	A1 A	
	<i>NGINEERING</i>	Fax: (920) 617-1100		Date:	7/11/18	Rev:		
Template:	REI-MC-5735	www.rice-inc.com	Calculations	Chk By:		Date:		

Down Type F	stom r Canadity (NDS 2012)				
Dower Type Fa	Steller Capacity (NDS 2012)	Lag Rolts		Detail Ref.	Sheet No:
V _{DOS} := 18·lbf	Vneg := 18·lbf	Lay Duits			A1B
		Spruce Pi	ne-Fir	•	G = 0.42
$T_{pos} := 523 \cdot lbf$	T _{neg} := 523·lbf	p := 3	penetration	, in	
		t _{shim} ≔ 0.5	maximum t	hickness of shim, i	n
3/8 in Lag Scr	ew SS	C _D := 1.6	load duratio	on factor, 10.3.2	
I _m := 3	thickness of main member, in	C _M := 1.0	wetservice	factor, 103.3	
I _S := 0.375	thickness of side member, in	C _t := 1.0	temperatur	e factor, 10.3.4	
6061-T6 Hole	•	C _g := 1.0	group actio	n factor, 103.6	
$F_{yb} = 65000$	bending yield strength, psi.	С <u></u> := 1.0	geometry fa	actor, 11.5.1	
D = 0.375	unthreaded shank diameter of screw, in.	C _{eg} := 1.0	end grain fa	actor, 11.5.2	
$D_{\Gamma}=0.27$	root diameter of screw	C _{di} := 1.0	diaphragm	factor, 11.5.3	
$F_{es} = 43000$	bearing strength, psi	θ := 90	angle of Sh	ear load to grain, de	egree
G = 0.42 Ma	erial = "Spruce Pine-Fir"				

Calculations

$K_{\theta} := 1 + 0.25 \cdot \frac{\theta}{90} = 1.25$ $R_{e} := \frac{F_{em}}{F_{es}} = 0.07$ $R_{t} := \frac{I_{m}}{I_{es}}$	$\frac{m}{s} = 8$ $K_{D} := \begin{cases} 2.2 & \text{if } D_{\Gamma} \le 0.17 \\ \text{otherwise} \end{cases}$	= 0
$k_{1} := \frac{\sqrt{R_{e} + 2 \cdot R_{e}^{2} \cdot \left(1 + R_{t} + R_{t}^{2}\right) + R_{t}^{2} \cdot R_{e}^{3}} - R_{e} \cdot \left(1 + R_{t}\right)}{1 + R_{e}} = 0.24$	$\begin{array}{l} 10 \cdot D_{\Gamma} + 0.5 \mbox{if} 0.17 \ < D_{\Gamma} \leq 0.25 \\ 0 \mbox{otherwise} \end{array}$	
$k_{2} := -1 + \sqrt{2 \cdot (1 + R_{e}) + \frac{2 \cdot F_{yb} \cdot (1 + 2 \cdot R_{e}) \cdot D_{r}^{2}}{2 \cdot F_{yb} \cdot (1 + 2 \cdot R_{e}) \cdot D_{r}^{2}}} = 0.51$	$\begin{array}{rll} R_{d1} \coloneqq & K_D \mbox{ if } D_r \leq 0.25 \\ & 4.0 \cdot K_\theta \mbox{ if } 0.25 \ < D_r \leq 1 \mbox{ otherwise} \end{array}$	= 5
$\frac{1}{3 \cdot \text{Fem} \cdot \text{Im}^2}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	= 4.5
$k_3 := -1 + \sqrt{\frac{2 \cdot (1 + k_e)}{R_e} + \frac{2 \cdot F \cdot y_b \cdot (2 + k_e) \cdot b_F}{3 \cdot F_{em} \cdot l_s^2}}$	$R_{d3} := K_D$ if $D_r \le 0.25$ $3.2 \cdot K_{\theta}$ if $0.25 < D_r \le 1$ otherwise	= 4
$Z_{Im} := \frac{D_{\Gamma} \cdot I_m \cdot F_{em}}{R_{d1}} = 450.22$ $Z_{Is} := \frac{D_{\Gamma} \cdot I_s \cdot F_{es}}{R_{d1}} = 854.63$	$Z_{II} := \frac{k_1 \cdot D_r \cdot I_s \cdot F_{es}}{R_{d2}} = 226.5 \qquad \qquad Z_{IIIm} := \frac{k_2 \cdot D_r \cdot I_m \cdot F_{es}}{(1 + 2R_e)}$	em R _{d3} = 251.43
$Z_{\text{IIIs}} := \frac{k_3 \cdot D_r \cdot I_s \cdot F_{\text{em}}}{(2 + R_e) \cdot R_{\text{d}3}} = 202.26 \qquad \qquad Z_{\text{IV}} := \frac{D_r^2}{R_{\text{d}3}} \cdot \sqrt{\frac{2 \cdot F_{\text{em}}}{3 \cdot (1 + R_e)}}$	$\frac{\overline{Fem}\cdotFyb}{(1+Re)} = 188.37$	
$Z_{1} := \min \left(Z_{Im}, Z_{Is}, Z_{II}, Z_{IIIm}, Z_{IIIs}, Z_{IV} \right) = 188.37$	$R_{pos} := \sqrt{T_{pos}^2 + V_{pos}^2} = 523.31 \text{ lbf} \qquad R_{neg} := \sqrt{T_{neg}^2 + V_{neg}^2}$	$eg^2 = 523.31 \text{ lbf}$
W ₁ = 234.78	$\alpha_{pos} := \operatorname{atan}\left(T_{pos} \cdot V_{pos}^{-1}\right) = 88.03 \cdot \operatorname{deg} \alpha_{neg} := \operatorname{atan}\left(T_{neg} \cdot V_{neg}^{-1}\right)$	eg^{-1} = 88.03 · de
Results		

$Z' := Z_1 \cdot C_D \cdot C_M \cdot C_t \cdot C_g \cdot C_\Delta \cdot C_{eg} \cdot C_d$	ij·lbf = 301.39 lbf All	owable Shear				
$W' := W_1 \cdot C_D \cdot C_M \cdot C_t \cdot C_{eg} \cdot p_{ten} \cdot lbf = 915.66 \ lbf \qquad \text{Allowable Tension}$				3/8 in Lag So edrill Holes a	crew SS" t 40% - 70% D'	
$Z_{\alpha pos} \coloneqq \frac{W' \cdot Z'}{W' \cdot (\cos(\alpha_{pos}))^2 + Z' \cdot (\sin(\alpha_{pos}))^2} = 913.46 \text{ lbf} \qquad \qquad \text{Int}_{pos} \coloneqq \frac{R_{pos}}{Z_{\alpha pos}} = 0.57$				"Verify Bloc pruce Pine-F	king Thickness ir"	"
$Z_{\alpha neg} := \frac{W \cdot Z'}{W \cdot (\cos(\alpha_{neg}))^2 + Z' \cdot (\sin(\alpha_{neg}))^2} = 913.46 \text{lbf} \qquad \qquad \text{Int}_{neg} := \frac{R_{neg}}{Z_{\alpha neg}} = 0.57$						
DICE	105 School Creek Trail	Project Description:	Job No:		R18-05-167	
ENGINEERING Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100		Moreo Industrios	Engineer:	JJW	Sheet No:	A1B
		Calculations	Date:	7/11/18	Rev:	
Template: REI-MC-7602	www.rice-inc.com	Calculations	Chk By:		Date:	

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: 1 Project: Sub-Project I Pos. No.: Date: 11

1 HIGTI B.

11/19/2018

Specifier's comments:

I

1 Input data

Anchor type and diameter:	HIT-HY 200 + HIT-Z-R 3/8
Effective embedment depth:	h _{ef,opti} = 2.375 in. (h _{ef,limit} = 4.500 in.)
Material:	A4
Evaluation Service Report:	ESR-3187
Issued I Valid:	3/1/2018 3/1/2020
Proof:	Design method ACI 318-14 / Chem
Stand-off installation:	$e_b = 0.000$ in. (no stand-off); t = 0.375 in.
Anchor plate:	$I_x \times I_y \times t$ = 8.000 in. x 4.000 in. x 0.375 in.; (Recommended plate thickness: not calculated
Profile:	no profile
Base material:	cracked concrete, 4000, f_c ' = 4,000 psi; h = 8.000 in., Temp. short/long: 130/110 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

^R - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	487	29	-29	0
2	487	29	-29	0
3	487	29	-29	0
4	487	29	-29	0
5	487	29	-29	0
6	487	29	-29	0

 $\begin{array}{ll} \mbox{max. concrete compressive strain:} & - [\%] \\ \mbox{max. concrete compressive stress:} & - [psi] \\ \mbox{resulting tension force in } (x/y) = (0.000/0.000): & 2,922 \ [lb] \\ \mbox{resulting compression force in } (x/y) = (0.000/0.000): & 0 \ [lb] \\ \end{array}$

Anchor forces based on a rigid base plate assumption!

3 Tension load

	Load N _{ua} [lb]	Capacity _φ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	487	4,749	11	OK
Pullout Strength*	487	5,169	10	ОК
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	2,922	5,560	53	ОК

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N_{sa}	= ESR value	refer to ICC-ES ESR-3187
φN _s	_a ≥ N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]		
0.08	94,200	_	
Calculations			
N _{sa} [lb]			
7,306			
Results			
N _{sa} [lb]	φ stee	φ N _{sa} [lb]	N _{ua} [lb]
7.306	0.650	4.749	487

3.2 Pullout Strength

5.2 I unout otteng	301		
	refer to ICC-ES ES ACI 318-14 Table	SR-3187 17.3.1.1	
Variables			
λa	N _p [lb]		
1.000	7,952	-	
Calculations			
-			
-			
Results			
N _{pn} [lb]	∳ concrete	φ N _{pn} [lb]	N _{ua} [lb]
7.952	0.650	5.169	487

11/19/2018

2

Input data and results must be checked for agreement with	the existing conditions and for plausibility!
PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan	Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us		Profis And
Company:	Page:	3
Specifier:	Project:	
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	11/19/2018
E-Mail:		

3.3 Concrete Breakout Strength

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-14 Eq. (17.4.2.1b)
$\phi \ N_{cbg}$	≥ N _{ua}	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A_{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
Ψ ed,N	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
Ψ cp,N	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
2.375	0.000	0.000	2.250	1.000		
c _{ac} [in.]	κ _c	λa	f _c [psi]			
3.563	17	1.000	4,000			
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	$\Psi_{cp,N}$	N _b [lb]
124.05	50.77	1.000	1.000	0.889	1.000	3,935
Results						
N _{cbg} [lb]	∮ concrete	φ N _{cbg} [lb]	N _{ua} [lb]			
8,554	0.650	5,560	2,922			

www.hilti.us		Profis Anchor 2.7
Company:	Page:	4
Specifier:	Project:	
Address:	Sub-Project Pos. No.:	
Phone Fax:	Date:	11/19/2018
E-Mail:		

4 Shear load

	Load V _{ua} [lb]	Capacity _φ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	29	2,630	2	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	173	5,988	3	OK
Concrete edge failure in direction x-**	173	1,304	14	OK
* anchor having the highest loading **a	nchor group (relevant anchor	s)		

4.1 Steel Strength

V_{sa}	= (0.6 $A_{se,V} f_{uta}$)	refer to ICC-ES ESR-3187
$\phi \ V_{ster}$	el ≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	(0.6 A _{se,V} f _{uta}) [lb]
0.08	94,200	4,384
Calculations		
V _{sa} [lb]		
4,384		

Results

V _{sa} [lb]	φ steel	φ V _{sa} [lb]	V _{ua} [lb]
4,384	0.600	2,630	29

4.2 Pryout Strength (Concrete Breakout Strength controls)

V_{cpg}	$= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1b)
φ V _{cpg}	_l ≥ V _{ua}	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A_{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi \text{ ed,N}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
Ψ cp,N	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

κ _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
1	2.375	0.000	0.000	2.250		
Ψ с,N	c _{ac} [in.]	k _c	λa	f _c [psi]		
1.000	3.563	17	1.000	4,000		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
124.05	50.77	1.000	1.000	0.889	1.000	3,935
Results						
V _{cpg} [lb]	¢ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
8,554	0.700	5,988	173	-		

www.miu.us		
Company:	Page:	5
Specifier:	Project:	
Address:	Sub-Project I Pos. No	
Phone I Fax:	Date:	11/19/2018
E-Mail:		

4.3 Concrete edge failure in direction x-

V_{cbg}	$= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \Psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
$\phi \ V_{cbg}$,≥V _{ua}	ACI 318-14 Table 17.3.1.1
A_{Vc}	see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
A _{Vc0}	$= 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
$\psi_{\text{ec,V}}$	$= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi \text{ ed,V}$	$= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
Ψh,V	$=\sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-14 Eq. (17.5.2.8)
V_{b}	$= \left(7 \left(\frac{I_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]
2.250	4.000	0.000	1.000	8.000
l _e [in.]	λa	d _a [in.]	f _c [psi]	Ψ parallel.V
2.375	1.000	0.375	4,000	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	ψ ed,V	Ψ h,V	V _b [lb]
32.06	22.78	1.000	1.000	1.000	1,324
Results					
V _{cbg} [lb]	∳ concrete	φ V _{cbg} [lb]	V _{ua} [lb]		
1,863	0.700	1,304	173		

5 Combined tension and shear loads

β _N	βv	ζ	Utilization β _{N,V} [%]	Status
0.526	0.133	5/3	38	OK

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!

www.hilti.us	
Company:	
Specifier:	
Address:	
Phone Fax:	
E-Mail:	

Page: 6 Project: Sub-Project I Pos. No.: Date: 11/19/2018

7 Installation data

Anchor plate, steel: -Profile: no profile Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in. Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in. Plate thickness (input): 0.375 in. Recommended plate thickness: not calculated Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8 Installation torque: 177.015 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 3.375 in. Minimum thickness of the base material: 4.625 in.

^R - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

7.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	 No accessory required 	 Dispenser including cassette and mixer
 Properly sized drill bit 		Torque wrench

Coordinates Anchor in.

Anchor	x	У	C_x	c+x	с _{-у}	C+y	Anchor	x	у	с _{-х}	C+x	с _{-у}	c _{+y}
1	-3.375	-1.375	2.250	12.750	4.000	6.750	4	-3.375	1.375	2.250	12.750	6.750	4.000
2	0.000	-1.375	5.625	9.375	4.000	6.750	5	0.000	1.375	5.625	9.375	6.750	4.000
3	3.375	-1.375	9.000	6.000	4.000	6.750	6	3.375	1.375	9.000	6.000	6.750	4.000

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

		Profis Anchor 2.7.9
	Page:	7
	Project:	
	Sub-Project I Pos. No.:	
I	Date:	11/19/2018
		Page: Project: Sub-Project I Pos. No.: Date:

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for
 the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do
 not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software
 in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or
 damaged data or programs, arising from a culpable breach of duty by you.

Inputs:				Detail Ref.	Sheet No:
WL := 10	psf	(wind load)	Standoff Mounted Glass		B1
P := 200	lb	(point load)			
W _h := 4.17	pli	(horizontal uniform load)			
h := 46	in	(height of rail above upper standoff)			
w := 46	in	(glass width)			
t := 0.63	in	(glass thickness)			

10-0.3

M12×40 FOR 6MM ALLEN K

Calculations: (Reactions from RISA 3D FEA Model)

Point Load:

Point Load:		Use 11/16" Glass, Fully Tempered & Laminated
a :- 5000 poi	a u - 6000 poi	with polished edges (5/16" / 0.060" SGP / 5/16")
αb≔ paan hai	σ all := 0000 psi	Minimum Glass Lite Width: 3'-0"
$\Delta_{p}\coloneqq$ 0.979 in	$\Delta_{all} := \frac{h}{24} + \frac{w}{96} = 2.4$ in	Maximum Glass Lite Width: 3'-10"
Uniform Load:		
σ _u := 5170 psi	σall.≔ 6000 psi	
$\Delta_{u} \coloneqq 0.867$ in	$\text{Add} = \frac{h}{24} + \frac{w}{96} = 2.4 \text{ in}$	
Wind Load:		+
σ_{W} := 2090 psi	<i>σ</i> all.≔ 6000 psi	
$\Delta_{\mathbf{W}} \coloneqq 0.27$ in	$A = \frac{h}{24} + \frac{w}{96} = 2.4 \text{in}$	
Reactions from Poi	int Load:	
V _p := 72 lb		
$T_p:=\ 1415\ lb$		
Reactions from Uni	iform Load:	
$V_{u} := 72$ lb		
$T_{u} := 1199 \ lb$		
Reactions from Wir	nd Load:	
V _W := 72 Ib		
$T_W := 496$ lb		

NOTE: Under full design load, the rail will deflect about 1", this is acceptable per ASTM E2358 deflection limits. Customer please verify the deflection is acceptable.

GLASS := "OK" if $\frac{\max(\sigma_{p}, \sigma_{r})}{\sigma_{all}}$	$(u, \sigma_W) \le 1$				GLASS = "OK"	FOR
FAILS OUIEIWISE	1	1				
DICE	105 School Creek Trail	Project Description:	Job No:		R18-05-167	
	Luxemburg, WI 54217 Phone: (020) 617 1042	Moree Industries	Engineer:	JJW	Sheet No:	B1
ENGINEERING	Fax: (920) 617-1100		Date:	7/11/18	Rev:	
Template: REI-MC-5735	www.rice-inc.com	Calculations	Chk By:		Date:	

DIN7991 M12×30MM FOR 6MM ALLEN KEY

10 -0.3

e := 2.0625 in (Eccentricity)

D := 2 in (Diameter of Standoff)

Calculations:

$R_{y} \coloneqq max(V_{p},V_{u},V_{W}) = 72$	lb	
$R_{z} := \max(T_{p}, T_{u}, T_{w}) = 1415$	lb	(Worst Case Loads)

Chk Bolt into Standoffs:

 $M := R_y = 72 \qquad \text{lb}$ $T_{M} := \frac{R_y \cdot e}{0.5 \cdot D} + R_z = 1564$ $V_{\text{all}} := 1614$

 $V_{all} := 1614$ lb $T_{all} := 3100 \cdot \frac{0.25}{0.375} = 2067$ lb $(V_{all})^2 = (T_{all})^2$

$$I := \left(\frac{V}{V_{all}}\right)^{2} + \left(\frac{T}{T_{all}}\right)^{2} = 0.57 \qquad 1$$

<u>Use 3/8" Dia. S.S. Flat Headed Threaded Rods</u> (300 Series S.S., Cond. CW, Fy = 65 ksi) as shown 1/4" Thread Engagement

lb

.0

Chk Anchors into Concrete:

$$\begin{split} &V_2 := R_y \cdot 1.6 = 115 \qquad \text{lb} \\ &T_2 := \left(\frac{R_y \cdot e}{0.5 \cdot D \cdot 0.85} + R_z \right) \cdot 1.6 = 2544 \qquad \text{lb} \end{split}$$

SEE HILTI PROFIS OR POWERS PDA DATA Use 3/8" Dia. SS HIT-Z-R Rod w/ Hilti HIT-HY 200 or Equal 300 Series Stainless Steel

Embedment: 2-3/8" Min. Edge Distance: 2-1/4" 2nd Edge Distance: 4" Spacing: 2-3/4" and 3-3/8" Min. Slab Thickness: 8" Concrete Strength: fc= 4,000 psi, Normal Wt. Cracked

Install per Manufacturer's instructions

Chk Bearing on Face of Glass:

$$\begin{split} A_f &\coloneqq \left(\frac{D}{2}\right)^2 \cdot \pi - \left(\frac{0.75}{2}\right)^2 \cdot \pi = 2.7 \qquad \text{in}^2 \\ P_f &\coloneqq \frac{R_{y} \cdot e}{D \cdot (0.67)} + R_Z \qquad P_f = 1526 \qquad \text{lb} \\ f_{pf} &\coloneqq \frac{P_f}{A_f} \qquad \qquad f_{pf} = 565 \qquad \text{psi} \end{split}$$

F_{pf}:= 3000 psi

Glass Standoffs are Proprietary Design Glass Standoffs Designed By Others Use Standard Gaskets and Bushing to Protect Glass Edge

Chk Alum. Back Plate:

L1 := 4	in	D1 := 0.625	in
L2 := 4.625	in	D2 := 0.625	in
assume load	is in the direction of L2		
L:= L2 - (2	·D2)	L = 3.38	in
$A := \frac{L-d}{2}$		A = 0.688	in
B := L - A		B = 2.688	in
P∷= T		P = 1564	lb
$M_{\text{pl}} := \frac{\text{P} \cdot \text{L}}{8}$		$M_{pl} = 660$	in∙lb

$$t_{req} := \sqrt{\frac{M_{pl} \cdot 6}{28000 \cdot L1}}$$

t_{req} = 0.188 in Use 3/8" x 4" x 8" Plate

Chk Anchors into Wood:

$$V_{1} := \frac{R_{y}}{6} = 12 \qquad \text{lb}$$
$$T_{1} := \left(\frac{R_{y} \cdot e}{0.5 \cdot D \cdot 0.85} + \frac{R_{z}}{6}\right) = 411 \qquad \text{lb}$$

<u>Use 3/8" Dia. SS Lag Bolts</u> 300 Series Stainless Steel 3" Min. Thread Penetration Edge Distance: 1-1/2" Spacing: 2-3/4" and 3-3/8" Spruce-Pine-Fir (SG = 0.42)

Chk Anchors into Steel:

$$\begin{split} &V_3 := R_y = 72 \quad \text{Ib} \\ &T_3 := \frac{R_{y'} e}{0.5 \cdot D} + R_Z = 1564 \quad \text{Ib} \\ &V_{all3} := 1614 \quad \text{Ib} \\ &T_{all3} := 3100 \quad \text{Ib} \\ &I_3 := \left(\frac{V_3}{V_{all3}}\right)^2 + \left(\frac{T_3}{T_{all3}}\right)^2 = 0.26 \qquad \qquad < \qquad 1.0 \end{split}$$

<u>Use 3/8"-16 Dia. S.S. Threaded Rods</u> (300 Series S.S., Cond. CW, Fy = 65 ks) 3/8" min. Thread Engagement Separate Dissimilar Metals as shown

DICE		105 School Creek Trail	Project Description:	Job No:		R18-05-167	
		Luxemburg, WI 54217 Phone: (920) 617-1042	Morso Industrios	Engineer:	JJW	Sheet No:	B1 A
EN	GINEERING	Fax: (920) 617-1100		Date:	7/11/18	Rev:	
Template:	REI-MC-5735	www.rice-inc.com	Calculations	Chk By:		Date:	

Down Time E	stom r Canadity (NDS 2012)				
Dower Type Fa		Lag Bolts		Detail Ref.	Sheet No:
V _{DOS} := 12·lbf	Vneg := 12·lbf	0			B1B
		Spruce Pine	e-Fir		G = 0.42
$T_{pos} := 411 \cdot lbf$	T _{neg} := 411·lbf	p := 3	penetration,	, in	
3/8 in Log Scr	ow \$\$	t _{shim} := 0.5	maximum t	hickness of shim, i	in
	ew 33	C _D := 1.6	load duratio	on factor, 10.3.2	
I _m := 3	thickness of main member, in	C _M := 1.0	wetservice	factor, 103.3	
I _S := 0.375	thickness of side member, in	C _t := 1.0	temperature	e factor, 10.3.4	
6061-T6 Hole	•	C _g := 1.0	group action	n factor, 103.6	
$F_{yb}=65000$	bending yield strength, psi.	С _Д := 1.0	geometry fa	actor, 11.5.1	
D = 0.375	unthreaded shank diameter of screw, in.	C _{eg} := 1.0	end grain fa	actor, 11.5.2	
$D_{\Gamma}=0.27$	root diameter of screw	C _{di} := 1.0	diaphragm	factor, 11.5.3	
$F_{es} = 43000$	bearing strength, psi	θ := 90	angle of She	ear load to grain, de	egree
G = 0.42 Mat	erial = "Spruce Pine-Fir"				

Calculations

$K_{\theta} := 1 + 0.25 \cdot \frac{\theta}{90} = 1.25$ $R_{e} := \frac{F_{em}}{F_{es}} = 0.07$ $R_{t} := \frac{I_{m}}{I_{es}}$	$\frac{m}{s} = 8$ $K_{D} := \begin{cases} 2.2 & \text{if } D_{r} \le 0.17 \\ \text{otherwise} \end{cases}$	= 0
$k_{1} := \frac{\sqrt{R_{e} + 2 \cdot R_{e}^{2} \cdot \left(1 + R_{t} + R_{t}^{2}\right) + R_{t}^{2} \cdot R_{e}^{3}} - R_{e} \cdot \left(1 + R_{t}\right)}{1 + R_{t}^{2} - R_{e}^{3} - R_{e} \cdot \left(1 + R_{t}\right)} = 0.24$	$\begin{array}{l} 10 \cdot D_{\Gamma} + 0.5 \mbox{if} 0.17 \ < D_{\Gamma} \leq 0.25 \\ 0 \mbox{otherwise} \end{array}$	
$k_{2} = -1 + \sqrt{2 \cdot (1 + R_{e}) + \frac{2 \cdot F_{yb} \cdot (1 + 2 \cdot R_{e}) \cdot D_{r}^{2}}{2}} = 0.51$	$\label{eq:Rd1} \begin{array}{llllllllllllllllllllllllllllllllllll$	= 5
$\frac{1}{3 \cdot \text{Fem} \cdot \text{Im}^2} = \frac{1}{3 \cdot \text{Fem} \cdot \text{Im}^2}$	$\label{eq:Rd2} \begin{array}{llllllllllllllllllllllllllllllllllll$	= 4.5
$k_{3} := -1 + \sqrt{\frac{2 \cdot (1 + R_{e})}{R_{e}}} + \frac{2 \cdot F_{yb} \cdot (2 + R_{e}) \cdot D_{r}}{3 \cdot F_{em} \cdot I_{s}^{2}}$	$R_{d3} := K_D$ if $D_T \le 0.25$	= 4
$Z_{Im} := \frac{D_{\Gamma} \cdot I_m \cdot F_{em}}{R_{d1}} = 450.22$ $Z_{Is} := \frac{D_{\Gamma} \cdot I_s \cdot F_{es}}{R_{d1}} = 854.63$	$Z_{\text{II}} := \frac{k_1 \cdot D_{\text{F}} \cdot I_{\text{S}} \cdot F_{\text{es}}}{R_{\text{d}2}} = 226.5 \qquad \qquad Z_{\text{IIIm}} := \frac{k_2 \cdot D_{\text{F}} \cdot I_{\text{m}} \cdot F_{\text{d}}}{(1 + 2R_{\text{e}}) \cdot F_{\text{d}}}$	em Rd3 = 251.43
$Z_{IIIs} \coloneqq \frac{k_3 \cdot D_r \cdot I_s \cdot F_{em}}{(2 + R_e) \cdot R_{d3}} = 202.26 \qquad \qquad Z_{IV} \coloneqq \frac{D_r^2}{R_{d3}} \cdot \sqrt{\frac{2 \cdot F_{em}}{3 \cdot (2 + R_e)}}$	$\frac{F_{em} \cdot F_{yb}}{(1 + R_e)} = 188.37$	
$Z_{1} := min(Z_{Im}, Z_{IS}, Z_{II}, Z_{IIIm}, Z_{IIIS}, Z_{IV}) = 188.37$	$R_{pos} := \sqrt{T_{pos}^2 + V_{pos}^2} = 411.18 \text{ lbf}$ $R_{neg} := \sqrt{T_{neg}^2 + V_{neg}^2}$	$eg^2 = 411.18$ lbf
W ₁ = 234.78	$\alpha_{\text{pos}} := \operatorname{atan}\left(T_{\text{pos}} \cdot V_{\text{pos}}^{-1}\right) = 88.33 \cdot \text{deg} \alpha_{\text{neg}} := \operatorname{atan}\left(T_{\text{neg}} \cdot V_{\text{neg}}^{-1}\right)$	$\left(eg^{-1} \right) = 88.33 \cdot de$
Results		

$Z' := Z_1 \cdot C_D \cdot C_M \cdot C_t \cdot C_g \cdot C_\Delta \cdot C_{eg} \cdot C_d$	Ji·lbf = 301.39 lbf All	owable Shear				
$W' := W_1 \cdot C_D \cdot C_M \cdot C_t \cdot C_{eg} \cdot p_{ten} \cdot Ibf$	= 915.66 lbf All	owable Tension	Fastener = " Predrill = "Pre	3/8 in Lag So edrill Holes a	crew SS" it 40% - 70% D'	
$Z_{\alpha pos} \coloneqq \frac{W' \cdot Z'}{W' \cdot (\cos(\alpha_{pos}))^2 + Z' \cdot (\sin(\alpha_{pos}))^2} = 914.07 \text{ lbf} \qquad \text{Int}_{pos} \coloneqq \frac{R_{pos}}{Z_{\alpha pos}} = 0.45 \qquad \text{Peterial = 1 regular predimentation} = W_{Pos}$				= "Verify Bloc pruce Pine-F	cking Thickness Fir"	n
$Z_{\alpha \text{neg}} \coloneqq \frac{W \cdot Z'}{W \cdot (\cos(\alpha_{\text{neg}}))^2 + Z' \cdot (\sin(\alpha_{\text{neg}}))^2} = 914.07 \text{ lbf} \qquad \text{Int}_{\text{neg}} \coloneqq \frac{R_{\text{neg}}}{Z_{\alpha \text{neg}}} = 0.45$						
DICE	105 School Creek Trail	Project Description:	Job No:		R18-05-167	
	Luxemburg, WI 54217 Phone: (920) 617-1042	Moreo Industrios	Engineer:	JJW	Sheet No:	B1B
ENGINEERING	Fax: (920) 617-1100	Calculations	Date:	7/11/18	Rev:	
Template: REI-MC-7602	www.rice-inc.com	Calculations	Chk By:		Date:	

|--|

Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. No.: Date:

12/5/2018

1

Specifier's comments:

Ι

1 Input data	
Anchor type and diameter:	HIT-HY 200 + HIT-Z-R 3/8
Effective embedment depth:	h _{ef,opti} = 2.375 in. (h _{ef,limit} = 4.500 in.)
Material:	A4
Evaluation Service Report:	ESR-3187
Issued I Valid:	3/1/2018 3/1/2020
Proof:	Design method ACI 318-14 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.
Anchor plate:	$I_x \times I_y \times t = 8.000$ in. x 4.000 in. x 0.375 in.; (Recommended plate thickness: not calculated
Profile:	no profile
Base material:	cracked concrete, 4000, f_c ' = 4,000 psi; h = 8.000 in., Temp. short/long: 130/110 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar

^R - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

2 Load case/Resulting anchor forces

I

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

,		,		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	424	19	-19	0
2	424	19	-19	0
3	424	19	-19	0
4	424	19	-19	0
5	424	19	-19	0
6	424	19	-19	0
nax. concrete c	ompressive strain:		- [‰]	

 $\begin{array}{ll} \mbox{max. concrete compressive strain:} & - [‰] \\ \mbox{max. concrete compressive stress:} & - [psi] \\ \mbox{resulting tension force in } (x/y) = (0.000/0.000): & 2,544 \ [lb] \\ \mbox{resulting compression force in } (x/y) = (0.000/0.000): & 0 \ [lb] \\ \end{array}$

Anchor forces based on a rigid base plate assumption!

3 Tension load

	Load N _{ua} [lb]	Capacity φ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	424	4,749	9	OK
Pullout Strength*	424	5,169	9	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	2,544	5,560	46	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-3187
¢ N _{sa}	≥ N _{ua}	ACI 318-14 Table 17.3.1.1
Varia	bles	

A _{se,N} [in. ²]	f _{uta} [psi] 94,200	-	
Calculations			
N _{sa} [lb] 7,306			
Results			
N _{sa} [lb]	φ steel	φ N _{sa} [lb]	N _{ua} [lb]
7,306	0.650	4,749	424

3.2 Pullout Strength

5.2 Fullout Streng	jui		
	refer to ICC-ES ES ACI 318-14 Table	SR-3187 17.3.1.1	
Variables			
λa	N _p [lb]		
1.000	7,952	_	
Calculations			
-			
-			
Results			
N _{pn} [lb]	∳ concrete	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	424

12/5/2018

2

Input data and results must be checked for agreement with	the existing conditions and for plausibility!
PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan	Hilti is a registered Trademark of Hilti AG, Schaar

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Page:3Project:3Sub-Project I Pos. No.:3Date:12

12/5/2018

3.3 Concrete Breakout Strength

Ι

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-14 Eq. (17.4.2.1b)
φ N _{cbc}	n ≥ N _{ua}	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ ec,N}}$	$= \left(\frac{1}{1 + \frac{2 e_{\rm N}}{3 h_{\rm ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi \; ed, N$	$= 0.7 + 0.3 \left(\frac{C_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N		
0.000	0.000	2.250	1.000		
κ _c	λa	f _c [psi]			
17	1.000	4,000			
A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
50.77	1.000	1.000	0.889	1.000	3,935
∲ concrete	φ N _{cbg} [lb]	N _{ua} [lb]			
0.650	5,560	2,544			
	e _{c1.N} [in.] 0.000 k _c 17 A _{Nc0} [in. ²] 50.77 ∳ concrete 0.650	$\begin{array}{c c} e_{c1,N} [in.] & e_{c2,N} [in.] \\ \hline 0.000 & 0.000 \\ \hline \\ k_c & \lambda_a \\ \hline 17 & 1.000 \\ \hline \\ A_{Nc0} [in.^2] & \psi_{ec1,N} \\ \hline \\ 50.77 & 1.000 \\ \hline \\ \hline \\ \phi_{concrete} & \phi & N_{cbg} [lb] \\ \hline \\ 0.650 & 5,560 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

www.hilti.us			Profis Anchor 2.7
Company:		Page:	4
Specifier:		Project:	
Address:		Sub-Project I Pos. No.:	
Phone I Fax:	1	Date:	12/5/2018
E-Mail:	1		

4 Shear load

	Load V _{ua} [lb]	Capacity ∳ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	19	2,630	1	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	115	5,988	2	OK
Concrete edge failure in direction x-**	115	1,304	9	OK
* anchor having the highest loading **a	nchor group (relevant anchors)			

4.1 Steel Strength

V_{sa}	= (0.6 A _{se,V} f _{uta})	refer to ICC-ES ESR-3187
$\phi \ V_{steel}$	≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	(0.6 A _{se,V} f _{uta}) [Ib]	
0.08	94,200	4,384	
Calculations			
V _{sa} [lb]			
4,384			
Results			
V _{sa} [lb]	¢ steel	φ V _{sa} [lb]	V _{ua} [lb]

V _{sa} [lb]	∮ steel	φ V _{sa} [lb]	V _{ua} [Ib]
4,384	0.600	2,630	19

4.2 Pryout Strength (Concrete Breakout Strength controls)

V_{cpg}	$= K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{c,N} \psi_{c,N} \psi_{c,N} V_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1b)
φ V _{cpg}	$\geq V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A _{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2}{3}\frac{e_N}{h_{ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ ed},\text{N}}$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
ψ cp,N	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
1	2.375	0.000	0.000	2.250		
	c [in]	k	2	ŕ [pci]		
<u>Ψ c,N</u>		K _C	Λ _a			
1.000	3.503	17	1.000	4,000		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
124.05	50.77	1.000	1.000	0.889	1.000	3,935
Results						
V _{cpg} [lb]	∮ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
8,554	0.700	5,988	115	-		

www.hilti.us

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

Page: 5 Project: Sub-Project I Pos. No.: Date: 12/5/2018

4.3 Concrete edge failure in direction x-

I

V_{cbg}	$= \begin{pmatrix} A_{Vc} \\ A_{Vc0} \end{pmatrix} \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_b$	ACI 318-14 Eq. (17.5.2.1b)
$\phi \ V_{cbg}$	≥ V _{ua}	ACI 318-14 Table 17.3.1.1
A _{Vc}	see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
A_{Vc0}	$= 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
$\psi_{\text{ec,V}}$	$= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi_{\text{ed,V}}$	$= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
Ψ h,V	$=\sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-14 Eq. (17.5.2.8)
V _b	$= \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

Variables

		uz L J	- CV []	Ψ c,V	na [m.]
:	2.250	4.000	0.000	1.000	8.000
	l _e [in.]	λa	d _a [in.]	f _c [psi]	Ψ parallel,V
:	2.375	1.000	0.375	4,000	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	ψ ec,V	Ψ ed,V	Ψ h,V	V _b [lb]
32.06	22.78	1.000	1.000	1.000	1,324
Results					
V _{cbg} [lb]	∮ concrete	φ V _{cbg} [lb]	V _{ua} [lb]		
1,863	0.700	1,304	115		

5 Combined tension and shear loads

β _N	βv	ζ	Utilization β _{N,V} [%]	Status
0.458	0.088	5/3	29	OK

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!

www.hilti.us
Company:
Specifier:
Address:
Phone Fax

hone I Fax: E-Mail:

Page: 6 Project: Sub-Project I Pos. No.: Date:

12/5/2018

7 Installation data

Anchor plate, steel: -

Profile: no profile Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in. Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in. Plate thickness (input): 0.375 in. Recommended plate thickness: not calculated Drilling method: Hammer drilled Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8 Installation torque: 177.015 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 3.375 in. Minimum thickness of the base material: 4.625 in.

^R - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

7.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	 No accessory required 	 Dispenser including cassette and mixer
 Properly sized drill bit 		Torque wrench

Coordinates Anchor in.

Anchor	x	У	C _{-x}	C+x	c _{-y}	C+y	Anchor	x	У	C _{-x}	C+x	c_y	c _{+y}
1	-3.375	-1.375	2.250	12.750	4.000	6.750	4	-3.375	1.375	2.250	12.750	6.750	4.000
2	0.000	-1.375	5.625	9.375	4.000	6.750	5	0.000	1.375	5.625	9.375	6.750	4.000
3	3.375	-1.375	9.000	6.000	4.000	6.750	6	3.375	1.375	9.000	6.000	6.750	4.000

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us		Profis Anchor 2.7.9
Company:	Page:	7
Specifier:	Project:	
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	12/5/2018
E-Mail:		

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

