Prepared for:
Morse Industries - Kent, WA
1/18/2019

Kent, Washington
REI Project \# R18-05-167

Design Criteria:

1. Railing live loads per IBC 2015:

Guardrails
50 plf uniform load in any direction on handrails and top rails of guards
200 pound concentrated load in any direction on handrails and top rails of guards
50 lb concentrated load over $1 \mathrm{ft}^{2}$ of infill area
Concentrated load and uniform loads need not be assumed to act concurrently
2. Railing deflections per ASTM E985 or IBC (Most Stringent)
3. Aluminum members designed per AA, "Aluminum Design Manual"
4. Stainless steel members designed per AISC Structural Steel Design Guide 27.
5. Railing design wind loads per IBC (ASCE-7 Components \& Cladding): 10 PSF Interior Load
6. Member sizes, grade, alloy and strengths shall be as recommended in the calculation package
7. Stainless steel fasteners to be minimum Condition "CW", $\mathbf{3 0 0}$ Series, Fy= $\mathbf{6 5} \mathbf{k s i}$
8. All other fasteners shall be the size and strength as is recommended in the calculation package
9. Steel \& stainless steel welds to be $\mathbf{7 0}$ ksi minimum tensile strength
10. Aluminum welds to be 5356 filler alloy unless otherwise noted
11. Concrete strength is assumed to be $\mathbf{F}^{\prime} \mathbf{c}=\mathbf{4 , 0 0 0} \mathbf{~ p s i}$, normal weight cracked concrete
12. Concrete anchors shall be as recommended in the calculation package. Installer is responsible for maintaining the fastener spacing, edge distance, end distance, embedment depth and minimum substrate thickness that is recommended in the calculation package
13. Concrete anchors shall be installed per manufacturer's recommended installation procedures, including recommended ambient temperatures for chemical/adhesive anchors
14. Concrete slabs, concrete curbs, structural steel, masonry units and all other anchorage substrates designed by others

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates

Engineers Design Approval Stamp:

- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

Cover Page 1 of 3

> PRELIMINARY DESIGN NOT FOR CONSTRUCTION

Prepared for:
Morse Industries - Kent, WA
$\mathbf{1 / 1 8 / 2 0 1 9}$

REI Project \# R18-05-167
1/18/2019

Design Criteria:

15. All glass is to be fully tempered laminated glass with $3 / 8^{\prime \prime}$ thick lites and 0.06 " thick Dupont SentryGlas Plus Interlayer or noted in calculations.
16. Per IBC, glass has been designed using a safety factor of 4 in determining the allowable flexural stress ($24,000 / 4=6,000 \mathrm{psi}$)
17. Per IBC, glass panels need to be manufactured from an approved safety glazing material conforming to CPSC 16 CFR 1201 (II). The glass manufacturer is responsible to provide acceptable safety glass conforming to the IBC \& CPSC provisions.
18. Whenever glass guards are used in overhanging applications, Rice Engineering recommends using fully tempered and laminated glass lites along with standard cap channels to protect the glass edges. Fully tempered glass is susceptible to breakage due to impact on the glass edge by airborne debris, as well as the possibility of spontaneous breakage due to nickel sulfide contamination. In the case of accidental breakage, laminated glass minimizes the risk of falling glass.
19. Shim dis-similar metals. Maximum recommended shim height for guardrails is $1 / 2^{\prime \prime}$, full bearing shims
20. Wood substrates are assumed to be Spruce Pine Fir or Equal, SG=0.42 minimum unless otherwise noted

Page:	Description:	Date:	Revision:
A1-A1A	Standoff Mounted $13 / 16^{\prime \prime}$ Lami. Glass	$7 / 11 / 18$	
A1B	Lag Screw Analysis	$7 / 11 / 18$	
	Hilti PROFIS	$11 / 19 / 18$	
	Glass Model Analysis		
B1-B1A	Standoff Mounted $11 / 16^{\prime \prime}$ Lami. Glass	$7 / 11 / 18$	
B1B	Lag Screw Analysis	$7 / 11 / 18$	
	Hilti PROFIS	$12 / 5 / 18$	
	Glass Model Analysis		

Disclaimer:

This Certification is limited to the structural design of structural components of this handrail or divider system. It does NOT include responsibility for:

- Structural design of misc. hardware (latches, hinges, etc.).
- Structural design of concrete slabs and other masonry units
- Structural design of wood blocking or wood framing
- Structural design of all other anchorage substrates
- Glass breakage due to airborne debris or foreign objects
- The manufacture, assembly, or installation of the system.
- Quantities of materials or dimensional accuracy of drawings

Cover Page 2 of $\mathbf{3}$

Inputs:

$\mathrm{WL}:=10$	psf	(wind load)
$\mathrm{P}:=200$	lb	(point load)
$\mathrm{W}_{\mathrm{h}}:=4.17$	pli	(horizontal uniform load)
$\mathrm{h}:=46$	in	(height of rail above upper standoff)
$\mathrm{w}:=60$	in	(glass width)
$\mathrm{t}:=0.719$	in	(glass thickness)

Standoff Mounted Glass	Detail Ref.	Sheet No: A1

Calculations: (Reactions from RISA 3D ÆAA Model)
Point Load:

$$
\begin{array}{lll}
\sigma_{\mathrm{p}}:=4750 \text { psi } & \sigma_{\text {all }}:=6000 \quad \mathrm{psi} \\
\Delta_{\mathrm{p}}:=0.542 \text { in } & \Delta_{\text {all }}:=\frac{\mathrm{h}}{24}+\frac{\mathrm{w}}{96}=2.54 \quad \text { in }
\end{array}
$$

Uniform Load:

$$
\begin{array}{lll}
\sigma_{\mathrm{u}}:=5050 \text { psi } & \sigma_{\text {mal }}:=6000 \text { psi } \\
\Delta_{\mathrm{u}}:=0.644 \text { in } & \text { sallh }^{\text {in }}=\frac{\mathrm{h}}{24}+\frac{\mathrm{w}}{96}=2.54 \quad \text { in }
\end{array}
$$

Wind Load:

$$
\begin{array}{lll}
\sigma_{\mathrm{w}}:=2080 \text { psi } & \sigma_{\mathrm{Nal}}:=6000 \text { psi } \\
\Delta_{\mathrm{W}}:=0.212 \text { in } & \Delta_{\text {mal }}:=\frac{\mathrm{h}}{24}+\frac{\mathrm{w}}{96}=2.54 \text { in }
\end{array}
$$

Reactions from Point Load:
$\mathrm{V}_{\mathrm{p}}:=108 \mathrm{lb}$
$\mathrm{T}_{\mathrm{p}}:=1484 \mathrm{lb}$

Reactions from Uniform Load:

$\mathrm{V}_{\mathrm{u}}:=108 \mathrm{lb}$
$\mathrm{T}_{\mathrm{u}}:=1564 \mathrm{lb}$

Reactions from Wind Load:

$\mathrm{V}_{\mathrm{w}}:=108 \mathrm{lb}$
$\mathrm{T}_{\mathrm{W}}:=647 \quad \mathrm{lb}$

NOTE: Under full design load, the rail will deflect about 11/16", this is acceptable per ASTM E2358 deflection limis. Customer please verity the deflection is acceptable.

GLASS :=	$\left\lvert\, \begin{aligned} & \text { "OK" if } \frac{\max \left(\sigma_{\mathrm{p}}, \sigma_{\mathrm{u}}, \sigma_{\mathrm{w}}\right)}{\sigma_{\mathrm{all}}} \leq 1 \\ & \text { "FAlLS" otherwise } \end{aligned}\right.$	
RICE		105 School Creek Trail Luxemburg, WI 54217
	ENGINEERING	Phone: (920) 617-1042 Fax: (920) 617-1100
Template:	REI-MC-5735	wwn.rice-inc.com

Project Description:	Job No:	R18-05-167		
	Engineer:	JJW	Sheet No:	A1
	Date:	$7 / 11 / 18$	Rev:	
	Chk By:	Date:		

Inputs: \qquad

Standoff Mounted Glass	Detail Ref.	Sheet No: A1 A

e: $=2.0625$
in
(Eccentricity)
$D:=2 \quad$ in
(Diameter of Standoff)

Calculations:

$\mathrm{R}_{\mathrm{y}}:=\max \left(\mathrm{V}_{\mathrm{p}}, \mathrm{V}_{\mathrm{u}}, \mathrm{V}_{\mathrm{w}}\right)=108$	lb	
$\mathrm{R}_{\mathrm{z}}:=\max \left(\mathrm{T}_{\mathrm{p}}, \mathrm{T}_{\mathrm{u}}, \mathrm{T}_{\mathrm{w}}\right)=1564$	lb	(Worst Case Loads)

Chk Bolt into Standoffs:

$M:=R y=108 \quad \mathrm{lb}$
$\mathrm{T}^{\mathrm{M}}:=\frac{\mathrm{Ry}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D}}+\mathrm{R}_{\mathrm{z}}=1787 \quad \mathrm{lb}$
Vall:=1614 lb
$T_{\text {all }}:=3100 \cdot \frac{0.25}{0.375}=2067 \quad$ lb
$\mathrm{I}:=\left(\frac{\mathrm{V}}{\mathrm{V}_{\text {all }}}\right)^{2}+\left(\frac{\mathrm{T}}{\mathrm{T}_{\text {all }}}\right)^{2}=0.75<1.0$

$\frac{\text { Use 3/8" Dia. S.S. Flat Headed Threaded Rods }}{\text { (300 Series S.S., Cond. CW, Fy }=65 \mathrm{ks})}$
as shown $1 / 4^{\prime \prime}$ Thread Engagement

Chk Anchors into Concrete:
$\mathrm{V}_{2}:=\mathrm{R}_{\mathrm{y}} \cdot 1.6=173 \mathrm{lb}$
$\mathrm{T}_{2}:=\left(\frac{\mathrm{Ry}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D} \cdot 0.85}+\mathrm{Rz}_{\mathrm{z}}\right) \cdot 1.6=2922 \quad \mathrm{lb}$
SEE HILTI PROFIS OR POWERS PDA DATA

Use 3/8" Dia. SS HIT-Z-R Rod w/ Hilti HIT-HY 200 or Equal

 300 Series Stainless SteelEmbedment: 2-3/8" Min.
Edge Distance: 2-1/4"
2nd Edge Distance: 4"
Spacing: 2-3/4" and 3-3/8"
Min. Slab Thickness: 8"
Concrete Strength: $f^{\prime} c=4,000$ psi, Normal Wt. Cracked
Install per Manufacturer's instructions

Chk Bearing on Face of Glass:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{f}}:=\left(\frac{\mathrm{D}}{2}\right)^{2} \cdot \pi-\left(\frac{0.75}{2}\right)^{2} \cdot \pi=2.7 \quad \mathrm{in}^{2} \\
& \mathrm{P}_{\mathrm{f}}:=\frac{\mathrm{R}_{\mathrm{y}} \cdot \mathrm{e}}{\mathrm{D} \cdot(0.67)}+\mathrm{R}_{\mathrm{z}} \quad \mathrm{P}_{\mathrm{f}}=1730 \quad \mathrm{lb} \\
& \mathrm{f}_{\mathrm{pf}}:=\frac{\mathrm{P}_{\mathrm{f}}}{\mathrm{~A}_{\mathrm{f}}} \quad \mathrm{f}_{\mathrm{pf}}=641 \quad \mathrm{psi} \\
& \\
& \mathrm{~F}_{\mathrm{pf}}:=3000 \quad \mathrm{psi}
\end{aligned}
$$

Bearing on Glass Face "OK"

Glass Standoffs are Proprietary Design Glass Standoffs Designed By Others Use Standard Gaskets and Bushing to Protect Glass Edge

Chk Alum. Back Plate:

$\mathrm{L} 1:=4$	in	D1 $:=0.625$ in
$\mathrm{L} 2:=4.625$ in	D2 $:=0.625$ in	

assume load is in the direction of L2

	$\mathrm{L}=3.38$	in
$A:=\frac{L-d}{2}$	$A=0.688$	in
$B:=L-A$	$B=2.688$	in
$\mathrm{M}:=\mathrm{T}$	$P=1787$	lb
$\mathrm{M}_{\mathrm{pl}}:=\frac{\mathrm{P} \cdot \mathrm{L}}{8}$	$\mathrm{Mpl}=754$	in.lb

$$
\mathrm{t}_{\text {req }}:=\sqrt{\frac{\mathrm{Mpl} \cdot 6}{28000 \cdot \mathrm{~L} 1}}
$$

$$
\mathrm{t}_{\mathrm{req}}=0.201 \quad \mathrm{in}
$$

Use 3/8" x 4" x 8" Plate 6061-T6 alloy
Chk Anchors into Wood:

$$
\begin{aligned}
& \mathrm{v}_{1}:=\frac{\mathrm{R}_{\mathrm{y}}}{6}=18 \quad \mathrm{lb} \\
& \mathrm{~T}_{1}:=\left(\frac{\mathrm{R}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D} \cdot 0.85}+\frac{\mathrm{R}_{\mathrm{z}}}{6}\right)=523 \\
& * * \text { SEE SHEET A1 B** }
\end{aligned}
$$

Use 3/8" Dia. SS Lag Bolts
300 Series Stainless Steel
3" Min. Thread Penetration Edge Distance: 1-1/2"
Spacing: 2-3/4" and 3-3/8"
Spruce-Pine-Fir (SG = 0.42)

Chk Anchors into Steel:

$$
\begin{aligned}
& \mathrm{V}_{3}:=\mathrm{R}_{\mathrm{y}}=108 \mathrm{lb} \\
& \mathrm{~T}_{3}:=\frac{\mathrm{R}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D}}+\mathrm{R}_{\mathrm{z}}=1787 \mathrm{lb} \\
& \mathrm{~V}_{\text {all3 }}:=1614 \mathrm{lb} \\
& \mathrm{~T}_{\text {all } 3}:=3100 \mathrm{lb} \\
& \mathrm{I}_{3}:=\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{\text {all3 }}}\right)^{2}+\left(\frac{\mathrm{T}_{3}}{T_{\text {all3 }}}\right)^{2}=0.34<1.0
\end{aligned}
$$

Use 3/8"-16 Dia. S.S. Threaded Rods
(300 Series S.S., Cond. CW, Fy = 65 ksi) 3/8" min. Thread Engagement Separate Dissimilar Metals as shown

RICE	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Morse Industries Calculations	Job No: R18-05-167			
			Engineer:	JJW	Sheet No:	A1 A
EN			Date:	7/11/18	Rev:	
Template: REI-MC-5735			Chk By:		Date:	

$V_{\text {pos }}:=18 \cdot \mathrm{lbf}$		$V_{\text {neg }}:=18 \cdot \mathrm{lbf}$
Tpos : $=523 \cdot \mathrm{lbf}$		Tneg := 523.lbf
3/8 in Lag Screw	w SS	\checkmark
$\mathrm{Im}_{\mathrm{m}}:=3$	thickness of main member, in.	
$\mathrm{l}_{\mathrm{s}}:=0.375$	thickness of side member, in	
6061-T6 Hole		\checkmark
$\mathrm{F}_{\mathrm{yb}}=65000$	bending yield strength, psi.	
$\mathrm{D}=0.375$	unthreaded shank diameter of screw, in.	
$\mathrm{D}_{\mathrm{r}}=0.27$	root diameter of screw	
$\mathrm{Fes}_{\text {es }}=43000$	bearing strength, psi	
$\mathrm{G}=0.42 \quad$ Mat	Material = "Spruce Pine-Fir"	

Lag Bolts	Detail Ref.	Sheet No: A1B

Spruce Pine-Fir	penetration, in
$p:=3$	maximum thickness of shim, in
$t_{\text {shim }}:=0.42$	
$C_{D}:=1.6$	load duration factor, 10.3.2
$C_{M}:=1.0$	wet service factor, 10.3.3
$C_{t}:=1.0$	temperature factor, 10.3.4
$C_{g}:=1.0$	group action factor, 10.3.6
$C_{\Delta}:=1.0$	geometry factor, 11.5.1
$C_{e g}:=1.0$	end grain factor, 11.5.2
$C_{d i}:=1.0$	diaphragm factor, 11.5.3
$\theta:=90$	angle of Shear load to grain, degree

Calculations

$Z_{1}:=\min \left(Z_{\text {Im }}, Z_{\text {Is }}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I V}\right)=188.37$
$W_{1}=234.78$

$$
\begin{aligned}
& R_{\text {pos }}:=\sqrt{T_{\text {pos }}{ }^{2}+V_{\text {pos }}{ }^{2}}=523.31 \mathrm{lbf} \quad R_{\text {neg }}:={\sqrt{T_{\text {neg }}{ }^{2}+V_{\text {neg }}{ }^{2}}=523.31 \mathrm{lbf}}^{\alpha_{\text {pos }}:=\operatorname{atan}\left(T_{\text {pos }} \cdot V_{\text {pos }}{ }^{-1}\right)=88.03 \cdot d e g} \quad \alpha_{\text {neg }}:=\operatorname{atan}\left(T_{\text {neg }} \cdot V_{\text {neg }}{ }^{-1}\right)=88.03 \cdot d e
\end{aligned}
$$

Results

$$
\mathrm{Z}^{\prime}:=\mathrm{Z}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{g}} \cdot \mathrm{C}_{\Delta} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{C}_{\mathrm{di}} \cdot \mathrm{lbf}=301.39 \mathrm{lbf}
$$

Allowable Shear

$$
\mathrm{W}^{\prime}:=\mathrm{W}_{1} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{e g} \cdot p_{t e n} \cdot \mathrm{lbf}=915.66 \mathrm{lbf}
$$

Allowable Tension

$$
\begin{array}{ll}
Z_{\alpha p o s}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {pos }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {pos }}\right)\right)^{2}}=913.46 \mathrm{lbf} & \text { Intpos }:=\frac{R_{\text {pos }}}{Z_{\alpha p o s}}=0.57 \\
Z_{\text {aneg }}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{n e g}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{n e g}\right)\right)^{2}}=913.46 \mathrm{lbf} & \text { Intneg }:=\frac{R_{n e g}}{Z_{\alpha n e g}}=0.57
\end{array}
$$

Fastener = "3/8 in Lag Screw SS"
Predrill $=$ "Predrill Holes at 40\%-70\% D" Penetration = "Verify Blocking Thickness" Material = "Spruce Pine-Fir"

RICE

ENGINEERING

Template:
REI-MC-7602

105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com

Project Description:

Morse Industries Calculations

Job No:		R18-05-167		
Engineer:	JJW	Sheet No:	A1B	
Date:	$7 / 11 / 18$	Rev:		
	Chk By:		Date:	

$$
\begin{aligned}
& \mathrm{K}_{\theta}:=1+0.25 \cdot \frac{\theta}{90}=1.25 \quad \mathrm{R}_{\mathrm{e}}:=\frac{\mathrm{Fem}_{\mathrm{em}}}{\mathrm{~F}_{\mathrm{es}}}=0.07 \quad \mathrm{R}_{\mathrm{t}}:=\frac{\mathrm{Im}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{S}}}=8 \\
& k_{1}:=\frac{\sqrt{R_{e}+2 \cdot R_{e}^{2} \cdot\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} \cdot R_{e}^{3}}-R_{e} \cdot\left(1+R_{t}\right)}{1+R_{e}}=0.24 \\
& \mathrm{k}_{2}:=-1+\sqrt{2 \cdot\left(1+R_{e}\right)+\frac{2 \cdot \mathrm{~F}_{\mathrm{yb}} \cdot\left(1+2 \cdot R_{\mathrm{e}}\right) \cdot \mathrm{Dr}^{2}}{3 \cdot \mathrm{~F}_{\mathrm{em} \cdot \mathrm{Im}^{2}}^{2}}}=0.51 \\
& \mathrm{k}_{3}:=-1+\sqrt{\frac{2 \cdot\left(1+\mathrm{R}_{\mathrm{e}}\right)}{\mathrm{R}_{\mathrm{e}}}+\frac{2 \cdot \mathrm{~F}_{\mathrm{yb}} \cdot\left(2+\mathrm{R}_{\mathrm{e}}\right) \cdot \mathrm{Dr}^{2}}{3 \cdot \mathrm{~F}_{\mathrm{em}} \cdot \mathrm{I}_{\mathrm{s}}{ }^{2}}} \\
& K_{D}:=\| \begin{array}{l}
2.2 \text { if } D_{r} \leq 0.17 \\
\text { otherwise } \\
\left\lvert\, \begin{array}{l}
10 \cdot D_{r}+0.5 \text { if } 0.17<D_{r} \leq 0.25 \\
0 \text { otherwise }
\end{array}\right.
\end{array} \\
& R_{\mathrm{d} 1}:=\left\lvert\, \begin{array}{ll}
\mathrm{K}_{\mathrm{D}} \text { if } \mathrm{D}_{\mathrm{r}} \leq 0.25 & =5 \\
4.0 \cdot \mathrm{~K}_{\theta} \text { if } 0.25<\mathrm{D}_{\mathrm{r}} \leq 1 \text { otherwise } &
\end{array}\right. \\
& R_{d 2}:=\left\lvert\, \begin{array}{l}
K_{D} \text { if } D_{r} \leq 0.25 \\
3.6 \cdot K_{\theta} \text { if } 0.25<D_{r} \leq 1 \text { otherwise }
\end{array}=4.5\right. \\
& R_{\mathrm{d} 3}:=\left\lvert\, \begin{array}{ll}
\mathrm{K}_{\mathrm{D}} \text { if } \mathrm{Dr}_{\mathrm{r}} \leq 0.25 \\
3.2 \cdot \mathrm{~K}_{\theta} \text { if } 0.25<\mathrm{D}_{\mathrm{r}} \leq 1 \text { otherwise } & =4
\end{array}\right. \\
& \mathrm{Z}_{\mathrm{Im}}:=\frac{\mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{m}} \cdot \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d} 1}}=450.22 \quad \mathrm{Z}_{\mathrm{Is}}:=\frac{\mathrm{D}_{\mathrm{r}} \cdot \cdot_{\mathrm{s}} \cdot F_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} 1}}=854.63 \\
& Z_{I I}:=\frac{\mathrm{k}_{1} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{s}} \cdot \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} 2}}=226.5 \\
& \mathrm{Z}_{\mathrm{IIIm}}:=\frac{\mathrm{k}_{2} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{m}} \cdot \mathrm{~F}_{\mathrm{em}}}{\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \cdot \mathrm{R}_{\mathrm{d} 3}}=251.43 \\
& Z_{\text {IIIs }}:=\frac{\mathrm{k}_{3} \cdot \mathrm{D}_{\mathrm{r}} \cdot \mathrm{l}_{\mathrm{s}} \cdot F_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \cdot \mathrm{R}_{\mathrm{d} 3}}=202.26 \\
& \mathrm{ZIV}:=\frac{\mathrm{D}_{\mathrm{r}}{ }^{2}}{\mathrm{R}_{\mathrm{d} 3}} \cdot \sqrt{\frac{2 \cdot \mathrm{Fem}_{\mathrm{em}} \cdot \mathrm{~F}_{\mathrm{yb}}}{3 \cdot\left(1+\mathrm{R}_{\mathrm{e}}\right)}}=188.37
\end{aligned}
$$

www.hilti.us
Profis Anchor 2.7.9
Company:
Page:
1
Specifier:
Address:
Phone I Fax:
Project:
Sub-Project I Pos. No.:
Date:
11/19/2018
E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter:

Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:
Installation:
Reinforcement:

HIT-HY 200 + HIT-Z-R 3/8
$h_{\text {ef,opti }}=2.375 \mathrm{in} .\left(h_{\text {ef, limit }}=4.500 \mathrm{in}\right.$.)
A4
ESR-3187
3/1/2018 | 3/1/2020
Design method ACI 318-14 / Chem
$e_{b}=0.000 \mathrm{in}$. (no stand-off); $t=0.375 \mathrm{in}$.
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=8.000 \mathrm{in} . \times 4.000$ in. $\times 0.375$ in.; (Recommended plate thickness: not calculated
no profile
cracked concrete, $4000, \mathrm{f}_{\mathrm{c}}{ }^{\prime}=4,000 \mathrm{psi} ; \mathrm{h}=8.000 \mathrm{in} .$, Temp. short/long: $130 / 110^{\circ} \mathrm{F}$
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
${ }^{R}$ - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

Geometry [in.] \& Loading [lb, in.lb]

Page:
2
Specifier:
Address:
Phone I Fax:
E-Mail:

Project:
Sub-Project I Pos. No.:
Date:
11/19/2018

2 Load case/Resulting anchor forces

Anchor forces based on a rigid base plate assumption!

3 Tension Ioad

	Load N_{ua} [lb]	Capacity $\phi \mathrm{N}_{\mathrm{n}}$ [lb]	Utilization $\beta_{\mathrm{N}}=\mathrm{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	487	4,749	11	OK
Pullout Strength*	487	5,169	10	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	2,922	5,560	53	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

$\mathrm{N}_{\mathrm{sa}}=$ ESR value refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACI 318-14 Table 17.3.1.1
Variables

$\mathrm{A}_{\text {se,N }}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.08	94,200

Calculations
$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$

7,306
Results

$\mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7,306	0.650	4,749	487

3.2 Pullout Strength
$\mathrm{N}_{\mathrm{pn}}=\mathrm{N}_{\mathrm{p}} \lambda_{\mathrm{a}} \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{pn}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACI 318-14 Table 17.3.1.1

Variables

λ_{a}	$\mathrm{N}_{\mathrm{p}}[\mathrm{lb}]$
1.000	7,952

Calculations
\qquad

Results

$\mathrm{N}_{\mathrm{pn}}[\mathrm{b}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{pn}}[\mathrm{bb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7,952	0.650	5,169	487

Page:
Project:
Sub-Project I Pos. No.:
Date:

11/19/2018

Address:
Phone I Fax:
E-Mail:

3.3 Concrete Breakout Strength

$\mathrm{N}_{\mathrm{cbg}}=\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\mathrm{ec}, \mathrm{N}} \psi_{\text {ed,N }} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}} \quad \quad$ ACl 318-14 Eq. (17.4.2.1b)
$\phi \mathrm{N}_{\mathrm{cbg}} \geq \mathrm{N}_{\text {ua }} \quad$ ACI 318-14 Table 17.3.1.1
$\mathrm{A}_{\mathrm{Nc}} \quad$ see $\mathrm{ACl} 318-14$, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A_{\mathrm{NcO}}=9 \mathrm{~h}_{\mathrm{ef}}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text {ed, }, ~}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a}, \min }}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
ACI 318-14 Eq. (17.4.2.4)
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \min }}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0$
ACI 318-14 Eq. (17.4.2.5b)
$N_{b}=k_{c} \lambda_{a} \sqrt{f_{c}^{\prime}} h_{e f}^{1.5} \quad$ ACl 318-14 Eq. (17.4.2.2a)

Variables

$\mathrm{h}_{\text {ef }}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[$ in. $]$	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$.	$\psi_{\mathrm{c}, \mathrm{N}}$
2.375	0.000	0.000	2.250	1.000

c_{ac} [in.]	k_{c}	λ_{a}	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
3.563	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{NcO}}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	ψ ec2,N	ψ ed, ${ }^{\text {N }}$	$\psi_{\text {cp, }}$ N	N_{b} [lb]
124.05	50.77	1.000	1.000	0.889	1.000	3,935
Results						
$\mathrm{N}_{\mathrm{cbg}}$ [lb]	ϕ concrete	$\phi \mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	N_{ua} [lb]			
8,554	0.650	5,560	2,922			

www.hilti.us
Profis Anchor 2.7.9
Company:

Page:
Project:
Sub-Project I Pos. No.:
Date:
11/19/2018

Specifier:
Address:
Phone I Fax:
E-Mail:

4 Shear load

	Load V_{ua} [lb]	Capacity $\phi \mathrm{V}_{\mathrm{n}}$ [lb]	Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	29	2,630	2	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	173	5,988	3	OK
Concrete edge failure in direction $\mathrm{x}^{* *}$ * anchor having the highest loading	$\begin{gathered} 173 \\ \text { roup (relevant } \end{gathered}$	1,304	14	OK

4.1 Steel Strength

$V_{\text {sa }} \quad=\left(0.6 A_{\text {se,V }} f_{\text {uta }}\right) \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{V}_{\text {steel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACl 318-14 Table 17.3.1.1

Variables

$\mathrm{A}_{\text {se, }, \mathrm{V}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$	$\left(0.6 \mathrm{~A}_{\text {se,V }} \mathrm{f}_{\mathrm{uta}}\right)[\mathrm{lb}]$
0.08	94,200	4,384

Calculations
$\frac{\mathrm{V}_{\text {sa }}[\mathrm{lb}]}{4,384}$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\text {ua }}[\mathrm{lb}]$
4,384	0.600	2,630	29

4.2 Pryout Strength (Concrete Breakout Strength controls)

$\mathrm{V}_{\mathrm{cpg}}=\mathrm{k}_{\mathrm{cp}}\left[\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ec, } \mathrm{N}} \psi_{\text {ed, } \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}\right]$	ACI 318-14 Eq. (17.5.3.1b)
$\phi \mathrm{V}_{\text {cpg }} \geq \mathrm{V}_{\text {ua }}$	ACI 318-14 Table 17.3.1.1
$\mathrm{A}_{\text {Nc }} \quad$ see $\mathrm{ACl} 318-14$, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{\text {NcO }}=9 h_{\text {ef }}^{2}$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{e c, N}=\left(\frac{1}{1+\frac{2 e_{N}^{\prime}}{3 h_{\text {ef }}^{\prime}}}\right) \leq 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text {ed, }, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{1.5 \mathrm{~h}_{\text {ef }}}\right) \leq 1.0$	ACI 318-14 Eq. (17.4.2.5b)
	ACI 318-14 Eq. (17.4.2.7b)
$\mathrm{N}_{\mathrm{b}} \quad=k_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} h_{\text {ef }}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}$. .	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$.
1	2.375	0.000	0.000	2.250
$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ_{a}	$\mathrm{f}_{\mathrm{c}}[\mathrm{psi}]$
1.000	3.563	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec2,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\mathrm{cp}, \mathrm{N}}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
124.05	50.77	1.000	1.000	0.889	1.000	3,935

Results

$\mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\text {cpg }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
8,554	0.700	5,988	173

www.hilti.us
Profis Anchor 2.7.9
Company:
Page:
5
Specifier:
Project:
Address:
Phone I Fax:
E-Mail:

Sub-Project I Pos. No.:
Date:
11/19/2018

4.3 Concrete edge failure in direction x -

$$
\begin{aligned}
& V_{c b g}=\left(\frac{A_{V_{c}}}{A_{\mathrm{Vco}}}\right) \psi_{e c, V} \psi_{e d, V} \psi_{c, V} \psi_{\mathrm{h}, \mathrm{~V}} \psi_{\text {parallel, }, \mathrm{V}} \mathrm{~V}_{\mathrm{b}} \\
& \text { ACI 318-14 Eq. (17.5.2.1b) } \\
& \phi \mathrm{V}_{\mathrm{cbg}} \geq \mathrm{V}_{\mathrm{ua}} \\
& A_{V_{c}} \text { see } A C l \text { 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b) } \\
& A_{V C 0}=4.5 c_{a 1}^{2} \\
& \psi_{e c, V}=\left(\frac{1}{1+\frac{2 e_{v}^{\prime}}{3 c_{a 1}}}\right) \leq 1.0 \\
& \psi_{\text {ed, }, ~}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0 \quad \quad \text { ACl 318-14 Eq. (17.5.2.6b) } \\
& \psi_{h, V}=\sqrt{\frac{1.5 \mathrm{C}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0 \quad \text { ACI 318-14 Eq. (17.5.2.8) } \\
& V_{b}=\left(7\left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a 1}^{1.5} \quad \text { ACI 318-14 Eq. (17.5.2.2a) }
\end{aligned}
$$

Variables

$\mathrm{C}_{\mathrm{a} 1}$ [in.]	$\mathrm{C}_{\mathrm{a} 2}$ [in.]	e_{cV} [in.]	$\psi_{\mathrm{c}, \mathrm{V}}$	h_{a} [in.]
2.250	4.000	0.000	1.000	8.000
I_{e} [in.]	λ_{a}	d_{a} [in.]	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\psi_{\text {parallel, } \mathrm{V}}$
2.375	1.000	0.375	4,000	1.000

Calculations

$\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .^{2}\right]$	$\mathrm{A}_{\mathrm{Vco}}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\mathrm{ec}, \mathrm{V}}$	$\psi_{\mathrm{ed}, \mathrm{V}}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
32.06	22.78	1.000	1.000	1.000	1,324
Results					
$\mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$		
1,863	0.700	1,304	173		

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization $\beta_{N, V}[\%]$	Status
0.526	0.133	$5 / 3$	38	OK

$\beta_{\mathrm{NV}}=\beta_{\mathrm{N}}^{\zeta}+\beta_{V}^{\zeta}<=1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

> Fastening meets the design criteria!

Profis Anchor 2.7.9
www.hilti.us
6
mpany:
Page:
Project:
Address:
Phone I Fax:
Sub-Project I Pos. No.:
Date:
11/19/2018
E-Mail:

7 Installation data

Anchor plate, steel: - Anchor type and diameter: HIT-HY $200+$ HIT-Z-R 3/8
Profile: no profile
Hole diameter in the fixture (pre-setting) : $d_{f}=0.438$ in.
Installation torque: 177.015 in .lb
Hole diameter in the fixture (through fastening) : $\mathrm{d}_{\mathrm{f}}=0.500$ in.
Hole diameter in the base material: 0.438 in
Hole depth in the base material: 3.375 in.
Plate thickness (input): 0.375 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: No cleaning of the drilled hole is required
${ }^{\mathrm{R}}$ - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

7.1 Recommended accessories

Drilling	Cleaning	Setting
- Suitable Rotary Hammer	- No accessory required	• Dispenser including cassette and mixer
- Properly sized drill bit		- Torque wrench

Coordinates Anchor in.

| Anchor | \mathbf{x} | \mathbf{y} | $\mathbf{c}_{-\mathbf{x}}$ | $\mathbf{c}_{+\mathbf{x}}$ | $\mathbf{c}_{-\mathbf{y}}$ | $\mathbf{c}_{+\mathbf{y}}$ | | | Anchor | \mathbf{x} | \mathbf{y} | $\mathbf{c}_{-\mathbf{x}}$ | $\mathbf{c}_{+\mathbf{x}}$ | $\mathbf{c}_{-\mathbf{y}}$ | $\mathbf{c}_{+\mathbf{y}}$ |
| :---: |
| 1 | -3.375 | -1.375 | 2.250 | 12.750 | 4.000 | 6.750 | | 4 | -3.375 | 1.375 | 2.250 | 12.750 | 6.750 | 4.000 | |
| 2 | 0.000 | -1.375 | 5.625 | 9.375 | 4.000 | 6.750 | | 5 | 0.000 | 1.375 | 5.625 | 9.375 | 6.750 | 4.000 | |
| 3 | 3.375 | -1.375 | 9.000 | 6.000 | 4.000 | 6.750 | | 6 | 3.375 | 1.375 | 9.000 | 6.000 | 6.750 | 4.000 | |

Input data and results must be checked for agreement with the existing conditions and for plausibility!
PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hitti is a registered Trademark of Hilti AG, Schaan
www.hilti.us
Profis Anchor 2.7.9
Company:
Page:
Specifier:
Address:
Phone I Fax:
E-Mail:

Project:
Sub-Project I Pos. No.:
Date:
11/19/2018

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

$z_{z} x_{x}^{x}$		
Reameme		
Rice Engineering	Morse Industires Standoff Mounts	
JJW		Nov 19, 2018 at 5:12 PM
		0.75 hech Thick 3 t wider.r3

$z_{2} x_{x}^{*}$		
Rice Engineering	Morse Industires Standoff Mounts	
JJW		Nov 19, 2018 at 5:12 PM
		0.75 nenh Thick 3 t wide.3d

$z_{2} x_{x}^{x}$		
Lemen		
Rice Engineering	Morse Industires Standoff Mounts	Sk-1
JJW		Nov 19, 2018 at 5:10 PM
		0.75 nen Thick 3 t wide.3d

为		
max mis	Mose endusties Standof Mouns	
${ }_{\text {R }}$ Rice Evineeing		

$z_{z^{2}}^{2} e_{x}^{x}$		
Lement		
Rice Engineering	Morse Industies Standoff Mounts	
JJW		Nov 19, 2018 at 5:03 PM
		0.75 nen Thick 5 t wide. 3 .3d

Inputs:
WL := 10
psf (wind load)

Standoff Mounted Glass	Detail Ref.	Sheet No: B1

$P:=200$
lb (pointload)
$\mathrm{W}_{\mathrm{h}}:=4.17 \quad$ pli \quad (horizontal uniform load)
$\mathrm{h}:=46 \quad$ in \quad (height of rail above upper standoff)
$w:=46$
in (glass width)
$t:=0.63$
in (glass thickness)
Calculations: (Reactions from RISA 3D ÆEA Model)
Point Load:

$$
\begin{array}{lll}
\sigma_{\mathrm{p}}:=5990 \text { psi } & \sigma_{\text {all }}:=6000 \mathrm{psi} \\
\Delta_{\mathrm{p}}:=0.979 \text { in } & \Delta_{\text {all }}:=\frac{\mathrm{h}}{24}+\frac{\mathrm{w}}{96}=2.4 \quad \text { in }
\end{array}
$$

Uniform Load:

$$
\begin{array}{lll}
\sigma_{\mathrm{u}}:=5170 \text { psi } & \sigma_{\mathrm{al}}:=6000 \mathrm{psi} \\
\Delta_{\mathrm{u}}:=0.867 \text { in } & \Delta_{\text {mal }}:=\frac{\mathrm{h}}{24}+\frac{\mathrm{w}}{96}=2.4 \quad \text { in }
\end{array}
$$

Wind Load:

$$
\begin{array}{lll}
\sigma_{\mathrm{W}}:=2090 & \mathrm{psi} & \sigma_{\mathrm{al}}:=6000 \mathrm{psi} \\
\Delta_{\mathrm{W}}:=0.27 & \text { in } & \Delta_{\mathrm{Na}}^{\mathrm{L}} \mathrm{i}:=\frac{\mathrm{h}}{24}+\frac{\mathrm{w}}{96}=2.4 \quad \text { in }
\end{array}
$$

Reactions from Point Load:

$\mathrm{V}_{\mathrm{p}}:=72 \mathrm{lb}$
$\mathrm{T}_{\mathrm{p}}:=1415 \mathrm{lb}$

Reactions from Uniform Load:

$\mathrm{V}_{\mathrm{u}}:=72 \mathrm{lb}$
$\mathrm{T}_{\mathrm{u}}:=1199 \mathrm{lb}$

Reactions from Wind Load:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{W}}:=72 & \mathrm{lb} \\
\mathrm{~T}_{\mathrm{W}}:=496 & \mathrm{lb}
\end{array}
$$

NOTE: Under full design load, the rail will deflect about 1 ", this is acceptable per ASTM E2358 deflection limits. Customer please verify the deflection is acceptable.

GLASS :=	$\left\{\begin{array}{l} \text { "OK" if } \frac{\max \left(\sigma_{\mathrm{p}}, \sigma_{\mathrm{u}}, \sigma_{\mathrm{w}}\right)}{\sigma_{\text {all }}} \leq 1 \\ \text { "FAILS" otherwise } \end{array}\right.$	
RIC		105 School Creek Trail Luxemburg, WI 54217
	NEERING	Phone: (920) 617-1042 Fax: (920) 617-1100
Template:	REI-MC-5735	www.rice-inc.com

Inputs: \qquad

Standoff Mounted Glass	Detail Ref.	Sheet No: B1 A

e: $=2.0625$
in
(Eccentricity)
$D:=2 \quad$ in \quad (Diameter of Standoff)

Calculations:

$\mathrm{R}_{\mathrm{y}}:=\max \left(\mathrm{V}_{\mathrm{p}}, \mathrm{V}_{\mathrm{u}}, \mathrm{V}_{\mathrm{w}}\right)=72$	lb
$\mathrm{R}_{\mathrm{z}}:=\max \left(\mathrm{T}_{\mathrm{p}}, \mathrm{T}_{\mathrm{u}}, \mathrm{T}_{\mathrm{w}}\right)=1415$	lb

Chk Bolt into Standoffs:

$$
\begin{aligned}
& \underset{M}{V}:=R_{y}=72 \quad \mathrm{lb} \\
& \mathrm{TM}:=\frac{\mathrm{R}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D}}+\mathrm{R}_{\mathrm{z}}=1564 \quad \mathrm{lb} \\
& V_{\text {all }}:=1614 \quad \text { lb } \\
& T_{\text {all }}:=3100 \cdot \frac{0.25}{0.375}=2067 \quad \text { lb } \\
& \mathrm{I}:=\left(\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{all}}}\right)^{2}+\left(\frac{\mathrm{T}}{\mathrm{~T}_{\text {all }}}\right)^{2}=0.57<1.0
\end{aligned}
$$

$\frac{\text { Use 3/8" Dia. S.S. Flat Headed Threaded Rods }}{\text { (300 Series S.S., Cond. CW, Fy }=65 \mathrm{ks})}$
as shown 1/4" Thread Engagement

Chk Anchors into Concrete:

$\mathrm{V}_{2}:=\mathrm{R}_{\mathrm{y}} \cdot 1.6=115 \quad \mathrm{lb}$
$\mathrm{T}_{2}:=\left(\frac{\mathrm{R}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D} \cdot 0.85}+\mathrm{R}_{\mathrm{z}}\right) \cdot 1.6=2544 \quad \mathrm{lb}$
SEE HILTI PROFIS OR POWERS PDA DATA

Use 3/8" Dia. SS HIT-Z-R Rod w/ Hilti HIT-HY 200 or Equal

 300 Series Stainless SteelEmbedment: 2-3/8" Min.
Edge Distance: 2-1/4"
2nd Edge Distance: 4"
Spacing: 2-3/4" and 3-3/8"
Min. Slab Thickness: 8" $^{\prime \prime}$
Concrete Strength: $f c=4,000$ psi, Normal Wt. Cracked
Install per Manufacturer's instructions
Chk Anchors into Steel:

$$
\begin{aligned}
& \mathrm{V}_{3}:=\mathrm{R}_{\mathrm{y}}=72 \mathrm{lb} \\
& \mathrm{~T}_{3}:=\frac{\mathrm{R}_{\mathrm{y}} \cdot \mathrm{e}}{0.5 \cdot \mathrm{D}}+\mathrm{R}_{\mathrm{z}}=1564 \quad \mathrm{lb} \\
& \mathrm{~V}_{\mathrm{all} 3}:=1614 \quad \mathrm{lb} \\
& \mathrm{~T}_{\text {all }}:=3100 \quad \mathrm{lb} \\
& \mathrm{I}_{3}:=\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{\text {all3 }}}\right)^{2}+\left(\frac{\mathrm{T}_{3}}{T_{\text {all3 }}}\right)^{2}=0.26<1.0
\end{aligned}
$$

Use 3/8"-16 Dia. S.S. Threaded Rods
(300 Series S.S., Cond. CW, Fy = 65 ksi) 3/8" min. Thread Engagement Separate Dissimilar Metals as shown

RICE ENGINEERING	105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com	Project Description: Morse Industries Calculations	Job No: R18-05-167			
			Engineer:	JJW	Sheet No:	B1 A
			Date:	7/11/18	Rev:	
Template: REI-MC-5735			Chk By:		Date:	

Lag Bolts	Detail Ref.	Sheet No: B1B

Spruce Pine-Fir	penetration, in
$\mathrm{p}:=3$	$\mathrm{G}=0.42$
$\mathrm{t}_{\text {shim }}:=0.5$	maximum thickness of shim, in
$\mathrm{C}_{\mathrm{D}}:=1.6$	load duration factor, 10.3.2
$\mathrm{C}_{M}:=1.0$	wet service factor, 10.3.3
$\mathrm{C}_{\mathrm{t}}:=1.0$	temperature factor, 10.3.4
$\mathrm{C}_{\mathrm{g}}:=1.0$	group action factor, 10.3.6
$\mathrm{C}_{\Delta}:=1.0$	geometry factor, 11.5.1
$\mathrm{C}_{\text {eg }}:=1.0$	end grain factor, 11.5.2
$\mathrm{C}_{\mathrm{di}}:=1.0$	diaphragm factor, 11.5.3
$\theta:=90$	angle of Shear load to grain, degree

Calculations

$$
\begin{aligned}
& \mathrm{K}_{\theta}:=1+0.25 \cdot \frac{\theta}{90}=1.25 \quad \mathrm{R}_{\mathrm{e}}:=\frac{\mathrm{Fem}_{\mathrm{em}}}{\mathrm{~F}_{\mathrm{es}}}=0.07 \quad \mathrm{R}_{\mathrm{t}}:=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{s}}}=8 \\
& k_{1}:=\frac{\sqrt{R_{e}+2 \cdot R_{e}^{2} \cdot\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} \cdot R_{e}^{3}}-R_{e} \cdot\left(1+R_{t}\right)}{1+R_{e}}=0.24 \\
& k_{2}:=-1+\sqrt{2 \cdot\left(1+R_{e}\right)+\frac{2 \cdot F_{y b} \cdot\left(1+2 \cdot R_{e}\right) \cdot D_{r}^{2}}{3 \cdot F_{e m}{ }^{2} I_{m}^{2}}}=0.51 \\
& k_{3}:=-1+\sqrt{\frac{2 \cdot\left(1+R_{e}\right)}{R_{e}}+\frac{2 \cdot F_{y b} \cdot\left(2+R_{e}\right) \cdot D_{r}{ }^{2}}{3 \cdot F_{e m} \cdot \mathrm{Is}^{2}}} \\
& K_{D}:=\| \begin{array}{l}
2.2 \text { if } D_{r} \leq 0.17 \\
\text { otherwise } \\
\left\lvert\, \begin{array}{l}
10 \cdot D_{r}+0.5 \text { if } 0.17<D_{r} \leq 0.25 \\
0 \text { otherwise }
\end{array}\right.
\end{array} \\
& R_{\mathrm{d} 1}:=\left\lvert\, \begin{array}{ll}
\mathrm{K}_{\mathrm{D}} \text { if } \mathrm{D}_{\mathrm{r}} \leq 0.25 & =5 \\
4.0 \cdot \mathrm{~K}_{\theta} \text { if } 0.25<\mathrm{D}_{\mathrm{r}} \leq 1 \text { otherwise } &
\end{array}\right. \\
& R_{d 2}:=\left\lvert\, \begin{array}{ll}
K_{D} \text { if } \mathrm{D}_{\mathrm{r}} \leq 0.25 \\
3.6 \cdot \mathrm{~K}_{\theta} \text { if } 0.25<\mathrm{D}_{\mathrm{r}} \leq 1 \text { otherwise } & =4.5
\end{array}\right. \\
& R_{d 3}:=\left\lvert\, \begin{array}{ll}
K_{D} \text { if } D_{r} \leq 0.25 \\
3.2 \cdot K_{\theta} \text { if } 0.25<D_{r} \leq 1 \text { otherwise } & =4
\end{array}\right. \\
& \mathrm{Z}_{\mathrm{Im}}:=\frac{\mathrm{D}_{\mathrm{r}} \cdot \mathrm{I}_{\mathrm{m}} \cdot \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d} 1}}=450.22 \quad \mathrm{Z}_{\mathrm{Is}}:=\frac{\mathrm{D}_{\mathrm{r}} \cdot \cdot_{\mathrm{s}} \cdot \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} 1}}=854.63 \\
& Z_{I V}:=\frac{D_{r}{ }^{2}}{R_{d 3}} \cdot \sqrt{\frac{2 \cdot F_{e m} \cdot F_{y b}}{3 \cdot\left(1+R_{e}\right)}}=188.37
\end{aligned}
$$

$Z_{1}:=\min \left(Z_{\text {Im }}, Z_{\text {Is }}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I V}\right)=188.37$
$W_{1}=234.78$

$$
\begin{aligned}
& R_{\text {pos }}:=\sqrt{T_{\text {pos }}{ }^{2}+V_{\text {pos }}{ }^{2}}=411.18 \mathrm{lbf} \quad R_{\text {neg }}:={\sqrt{T_{\text {neg }}{ }^{2}+V_{\text {neg }}{ }^{2}}=411.18 \mathrm{lbf}}^{\alpha_{\text {pos }}:=\operatorname{atan}\left(T_{\text {pos }} \cdot V_{\text {pos }}{ }^{-1}\right)=88.33 \cdot d e g} \quad \alpha_{\text {neg }}:=\operatorname{atan}\left(T_{\text {neg }} \cdot V_{\text {neg }}{ }^{-1}\right)=88.33 \cdot d e
\end{aligned}
$$

Results

$$
\begin{array}{ll}
\mathrm{Z}^{\prime}:=\mathrm{Z}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{g}} \cdot \mathrm{C}_{\Delta} \cdot \mathrm{C}_{\mathrm{eg}} \cdot \mathrm{C}_{\mathrm{di}} \cdot \mathrm{lbf}=301.39 \mathrm{lbf} & \text { Allowable Shear } \\
\mathrm{W}^{\prime}:=\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{C}_{\mathrm{M}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{eg}} \cdot P_{t e n} \cdot \mathrm{lbf}=915.66 \mathrm{lbf} & \text { Allowable Tension }
\end{array}
$$

$$
\begin{array}{ll}
Z_{\alpha p o s}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{\text {pos }}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{\text {pos }}\right)\right)^{2}}=914.07 \mathrm{lbf} & \text { Intpos }:=\frac{R_{\text {pos }}}{Z_{\alpha p o s}}=0.45 \\
Z_{\alpha n e g}:=\frac{W^{\prime} \cdot Z^{\prime}}{W^{\prime} \cdot\left(\cos \left(\alpha_{n e g}\right)\right)^{2}+Z^{\prime} \cdot\left(\sin \left(\alpha_{n e g}\right)\right)^{2}}=914.07 \mathrm{lbf} & \text { Int } \quad
\end{array}
$$

Fastener = "3/8 in Lag Screw SS"
Predrill = "Predrill Holes at 40\%-70\% D" Penetration = "Verify Blocking Thickness" Material = "Spruce Pine-Fir"

RICE

ENGINEERING

Template:
REI-MC-7602

105 School Creek Trail Luxemburg, WI 54217 Phone: (920) 617-1042 Fax: (920) 617-1100 www.rice-inc.com

Project Description:
Morse Industries Calculations

Job No:			R18-05-167		
Engineer:	JJW	Sheet No:	B1B		
Date:	$7 / 11 / 18$	Rev:			
Chk By:		Date:			

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date:

Specifier's comments:

1 Input data

Anchor type and diameter:

Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:
Installation:
Reinforcement:

HIT-HY 200 + HIT-Z-R 3/8
$h_{\text {ef, opti }}=2.375 \mathrm{in} .\left(h_{\text {ef,limit }}=4.500 \mathrm{in}\right.$.)
A4
ESR-3187
3/1/2018 | 3/1/2020
Design method ACl 318-14 / Chem
$e_{b}=0.000 \mathrm{in}$. (no stand-off); $t=0.375 \mathrm{in}$.
$I_{x} \times I_{y} \times t=8.000$ in. $\times 4.000$ in. $\times 0.375$ in.; (Recommended plate thickness: not calculated no profile
cracked concrete, $4000, \mathrm{f}_{\mathrm{c}}{ }^{\prime}=4,000 \mathrm{psi} ; \mathrm{h}=8.000 \mathrm{in}$., Temp. short/long: $130 / 110^{\circ} \mathrm{F}$
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
${ }^{R}$ - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

Geometry [in.] \& Loading [lb, in.lb]

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.
Date:
12/5/2018

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	424	19	-19	0
2	424	19	-19	0
3	424	19	-19	0
4	424	19	-19	0
5	424	19	-19	0
6	424	19	-19	0

max. concrete compressive strain:

- [\%]
max. concrete compressive stress:
- [psi]
resulting tension force in $(x / y)=(0.000 / 0.000)$: $\quad 2,544[\mathrm{lb}]$
resulting compression force in $(x / y)=(0.000 / 0.000): \quad 0[\mathrm{lb}]$

Anchor forces based on a rigid base plate assumption!

3 Tension load

	Load $\mathbf{N}_{\mathrm{ua}}[\mathrm{lb}]$	Capacity $\boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}[\mathrm{lb}]$	Utilization $\boldsymbol{\beta}_{\mathbf{N}}=\mathbf{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}$	$\mathbf{S t a t u s}$
Steel Strength*	424	4,749	9	OK
Pullout Strength*	424	5,169	9	OK
Sustained Tension Load Bond Strength*	N / A	N / A	N / A	N / A
Concrete Breakout Strength**	2,544	5,560	46	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

$\mathrm{N}_{\mathrm{sa}}=\mathrm{ESR}$ value refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACI 318-14 Table 17.3.1.1

Variables

$\mathrm{A}_{\text {se,N }}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.08	94,200

Calculations

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$
7,306

Results

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7,306	0.650	4,749	424

3.2 Pullout Strength

$\mathrm{N}_{\mathrm{pn}}=\mathrm{N}_{\mathrm{p}} \lambda_{\mathrm{a}} \quad$ refer to ICC-ES ESR-3187
$\phi \mathrm{N}_{\mathrm{pn}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACI 318-14 Table 17.3.1.1

Variables

Calculations

\qquad

Results

$\mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
7,952	0.650	5,169	424

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.
Date: 12/5/2018

3.3 Concrete Breakout Strength

$N_{c b g}=\left(\frac{A_{N_{c}}}{A_{N c 0}}\right) \psi_{e c, N} \psi_{\text {ed,N }} \psi_{c, N} \psi_{c p, N} N_{b}$
$\phi \mathrm{N}_{\mathrm{cbg}} \geq \mathrm{N}_{\mathrm{ua}}$
$A_{\text {Nc }}$ see ACl 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A_{\mathrm{Nc} 0}=9 h_{\text {ef }}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
$\psi_{\mathrm{ed}, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \min }}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0$
$\mathrm{N}_{\mathrm{b}} \quad=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{h}_{\mathrm{ef}}^{1.5}$

ACI 318-14 Eq. (17.4.2.1b)
ACI 318-14 Table 17.3.1.1

ACI 318-14 Eq. (17.4.2.1c)
ACI 318-14 Eq. (17.4.2.4)

ACI 318-14 Eq. (17.4.2.5b)
ACl 318-14 Eq. (17.4.2.7b)
ACI 318-14 Eq. (17.4.2.2a)

Variables

$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$.	$\psi_{\mathrm{c}, \mathrm{N}}$
2.375	0.000	0.000	2.250	1.000

$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ_{a}	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
3.563	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nc} 0}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec } 2, \mathrm{~N}}$	$\psi_{\text {ed, } \mathrm{N}}$	$\psi_{\mathrm{cp}, \mathrm{N}}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
124.05	50.77	1.000	1.000	0.889	1.000	3,935

Results

$\mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
8,554	0.650	5,560	2,544

www.hilti.us
Profis Anchor 2.7.9
Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.
Date:
12/5/2018

4 Shear load

	Load V_{ua} [lb]	Capacity $\phi \mathrm{V}_{\mathrm{n}}$ [lb]	Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	19	2,630	1	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	115	5,988	2	OK
Concrete edge failure in direction $\mathrm{x}^{* * *}$	115	1,304	9	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

$V_{\text {sa }}=\left(0.6 A_{\text {se, }, ~} f_{\text {uta }}\right) \quad$ refer to ICC-ES ESR-3187

Variables

$\mathrm{A}_{\text {se, }, ~}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$	$\left(0.6 \mathrm{~A}_{\text {se, }, \mathrm{f}} \mathrm{f}_{\mathrm{uta}}\right)[\mathrm{lb}]$
0.08	94,200	4,384

Calculations
$\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]$

Results

$\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
4,384	0.600	2,630	19

4.2 Pryout Strength (Concrete Breakout Strength controls)

$\mathrm{V}_{\mathrm{cpg}}=\mathrm{k}_{\mathrm{cp}}\left[\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ec,N }} \psi_{\text {ed, } \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}\right] \quad \quad$ ACI 318-14 Eq. (17.5.3.1b)
$\phi \mathrm{V}_{\text {cpg }} \geq \mathrm{V}_{\text {ua }} \quad$ ACI 318-14 Table 17.3.1.1
$A_{\text {Nc }} \quad$ see $A C l ~ 318-14$, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A_{\mathrm{Nc} 0}=9 \mathrm{~h}_{\mathrm{ef}}^{2}$
ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-14 Eq. (17.4.2.4)
$\psi_{\mathrm{ed}, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{Ca}_{\mathrm{a}, \min }}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0 \quad \quad$ ACl 318-14 Eq. (17.4.2.5b)
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \min }}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACI 318-14 Eq. (17.4.2.7b)
$\mathrm{N}_{\mathrm{b}}=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{h}_{\mathrm{ef}}^{1.5} \quad$ ACI 318-14 Eq. (17.4.2.2a)

Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$.
1	2.375	0.000	0.000	2.250
$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ_{a}	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
1.000	3.563	17	1.000	4,000

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{NcO}}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec2,N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {cp,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
124.05	50.77	1.000	1.000	0.889	1.000	3,935

Results

$\mathrm{V}_{\mathrm{cpg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\mathrm{cpg}}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
8,554	0.700	5,988	115

Company:
Specifier:
Address:
Phone I Fax:
E-Mail

Page:
5
Project:
Sub-Project I Pos. No.
Date:
12/5/2018

4.3 Concrete edge failure in direction x -

$V_{c b g}=\left(\frac{A_{V c}}{A_{V c 0}}\right) \psi_{e c, V} \psi_{\text {ed, }, ~} \psi_{c, V} \psi_{\mathrm{h}, \mathrm{V}} \psi_{\text {parallel, }, ~} V_{b}$
$\phi \mathrm{V}_{\mathrm{cbg}} \geq \mathrm{V}_{\mathrm{ua}}$
$A_{V_{c}}$ see ACl 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)
$\mathrm{A}_{\mathrm{Vc} 0}=4.5 \mathrm{c}_{\mathrm{a} 1}^{2}$
$\psi_{e c, V}=\left(\frac{1}{1+\frac{2 e_{v}^{\prime}}{3 c_{a 1}}}\right) \leq 1.0$
$\psi_{\text {ed, }, ~}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0$
$\psi_{\mathrm{h}, \mathrm{V}}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0 \quad$ ACI 318-14 Eq. (17.5.2.8)
$V_{b}=\left(7\left(\frac{\mathrm{l}_{\mathrm{e}}}{\mathrm{d}_{\mathrm{a}}}\right)^{0.2} \sqrt{\mathrm{~d}_{\mathrm{a}}}\right) \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{c}_{\mathrm{a} 1}^{1.5}$

ACI 318-14 Eq. (17.5.2.1b)
ACI 318-14 Table 17.3.1.1

ACI 318-14 Eq. (17.5.2.1c)
ACI 318-14 Eq. (17.5.2.5)

ACI 318-14 Eq. (17.5.2.6b)

ACI 318-14 Eq. (17.5.2.2a)

Variables

$\mathrm{c}_{\mathrm{a} 1}$ [in.]	$\mathrm{c}_{\mathrm{a} 2}$ [in.]	e_{cv} [in.]	$\psi_{\mathrm{c}, \mathrm{V}}$	h_{a} [in.]
2.250	4.000	0.000	1.000	8.000
I_{e} [in.]	λ_{a}	d_{a} [in.]	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\psi_{\text {parallel, } \mathrm{V}}$
2.375	1.000	0.375	4,000	1.000

Calculations

$\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Vc} 0}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\mathrm{ec}, \mathrm{V}}$	$\psi_{\mathrm{ed}, \mathrm{V}}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
32.06	22.78	1.000	1.000	1.000	1,324

Results

$\mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi \mathrm{V}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
1,863	0.700	1,304	115

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization $\beta_{N, V}[\%]$	Status
0.458	0.088	$5 / 3$	29	OK

$\beta_{\mathrm{NV}}=\beta_{\mathrm{N}}^{\zeta}+\beta_{V}^{\zeta}<=1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.) This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

> Fastening meets the design criteria!
www.hilti.us

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date:

7 Installation data

Anchor plate, steel: -
Profile: no profile
Hole diameter in the fixture (pre-setting) : $\mathrm{d}_{\mathrm{f}}=0.438$ in.
Hole diameter in the fixture (through fastening) : $\mathrm{d}_{\mathrm{f}}=0.500 \mathrm{in}$.
Plate thickness (input): 0.375 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200 + HIT-Z-R 3/8
Installation torque: 177.015 in .lb
Hole diameter in the base material: 0.438 in
Hole depth in the base material: 3.375 in
Minimum thickness of the base material: 4.625 in.
${ }^{R}$ - user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...)

7.1 Recommended accessories

Drilling	Cleaning	Setting
- Suitable Rotary Hammer	\bullet No accessory required	• Dispenser including cassette and mixer
- Properly sized drill bit		- Torque wrench

Coordinates Anchor in.

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$			Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-3.375	-1.375	2.250	12.750	4.000	6.750		4	-3.375	1.375	2.250	12.750	6.750	4.000	
2	0.000	-1.375	5.625	9.375	4.000	6.750		5	0.000	1.375	5.625	9.375	6.750	4.000	
3	3.375	-1.375	9.000	6.000	4.000	6.750		6	3.375	1.375	9.000	6.000	6.750	4.000	

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
7
Project:
Sub-Project I Pos. No.
Date:

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.
${ }^{2}$

Rice Engineering		
JJW		Dec 5,2018 at $12: 54$ PM
		0.625 Inch Thick 3 ft wide. r 3 d

Results for LC 2, Interior Load
Reaction and Moment Units are lb and lb-in

Rice Engineering		
JJW		Dec 5,2018 at $12: 55$ PM
		0.625 Inch Thick 3 ft wide. r 3 d

x_{z}^{x}

Results for LC 3, 200
Reaction and Moment Units are lb and lb -in

Rice Engineering		
JJW		Dec 5,2018 at $12: 56$ PM
		0.625 Inch Thick 3 ft wide.r3d

R Eng

(l)

Results for LC 1, 50 psf
Reaction and Moment Units are lb and lb-in

Rice Engineering					
JJW					Dec 5,2018 at $12: 56$ PM
		0.625 Inch Thick 3 ft wide.r3d			

R Eng

