Mosh: An Interactive Remote Shell for Mobile Clients

Keith Winstein and Hari Balakrishnan
M.I.T. Computer Science and Artificial Intelligence Laboratory, Cambridge, Mass.
{keithw,hari}@mit.edu

Abstract

This paper describes Mosh, a mobile shell application
that supports intermittent connectivity, allows roaming,
and provides speculative local echo of user keystrokes.
Mosh is built on the State Synchronization Protocol,
a new UDP-based protocol that securely synchronizes
client and server state, even across client IP address
changes. Mosh uses SSP to synchronize a character-cell
terminal emulator. By maintaining the terminal state at
both client and server, the Mosh client predicts the effect
of user keystrokes and speculatively displays many of its
predictions without waiting for the server to echo.

For mobile clients, Mosh is considerably more usable
than the Secure Shell (SSH) protocol for two reasons.
First, unlike SSH, it maintains sessions across periods of
disconnection and changes in network address. Second,
by speculatively echoing keystrokes locally, Mosh im-
proves interactivity over high- or variable-delay network
paths.

Our evaluation analyzed keystroke traces from six
different users covering a period of 40 hours of real-
world usage and including 9,986 keystrokes. Mosh was
able to display immediately the effects of 70% of the
user keystrokes. Over a commercial EV-DO (3G) net-
work, median keystroke response latency with Mosh was
4.8 ms, compared with 503 ms for SSH. Mosh erred
in predicting the keystroke response 0.9% of the time,
but removed the error from the screen after at most one
round-trip time.

1 Introduction

The character-cell terminal is a venerable and wildly
popular interface for the remote use and administration
of networked computer systems. Dating back to the de-
velopment of TELNET [18] and SUPDUP [7, 23] in the
1970s, users have relied on text-based remote login pro-
tocols to control servers and supercomputers and access
faraway software and resources.

Nowadays, the prevalent approach is the Secure Shell
(SSH) protocol [25], which has been implemented for
all major architectures and operating systems, includ-
ing smartphones and tablets, running inside a terminal
emulator. Because the basic language for drawing text
and lines in a character terminal has not changed in over
twenty years [1], the remote terminal has become the lin-
gua franca among diverse computer systems on the Inter-
net.

System administrators use SSH to control servers,
routers, and almost every other piece of equipment in
a data center. Developers use SSH to access servers
in the “cloud.” Users rely on SSH for access to desk-
tops, databases, chat rooms, e-mail, and other remotely-
installed software. Much of this access now occurs
from mobile devices—including smartphones, tablets,
and laptops connected via Wi-Fi or cellular-based net-
works. There are several remote terminal applications
available in the stores for iOS and Android devices.

Unfortunately, SSH has two major weaknesses that
make it unsuitable for mobile use. First, because it uses
a single TCP connection, SSH does not support roam-
ing among IP addresses, intermittent connectivity while
data is pending, or marginal links with packet loss. A
laptop cannot switch Wi-Fi networks, or from Wi-Fi to a
cellular data connection, and expect to keep its connec-
tion. Nor can a smartphone travel in and out of range of
a carrier’s signal while maintaining an SSH session.

Second, SSH operates strictly in character-at-a-time
mode, with all echoes and line editing performed by the
remote host. On today’s commercial EV-DO and UMTS
(3G) mobile networks, round-trip latency is typically in
the hundreds of milliseconds when unloaded, and on
both 3G and LTE (pre-4G) networks, delays reach sev-
eral seconds when buffers are filled by a contemporane-
ous bulk transfer. Such delays often make SSH painful
for interactive use on mobile devices.

This paper describes a solution to both problems. We
have built Mosh, a mobile shell application that sup-
ports IP roaming, intermittent connectivity, and marginal
network connections, and performs predictive client-side
echoing and line editing without any change to server
software, and without regard to which application is run-
ning on the server. Mosh makes remote servers feel more
like the local computer, because most keystrokes are re-
flected immediately on the user’s display—even in full-
screen programs like a text editor or mail reader.

These features are possible because Mosh operates at
a different layer from SSH. While SSH securely con-
veys an octet-stream over the network and then hands it
off to a separate client-side terminal emulator to be inter-
preted and rendered in cells on the screen, Mosh contains
a server-side terminal emulator and uses a new protocol
to synchronize terminal screen states over the network.
Because both the server and client maintain an image of
the screen state, Mosh can support disconnected opera-
tion and predictive client-side local editing.

Figure 1: Mosh in use.

[mosh] keithw@trolley: ~/wtcp/doc/mobisys11
mozh: semdto: Network is unreachable (14 s without contact,) [To quit: Ctrl—"]

\documentclass{ +

- in a while

Ull-3+5——F1 test.tex

A1l 111 (LaTeX

Because the server can skip past intermediate screen
states, the system can adjust its network traffic so as not
to fill up network buffers on slow links. By contrast, SSH
has to send all application data because it does not know
what effect any byte will have on the client’s state. As a
result, unlike in SSH, in Mosh “Control-C” always works
to cease a runaway server-side process within an RTT.

Mosh’s design makes two principal contributions,
based on important principles that could apply to other
applications:

1. State Synchronization Protocol, or SSP: A new
secure object synchronization protocol on top of
UDP to synchronize abstract state objects between
a local and remote host in the presence of roaming
and intermittent connectivity.

2. Speculation: Mosh has a “split” terminal emulator
that maintains images of the screen state at both the
server and client and uses the above protocol to syn-
chronize them. The client is free to make guesses
about the effect a new keystroke will have on the
screen state and when confident will render such ef-
fects immediately. After one RTT, the client can
check if its speculation was correct and can repair
the screen state if it made a mistake.

We have implemented Mosh in C++ for Linux
and Unix-like systems and have experimented with it
across various wireless networks and across discon-
nections. Mosh is free software and is available at
http://mosh.mit.edu. An example of Mosh’s inter-
face is shown in Figure 1.

We describe SSP in Section 2. Section 3 discusses the
split terminal emulator and speculative local echo proce-
dure. In Section 4, we present experimental results on
the accuracy of Mosh’s predictions and the resulting im-
provement in interactivity over commercial cellular net-
works.

2 State Synchronization Protocol

The design of Mosh reflects our assumptions about the
user’s desired behavior from a mobile shell application.
Figure 1 shows a typical use case for the application: the
user in a full-screen editor window working on a doc-
ument. We treat the problem of conveying the screen
state from server to client almost as we would a video-
conference: the goal is to convey the most recent state of
the screen to the client. (The reverse direction is more
restricted because the client must send every keystroke
typed to the server.)

To illustrate the consequences of this decision, if the
user is playing an ASCII animation and the connection
drops for five minutes, after resuming we assume the user
is only interested in the current frame on the screen—not
all the intermediate frames that the terminal displayed in
the meantime.

This choice is appropriate for tasks like editing a doc-
ument or using an e-mail or chat application, which con-
trol the entire screen and provide their own means of nav-
igation through a document or chat session. But it causes
trouble for a task like “cat”-ing a large file to the screen.
If the connection drops in the middle of the cat, upon
resume the user will see only the lines contained on the
screen near the end of the file, and will not have the rest
of the file in their local terminal’s scrollback buffer. We
think that this behavior is reasonable in most cases; our
design favors interactive response over ordered delivery
of all the “older” updates.

If these semantics were a problem, the user could use
either a full-screen application that maintains its own
buffer and means of navigation, e.g., a pager such as
less or more, or can use the screen or tmux utilities,
which are essentially pagers for the entire terminal and
maintain a navigable scrollback buffer on the server side.

2.1 Protocol design goals

Underlying Mosh is SSP, a lightweight, datagram-based
protocol to synchronize the state of abstract objects be-
tween a local node, which controls the object, and a re-
mote host that may be only intermittently connected.
The Mosh system runs two instances of this protocol,
one in each direction, instantiated on two different kinds
of objects. From client to server, the objects being syn-
chronized represent the history of the user’s input. That
input comes in two forms: keystrokes and requests to re-
size the terminal window. From server to client, the ob-
jects represent the current state of the terminal window.
SSP’s design goals were to:

1. Leverage existing infrastructure for user and host
authentication and login, e.g., SSH.

2. Not require any privileged code.

3. Atany given time, take the action best calculated to
fast-forward the remote host to the sender’s current
state.

4. Accommodate a roaming client whose public IP ad-
dress changes, without the client’s having to know
that a change has happened.

5. Preserve the confidentiality and authenticity of the
session against an active attacker in the network.

6. Recover from any sequence of dropped or reordered
packets, no matter how long the connection has
been interrupted.

We use the existing infrastructure for authenticating
hosts and users. To bootstrap an SSP connection, the
user first logs in to the remote host using conventional
means, such as SSH or Kerberos. From there, the user
or her script runs the server: an unprivileged process that
chooses a random shared encryption key and begins lis-
tening on a UDP port. The server conveys the port num-
ber and key over the initial connection back to the client,
which uses the information to start talking to the server
over UDP.

Because Mosh does not use any privileged code and
doesn’t authenticate users, its security concerns are sim-
plified. Mosh only needs to ensure the confidentiality
and authenticity of a single terminal session running be-
tween two processes started by the same unprivileged
user.

SSP is organized into three modules. A cryptographic
module provides confidentiality and authenticity of ar-
bitrary messages. A datagram layer sends UDP packets
over the network. And a “transport” layer is responsible
for conveying the current object state to the remote host
in an efficient manner. It can be instantiated to synchro-
nize any object that supports a particular interface.

2.2 Cryptographic Module

The security of the system is built on AES-128 in the
Offset Cookbook (OCB) mode [11], which provides con-
fidentiality and authenticity with a single 128-bit secret
key. We use Krovetz’s optimized reference implementa-
tion.

OCB requires that each plaintext be paired with a
unique 128-bit nonce over the life of the encryption key.
We use an incrementing 63-bit sequence number and di-
rection flag for this purpose. That is enough to guarantee
that each packet successfully received was sent by the
remote host at some point.

To handle reordered and repeated packets, SSP relies
on the principle of idempotency. Each datagram sent

Figure 2: Datagram format

Name | Format | Purpose

Direction bool High bit of nonce

seq 63-bit uint | Increments with every outgoing packet.
timestamp 16-bit uint | Lower 16 bits of ms timer.
timestamp._reply 16-bit uint | Last timestamp received.

payload string From transport layer.

to the remote site represents an idempotent operation at
the recipient—a “diff” instructing the remote site how to
construct state m from some prior state n < m. As a re-
sult, unlike Datagram TLS and Kerberos, SSP does not
need to maintain a replay cache or other message history
state, simplifying the design and implementation.

2.3 Datagram Layer

The datagram layer maintains the encrypted connection
to the remote host. It accepts opaque payloads from the
transport layer, places them in packets, delivers the pack-
ets to the cryptographic layer, and sends the resulting ci-
phertext as the payload of a UDP datagram. It is respon-
sible for estimating the timing characteristics of the net-
work path and keeping track of the client’s current public
IP address and port number.

The datagram format is shown in Figure 2. All integers
are in network byte order. The seq field increments with
every outgoing packet. Together the Direction and seq
form the nonce, ensuring that we do not repeat the same
nonce-key combination.!

Client roaming. The client’s datagram layer maintains
the same socket address for the server throughout the life
of the connection. Thus, the server is not permitted to
roam. However, the client is permitted to change its IP
address (and public port number, e.g. if it has roamed to
or from a NAT). The server’s datagram layer maintains
the current socket address of the client. Whenever an
authentic datagram arrives at the server from the client
with a sequence number greater than any previously re-
ceived, the server stores the packet’s source address and
port number as the client’s new socket address.

As a result, client roaming happens automatically,
without the client’s necessarily even knowing that it has
changed public IP addresses. It is the responsibility of
the transport layer to send occasional heartbeats to make
sure the server is informed of the client’s new address
even if no data are pending.

Because the server considers only packets with se-
quence numbers that surpass the greatest previously re-
ceived, the roaming operation is invariant to reordering

!In the unlikely event that the 63-bit packet sequence number rolls
over, the connection is terminated.

and an attacker cannot confuse the server by replaying
an old packet from an old client address.”

Estimating round-trip time (RTT) and RTT varia-
tion. The datagram layer is also responsible for esti-
mating the smoothed round-trip time (SRTT) and RTT
variation (RTTVAR) of the connection,

When sending a datagram, SSP puts a millisecond
timestamp into the timestamp field. If it has received a
timestamp from the remote site within the last second, it
encodes the timestamp_reply field with a copy of that
most-recently-received timestamp, adjusted forward for
how long it has been since it received the timestamp.

Because every datagram has a unique sequence num-
ber, unlike with TCP there is no ambiguity between the
timestamps of different datagrams where one may be a
retransmission of the same payload.

On receipt of a timestamp_reply, SSP updates its
RTT and RTTVAR estimates using the equations from
TCP [15]. It ignores out-of-sequence datagrams.

SSP also calculates a retransmission timeout using the
same formula as TCP, but alters the lower limit from 1
second to 50 ms. In an interactive session, the timeout
is generally the only mechanism that detects a dropped
packet. Because there is typically only a small amount
of data pending at a time, TCP will not receive a triple
duplicate acknowledgment to inform it of packet loss.
Thus, because of the lower limit on RTO, SSH cannot
usually detect a dropped keystroke faster than within one
second, irrespective of RTT, making it perform poorly on
paths with non-trivial packet loss rates.

2.4 Transport Layer

The transport layer is responsible for synchronizing the
current contents of the local state to the remote host and
vice versa.

The implementation is divided into two parts: the
sender and receiver. Each instance includes one of each.
For example, in Mosh, the server is the sender for screen
states and the receiver for user input. The client is the
sender for user input and the receiver for screen states.

SSP itself is agnostic to the type of objects sent and
received. An object to be conveyed must only support
the four-function interface shown in Figure 3.

Transport sender behavior

The transport sender is implemented as an event-driven
automaton. When woken up, its goal is to bring the re-
ceiver from its current opinion of the receiver’s state to

2We do not prevent against a denial-of-service attack where an ac-
tive attacker intercepts packets and resends them under its own IP ad-
dress to fool the server’s roaming detection. Such an attack would not
compromise the confidentiality of the connection but would disrupt it.

Figure 3: Transport state object interface

Method

string diff_from(Obj)
apply_string(string)
bool operator==(0Obj)
subtract(Obj)

| Purpose
Find difference between two objects.
Apply diff to object.
Compare for equality.
Remove common prefix.

Figure 4: Transport Instruction (protocol buffer)

Name | Format | Purpose
old-num variable uint | Reference state
new_num variable uint | diff brings reference to this target

ack_num variable uint | Latest state received
throwaway_num | variable uint | Oldest state receiver must save
diff string Input to apply-string()

the actual state of the object. It does this by sending an
“Instruction”: a self-contained document that describes
the identify of the source and target states and the bi-
nary difference (diff) required to get the receiver from
source to target.

Instructions represent idempotent operations on the re-
ceiver: no matter how many times the diff from one
state to the next is received, it can only do the same thing
each time. The format is described in Figure 4. When the
length of an instruction exceeds 1,400 bytes, the trans-
port sender fragments it before passing to the datagram
layer.> A trial instruction, with an empty diff, serves as
an acknowledgment without accompanying data.

Which instruction to send?

When preparing a new instruction to update the receiver,
the target state is foreordained: it’s the most recent state
of the object to be synchronized. But the source state
is a different story. In the presence of packet loss, the
transport sender does not know the current state of the
receiver, and therefore cannot know the most appropriate
state to serve as a reference for the diff.

Instead, the transport sender and receiver cooperate to
give each other options. The sender maintains a rolling
list of the states it has told the receiver how to create, and
the receiver keeps a rolling list of the states it has been
able to construct, any of which can serve as the reference
for an incoming instruction.

In the receiver’s own instructions to the sender, it
includes an acknowledgment of the greatest-numbered
state it has been able to construct. The highest-numbered
acknowledgment received by the sender becomes the
known receiver state. The sender discards its copy of
states it has sent prior to the known receiver state from
the rolling list. In its own outgoing instructions, the

3Originally, SSP used path MTU discovery to find the fragment
size. In testing, we found several home Internet connections with sub-
1,500 MTUs that did not support PMTU discovery, so SSP now sends
fragmentable IP datagrams with a maximum length of 1,400 bytes.

sender includes the known receiver state as the “throw-
away number,” telling the receiver to discard all states
older than it.

The known receiver state can always serve as the refer-
ence for the sender’s next instruction. However, it would
not be efficient to keep using the known receiver state
as the reference for all instructions until a new state is
explicitly acknowledged. Ideally, instructions arriving in
series would build on each other instead of each repeat-
ing longer and longer diffs from a faraway reference.

Instead, the transport sender assumes that any instruc-
tion it sent recently enough will eventually be received
and can serve as the reference state for its next instruc-
tion. How recent is enough? This is the purpose of the
retransmission timeout. The most recent state for which
the RTO has not yet expired is known as the assumed re-
ceiver state. It is this state that the transport layer uses as
the basis for its instruction.

If the sender drops out of contact with the receiver for
too long and its list of sent states after the known receiver
state grows to more than 32, the sender begins discarding
states to save memory. When the receiver returns, the
sender can always use the known receiver state as the
reference for the next instruction.

Transport sender timing

Because the goal of Mosh is to produce a mobile remote
shell that makes foreign hosts feel as responsive as the
local computer, great attention was paid to timing sub-
tleties in the implementation.

The transport sender uses a number of timers to behave
efficiently. The “framerate interval” between instructions
sent to the receiver is set at half the smoothed RTT esti-
mate, constrained to lie between 250 ms (a 4 Hz frame
rate) and 20 ms (50 Hz). As a result, there is about one
instruction in flight to the receiver at a time. Network
buffers do not fill up and increase latency, even when a
process goes haywire and floods the terminal.

This rate control strategy is what allows Control-C and
other interrupt sequences to work consistently on “run-
away” programs with Mosh. On some existing systems,
such as TELNET and RLOGIN [10], the TCP urgent fea-
ture is used to signal interrupts to the remote side. This
provides a partial solution to runaway processes, as the
urgent-data pointer can leapfrog host buffers on the end-
points, but doesn’t leapfrog network queues. SSH does
not use the urgent feature and is susceptible to runaway
processes.

The transport sender uses delayed acks, similar to
TCP, to cut down on excess packets. After receiving an
instruction from the other side of the connection, it waits
up to 100 ms to acknowledge it, in the hope that it will
have its own data to send in reply on which the ack can

piggyback. When sending a delayed ack, the sender ad-
justs the reply timestamp contained in the datagram to
account for the time the acknowledgment was delayed,
so the practice does not confuse the remote party’s RTT
estimate.

The sender also delays its own outgoing instructions
up to 15 ms from the first time its object has changed,
in order to collect future updates that may be following
in close succession. We assume that these updates tend
to clump together (for example, a string being written
to the terminal), and it would be wasteful to send off an
instruction containing only the first byte of a long string.
Additionally, because the next instruction will have to
wait at least the full framerate interval (which can be up
to 250 ms), a failure to pause to collect all the proximate
updates can result in a larger delay overall.

The sender wakes up to send a heartbeat at least every
3 seconds if it hasn’t sent a packet for other reasons. This
allows the server to learn when the client has roamed to a
new IP address, and it lets the client warn the user when
it hasn’t heard from the server in a while. It also keeps
the connection open when the client is behind a network
address translator.

Transport receiver behavior

Upon receiving an instruction, the receiver searches for
the reference state in its own rolling list of received
states, and applies the diff to produce the target state,
which it saves. If the target state ID is greater than any
state the receiver has previously constructed, the target
becomes the receiver’s new image of the sender’s state,
and the receiver discards all saved states earlier than the
throwaway_num given in the instruction. The sender
must not use a state earlier than the throwaway_num as
the reference for a future instruction.

3 A Remote Terminal with Speculative
Local Echo

To support the Mosh application, we implemented a ter-
minal emulator from scratch that obeys the SSP state-
synchronization interface (Figure 3). The client sends all
keystrokes to the server, which applies them and main-
tains the authoritative reference of the terminal state,
which it in turn synchronizes back to the client.

The client also takes the opportunity to intelligently
guess the effect that local keystrokes will have on the ter-
minal, and in most cases can speculatively apply such
keystrokes immediately. The client observes the suc-
cess of its predictions to decide how confident to be and
whether to actually display the predictions to the user.
(When predictions are outstanding for more than 100 ms,
we underline them so the user does not become misled.)

Occasional mistakes can be removed within an RTT and
do not cause lasting effect.

Although the same network protocol is run in both di-
rections, the client-to-server and server-to-client connec-
tions have different semantics because the objects syn-
chronized in each direction have different implementa-
tions of diff from(). The client-to-server states rep-
resent the history of keyboard input, and diff from()
gives the keystrokes typed in between the two states.
Nothing is omitted. = The server-to-client synchro-
nized objects represent the state of the screen, and
diff from() gives the shortest sequence that conveys
the terminal between two states, possibly skipping over
intermediate screen states.

3.1 Implementing the terminal emulator

Mosh’s terminal emulator implements the subset of
the ECMA-48/ANSI X3.64 language [1] used by
typical terminal emulators, including the xterm,
gnome-terminal, Terminal.app, and PuTTY pro-
grams for X11, OS X, and Windows. This protocol was
popularized by Digital Equipment Corp. in the 1970s and
80s and specifies a series of escape sequences to move
the cursor around, render characters in bold, underline,
and various foreground and background colors, erase ar-
eas of the screen, set and remove tab stops, sound the
teletype bell, define subregions of the screen as scrolling
areas, change the title of the window, etc. The protocol
is bidirectional; the host can query the terminal for its
current character position and ask it to identify itself.

The terminal manipulates the screen state, which is the
object conveyed with the State Synchronization pPoto-
col. Formally, the screen state includes (1) the window
title and (2) a framebuffer containing the contents of the
window.

The framebuffer in turn consists of:

e A width and height.
e A array of rows, with length equal to the height.

e The current cursor position and visibility.

A row contains (1) an array of cells with length equal
to the width, and (2) a flag indicating whether the row
wraps over to the next line. The latter is important for
copy-and-pasting so the local terminal can know whether
copied text should include a carriage return at the end
of the row and whether a double-click should select a
contiguous word spanning the wrap.

Each cell contains:

e An array of Unicode scalar values, representing a
combining character sequence. For example, the

13

letter “a” may have several accents and other dia-
critic marks attached to it, each accent represented
with a Unicode code point.

e A width indicating whether the cell takes up one
or two columns of the terminal. Many Chinese,
Japanese, and Korean characters scripts take up two
cells.

e A bitmap of “renditions” indicating how the charac-
ter should be displayed: bold, underlined, blinking,
inverse-video, invisible.

e A numeric foreground and background color as
specified by the ECMA-48 standard.

Implementing a terminal emulator to alter this screen
state in response to input from the host application was
largely straightforward and followed the lines of many
similar implementations, but there were a number of
deep subtleties involving the correct use of Unicode on
POSIX-like systems, including Mac OS X and Linux.
Mosh corrects a number of bugs and design problems en-
countered when using SSH on those systems (see §3.3).
Before describing our implementation of these issues, we
describe how Mosh speculatively echoes keystrokes lo-
cally to improve interactivity.

3.2 Speculative local echo

Because Mosh operates at the terminal emulation layer
and maintains an image of screen state at both the server
and client, it is possible for the client to make predic-
tions about the effect of user keystrokes and later verify
its predictions against the authoritative screen state com-
ing from the server.

Most Unix applications operate essentially identically
in response to user keystrokes. In most cases, they either
echo it at the current cursor location or they don’t echo at
all. As aresult, it is possible to approximate a local user
interface for arbitrary remote applications. We use this
technique to boost the perceived interactivity of a Mosh
session over a high-latency network connection or one
with packet loss.

Our general strategy is for the Mosh client to make
predictions in the background whenever the user hits a
keystroke. These predictions are only shown to the user
when they have been confirmed—meaning that a letter
we hypothesized to appear in a particular cell did appear
there. At that point, we can start showing our predic-
tions to the user immediately, but only for the current
row of the terminal and only until the user does some-
thing that causes us to lose confidence. The speculative
engine must prove itself anew on each row of the termi-
nal before showing its predictions to the user.

To achieve this, the Mosh client maintains three state
variables:

1. The current “prediction epoch,” an integer that rep-
resents a family of predictions that will live or die
together (for example, when the user starts typing
on a new line and we are not sure whether all the
characters will be echoed or none will).

2. The current “confirmed epoch,” an integer that cor-
responds to the most recent epoch that includes at
least one prediction that has been verified to be cor-
rect.

3. An array of predicted overlay cells and cursor loca-
tions, indicating predictions for what we think the
server will put in certain cells on the screen. Each
such prediction contains:

(a) its prediction epoch, and

(b) the local state ID that first includes the
keystroke that formed this prediction. After
the server has acknowledged this state, we can
check if the prediction was correct.

The strategy is to update the speculative cursor loca-
tion locally, moving it to the right on each keystroke and
wrapping at the margin. When the user hits a key, we
make a prediction that the key will be echoed at the pre-
dicted cursor location. We also handle the backspace key
and left- and right-arrow keys locally.

Some events cause the server to become tentative in
its predictions—in other words, to increment the predic-
tion epoch. For example, when the user hits a control
character such as carriage return, an up- or down-arrow
key, or the tab character, or wraps to a new line, we don’t
know whether the server will continue its current behav-
ior. The user might have typed “ssh remotehost” and a
carriage return, and the server has replied with “Pass-
word:” and has turned off echoing. We do not want to
echo the user’s characters in that case. By increment-
ing the prediction epoch, we can continue to make pre-
dictions in the background along what we think is the
server’s most likely course, but this new epoch of predic-
tions will only be displayed to the user when the first of
them has been confirmed.

Upon receipt of a new instruction from the server, the
client checks its past predictions to see how well it did.
Any prediction whose corresponding keystroke was in-
cluded in outgoing transport state n should be reflected
on the screen by the time the server is acknowledging
having received state n from the client. (Because of de-
layed acks, the server’s echo generally arrives in the same
instruction as its acknowledgment.)

If a prediction turned out to be incorrect, we erase all
predictions made in the same prediction epoch. If a pre-
diction was correct, we advance the “confirmed epoch”
to the prediction epoch of the confirmed prediction. At
this point, we show the rest of the predictions made in
that epoch to the user.

We find that Mosh can display immediately the effects
of more than two thirds of user keystrokes in typical use
and dramatically improves the perceived responsiveness
of the remote terminal over a mobile connection.

3.3 The challenge of Unicode

Unicode has become commonplace in representing
coded characters in a computer system, especially on the
Web, but we found that its implementation in a character
terminal was not straightforward. This section summa-
rizes the most significant issues we encountered in our
implementation of Mosh and how we resolved them.

On POSIX systems, the TERM environment variable
typically corresponds to an entry in a terminfo database
that specifies the particular set of escape sequences rec-
ognized by the terminal emulator (e.g., vt220 includes
many sequences not recognized by a vt100, and xterm
includes many more capabilities). Mosh uses the xterm
TERM type.

The TELNET protocol uses the TERMINAL-TYPE
option [24] to convey the local terminal type to the re-
mote host so that it can send the appropriate control
sequences. The SSH protocol sends the TERM environ-
ment variable during the connection initialization (§ 6.2
of [26]).

Formally, the lowest layer of the protocol interpreter
is a finite state machine whose input sequence is a se-
ries of 8-bit values. Because the ECMA-48 standard
does not fully specify the behavior of this state machine
in the presence of pathological inputs, we implemented
the state machine of a DEC VTS500 terminal reverse-
engineered and documented by Paul Williams.*

Between about 1998 and 2003, popular terminal emu-
lators began to support internationalized text in the UTF-
8 character encoding scheme. To extend the ECMA-48
framework to support UTF-8, xterm and other programs
effectively modified the underlying state machine to op-
erate on Unicode scalar values encoded in UTF-8 instead
of on 8-bit quantities.

This transition did not necessarily happen rigorously,
and terminal emulators today disagree about how to in-
terpret various pathological sequences and when to apply
normalization rules (see Figure 5).

Terminal authorities also disagree about whether the
move to UTF-8 should disable ISO 2022 shift sequences,

“http://vt100.net/emu

Figure 5: Unicode disagreements

Four distinct interpretations of the same UTF-8 sequence from four
terminal emulators, because of disagreement about when to apply nor-

malization rules and where to apply diacritics after cursor motion.

r M

24nHello"

$ echo -e "xyz\033[2;2H\0314\0202\nHello"
xyz

Hello

s

M ™ ™ Terminal — bash — 42x5

% echo -e "xyzWE33[2;2HWEIL44A2A2 \He L Lo =]
xello

which switch the terminal from text mode into a palette
of graphics characters. The historic problem with the
use of ISO 2022 was that it used “locking” shift se-
quences, so a single misbehaving program can put the
terminal permanently into hieroglyphs until the user re-
sets it. UTF-8 is a self-synchronizing encoding that
makes shift sequences unnecessary, theoretically immu-
nizing the terminal to this problem. However, some ap-
plications continue to emit ISO 2022 sequences to draw
lines and symbols on the screen. As a result, most popu-
lar terminal emulators continue to support these locking
shift sequences.

The treatment of wide characters (e.g., Chinese,
Japanese, and Korean characters that take up two
columns) is another problem area. One difficult case
concerns a two-cell wide character that arrives in the last
column of the screen. Should the terminal wrap the en-
tire character to the next row (since a two-cell character
won’t fit in the last cell) and then display it? Or should it
display the left half of the character in the last cell? We
found that xterm 271 exhibits both behaviors, depending
on the timing of the received characters and how they are
chunked across calls to read ().

In implementing Mosh, we attempted to follow the
prevailing convention when there was one, and otherwise
define and follow consistent behavior that we believe is
most sensible. In practice, Mosh has good compatibil-
ity with existing terminal emulators on non-pathological

Inputs.

We also attempted to cut the Gordian knot of two vex-
ing issues concerning the implementation of Unicode on
POSIX systems: communicating the character encoding
across the network, and handling the kernel’s need to
know the encoding.

Communicating the encoding across the network

In moving to UTF-8, the TERM environment variable re-
tained the same values. To express the difference be-
tween an 8-bit vt220 and a UTF-8 vt220, today’s sys-
tems use the locale functionality of the ISO C and IEEE
POSIX standards. For example, on a current Mac OS
X or Linux system, a user will typically have a TERM
environment variable of xterm or xterm-color and a
LANG environment variable of en_US.UTF-8.

This creates two challenges to a remote shell ap-
plication. First, the LANG environment variable now
needs to be conveyed over the connection to the remote
side.> Second, to receive the correct character encoding
through the connection, the remote host must now sup-
port not only the UTF-8 character, set, but the particular
language dialect of the local user.

For example, SSH connections from a British user
(with LANG set to en_GB.UTF-8) to an American’s
computer often do not work properly and can pro-
duce garbage on the screen, because the en_GB lo-
cales are typically not built on American installations.
When the locale cannot be found, applications default
to the C/POSIX default locale, whose character set is
U.S. ASCII. This leads to incorrect results even when
UTF-8 is supported by the remote host.

Such issues can become fiendishly difficult to debug
when there are several layers of terminal emulation in the
mix; for example, a GNU screen process. Mosh avoids
confusing the user by simply refusing to start up unless
the local and remote hosts both use the UTF-8 charac-
ter set in the current native locale (recall that Mosh typ-
ically inherits a session initialized by SSH). This avoids
a substantial number of hard-to-debug misconfigurations
at the expense of some pain upfront to properly configure
a UTF-8-clean environment.

Informing the kernel of the encoding

Another difficulty with the use of the LANG environment
variable to signal the presence of UTF-8 is that environ-
ment variables are not available to the kernel. In a typical
POSIX system, the kernel also needs to know the charac-
ter encoding, because when the terminal is in “cooked”

3SSH is typically now configured to do this as part of a separate
environment-variable exchange that occurs in addition to the manda-
tory TERM field.

mode, the tty driver itself processes delete characters by
erasing the previous character before it is read by an ap-
plication.

To do this, the kernel needs to know how many bytes to
delete in the input buffer, which means it needs to be able
to interpret the incoming character sequence. POSIX
does not provide a facility to convey this information to
the kernel, but Mac OS X and Linux both use the IUTF8
termios flag to instruct the kernel to interpret incoming
text as UTF-8.

Unfortunately, there is no standardized mechanism to
convey the IUTF8 flag over a remote terminal connec-
tion, and SSH does not do this. As a result, today, nei-
ther Mac OS X nor Linux properly handles the case of
typing and then deleting a UTF-8 character over an SSH
connection. If the last character has a UTF-8 encoding
longer than one byte, the operating system deletes it on
the screen but produces an invalid UTF-8 sequence in
memory or on disk. Mosh corrects this by setting [UTF8
on the server side and using raw mode on the client side.

4 Results

We evaluated Mosh using traces contributed by six users,
covering about 40 hours of real-world usage and includ-
ing 9,986 total keystrokes. These traces included the
timing and contents of all writes from the user to the
host and vice versa. The users were asked to contribute
“typical, real-world sessions.” In practice, the traces in-
clude use of popular programs such as the bash shell
and zsh shells, the alpine and mutt e-mail clients, the
emacs and vim text editors, the irssi and barnowl chat
clients, the 1inks text-mode Web browser, and several
programs unique to each user.

To evaluate typical usage of a “mobile” terminal, we
replayed the traces over an otherwise unloaded Sprint
commercial EV-DO (3G) cellular Internet connection in
Cambridge, Mass. A client-side process played the user
portion of the traces, and a server-side process waited for
the expected user input and then replied (in time) with
the prerecorded server output. We speeded up long peri-
ods with no activity. The average round-trip time on the
link was about half a second.

We replayed the traces over two different remote shell
applications, SSH and Mosh, and recorded the user inter-
face response latency to each simulated user keystroke,
as seen by the user. The Mosh predictive algorithm and
SSP were frozen prior to collecting the traces and were
not adjusted in response to their contents or results.

The cumulative distributions of keystroke response
time are shown in Figure 6. Mosh reduced the median
keystroke response time from 503 ms to nearly instant
(because more than half the keystrokes could be imme-

Figure 6: Cumulative distribution of keystroke response
times with Sprint EV-DO (3G) Internet service

100 T T T T

90

80 |- I
70 il _
L 60 {mean: 515 ms
) ! | _ _
< R : .
5 soymedian: Sms | Smedian: 503 ms
£ wof
30 | _
20 | | I
10 | s
---- | SSH ----.
0 o I | | :
0 0. 0.4 0.6 0.8

Keystroke response time (seconds)

diately displayed), and reduced the mean keystroke re-
sponse time from 515 ms to 173 ms.

When Mosh was confident enough to display its pre-
dictions, the response was nearly instant. This occurred
about 71% of the time. But many of the remaining
keystrokes were “navigation,” such as moving to the next
e-mail message, and Mosh cannot make a prediction in
these cases. For keystrokes it could not predict, Mosh’s
latency distribution was similar to that of SSH.

Mosh displayed an erroneous prediction 0.9% of the
time. Some of these occurred because of a timeout (the
keystroke eventually was echoed by the server), and the
rest generally occurred because Mosh predicted an inser-
tion when the user was in an overstrike mode, or was in a
limited-size input window that did not extend to the edge
of the screen (as displayed by the 1inks Web browser),
a condition not anticipated in our own testing before we
saw the user traces. In future work, we plan to make
Mosh more robust against these scenarios. In each case,
the erroneous prediction was removed from the screen
within a round-trip time.

4.1 Appropriateness of timing parameters

We also used the user traces to examine our choice of
timing parameters for the SSP sender—in particular, the
100 ms timeout for delayed ACKs and the 15 ms inter-
val after receiving a write from the host to collect writes
that may be following in close succession. For this analy-
sis, we disregard the possible benefits of speculative local
echo and focus on network performance.

Figure 7 shows the distribution of the interval between
when a user keystroke is supplied to the host and when

Figure 7: Cumulative distribution of server-side host re-
sponse time to received user keystroke

100 ,
75| i §
[
. E
2 g
£ s0p 3 i
5 £
o~ =
251 3 _
0.1 1 10 100 1000
ms

it first responds—either an echo from the tty driver itself
or from a host application. More than 99.9% of the time,
the host has data ready to send to the client before 100 ms
have elapsed, meaning that the server’s ACK was able to
piggyback on outgoing data.

Figure 8 shows the artificial delay introduced by the
Mosh server on the host’s screen updates in our traces.
Recall that the server obeys two rules: always wait at
least the framerate interval after a previous frame, and
always wait at least the “collection interval” after receiv-
ing an initial write from the host. The server waits 15 ms
after an initial write to collect the host’s data before send-
ing an instruction to the user. This parameter was chosen
to be just smaller than the minimum frame rate interval
(20 ms) and represents a tradeoff. Too short could cause
the server to send a tiny initial instruction and then wait
for the full framerate interval to elapse before sending
more data.® But too long would hurt the responsiveness
of a typical session. Based on these results, the choice of
15 ms appears to be near the sweet spot.

5 Related Work

TCP vs. an application-layer protocol atop UDP. Our
view is that interactive applications that don’t involve
large data transfers are better served by a UDP-based
protocols rather than TCP. The reason is that these ap-
plications do not usually have an offered load that causes

50n the link in our tests, that interval was approximately 250 ms (4
Hz), because the average RTT was about 500 ms, and the frame interval
is set at half smoothed RTT estimate. Additionally, 4 Hz is the smallest
frame rate we allow.

10

Figure 8: Average protocol-induced delay from varying
collection interval (with frame interval of 250 ms)

90—

o]
(e

J
(e}

[o))
[«

Mosh collection intervalssss=s=s+{

[
(e}

Average delay (ms)

N
(e

1 10
Collection interval after first write (ms)

(O8]
OO
—_

100

the number of unacknowledged TCP segments to grow
larger than a small number of segments, so most packet
losses end up requiring a long (1 second or worse) time-
out for the retransmission; fast retransmissions using
triple duplicate ACKs [8] and selective ACKs [12] are
not useful for such “small window” situations. One
would do better using a TCP with “limited transmit” ca-
pabilities (RFC 3042) [2, 3], but even that will not be
able to avoid the long timeouts. In contrast, our ap-
proach uses short timeouts, which can be as small as 50
ms if the round-trip time and deviation indicate that such
a small value is unlikely to lead to a spurious retrans-
mission. One might be tempted to introduce such short
timeouts into TCP, but that would be problematic if the
connection were being used for a bulk transfer. Because
it runs at the application layer, SSP knows much more
the workload, and is able to tune its timers to support its
needs without burdening the network. By contrast TCP
is far more general, and therefore has to be conservative
in its operation.

Network protocols for mobile and intermittently con-
nected hosts. Support for host mobility and migration in
the face of changing IP addresses and intermittent con-
nectivity is a problem that has received significant atten-
tion in the mobile computing and networking communi-
ties over the past two decades. Mobile IP [16, 17] in-
troduces a level of indirection in packet forwarding, re-
quiring each host to have a permanent “home” address,
and arranging for all packets to be forwarded to the mo-
bile host’s current network location via this home agent.
It achieves continuous TCP connectivity in the face of
changes to a host’s IP address, but does not handle inter-
mittent connectivity, particularly multi-second or longer

outages.

Several network architectures propose the use of
network-independent invariant end-point identifiers
(EIDs) as a way to handle network mobility, includ-
ing NIMROD [5] and HIP [14]. The TCP Migrate
scheme [21] developed an end-to-end approach to host
mobility, requiring no changes to the routing infras-
tructure. All these efforts provide semantics similar to
Mobile IP, but using a different set of protocols and a
different architecture.

In terms of intermittent connectivity, Snoeren et al. de-
veloped a session-layer approach, showing how SSH
sessions could work across long periods of disconnec-
tion [20, 22]. This work required changes to the kernel
at both ends, as well as application modifications. In con-
trast, Mosh solves the problem for a specific application
class in a more efficient and simpler fashion.

REX [9], a secure remote execution protocol built on
the Self-certifying File System [13], supports client and
server roaming and intermittent connectivity over TCP
by way of resumable connections carrying remote pro-
cedure calls. If the underlying TCP connection aborts
or times out, the client attempts to initiate a new TCP
connection to the same DNS hostname as it originally
requested. Upon re-establishment, each side resends all
unacknowledged RPCs, which are kept in a replay cache.
REX requires a TCP timeout or error to activate its roam-
ing mechanism, unlike SSP, which roams automatically
to whichever address the server has seen most recently
from the client.

Datagram Transport-Layer Security (TLS). Mosh
uses an application-layer protocol over UDP, SSP, to syn-
chronize state between the client and server. One might
ask why our system incorporates its own cryptography
module, rather than using Datagram TLS [19]. The main
reason is that DTLS does not support roaming, espe-
cially if the client is not required to know it has roamed.
In addition, in contrast to our approach, DTLS requires
public-key cryptography and a replay cache, which our
approach is able to avoid, leading to a simpler design
and implementation.

On speculation: Some BSD-style operating systems
support the LINEMODE option [4] for TELNET, in
which character echoing and line editing is performed
by the client. Unfortunately, this feature has fallen out of
use for several reasons. LINEMODE doesn’t work with
programs that put the terminal into “raw”” mode, includ-
ing popular libraries like readline, shells like bash, and
full-screen applications like text editors and e-mail read-
ers. The Linux kernel did not add the necessary support
for TELNET LINEMODE until 2010 [6], and SSH does
not have an equivalent of LINEMODE.

SUPDUP [23] included an elaborate Local Editing

11

Protocol, in which an entire text editor session could be
executed locally and uploaded to the server in batches.
SUPDUP required the host application to encode its in-
teractive functionality in the SUPDUP language to in-
struct the terminal what to do in response to each user
keystroke, which characters should be considered white
space for purposes of word wrapping, etc. In practice,
only EMACS on ITS ever implemented the SUPDUP
Local Editing Protocol. Mosh’s advantage is that it
does not require modifications to host applications and
nonetheless handles most typing and cursor movement
keystrokes immediately.

6 Conclusion

This paper presented the design, implementation, and
evaluation of Mosh, a mobile shell that performs well
over high- and variable-delay network paths and is a bet-
ter solution for mobile clients than current approaches
such as SSH. Mosh handles intermittent connectivity and
changes in IP addresses without losing the terminal ses-
sion; for example, one can use it to resume a terminal
session on a laptop that was initiated at home, even when
the user suspended her laptop and reconnected at work
from a different IP address. The session will resume
correctly even if there had been unacknowledged session
data when the laptop was suspended.

Mosh also provides good interactive performance
when used over long-delay network paths. In our em-
pirical evaluation of about 40 hours of keystroke activ-
ity from six users, we found that over a Sprint EV-DO
(3G) connection, the median response time to a keystroke
was 503 ms with SSH, but only 4.8 ms with Mosh. The
mean response time was 515 ms with SSH, and 173 ms
with Mosh. The reason for these improvements in inter-
activity is Mosh’s speculative local echo of keystrokes,
which accurately predicted the response to 70% of user
keystrokes without needing a response from the server.
Mosh displayed incorrect predictions 0.9% of the time,
which it corrected after at most one RTT.

In conclusion, we believe that the ideas described in
this paper extend beyond the interactive mobile shell and
terminal application. The underlying principle is that by
using a state-oriented transport layer, as opposed to a re-
liable octet-stream layer, one can embed application se-
mantics into the protocol without making the protocol it-
self application-specific. The API we advocate provides
the ability to synchronize state between client and server
(and vice versa), rather than an abstraction that fully de-
couples the transport mechanism (SSH-over-TCP) from
the application (the remote terminal), with the applica-
tion treating the transport as a black box.

Our results with Mosh suggest that this idea of de-
composing the problem into a lower layer that handles

state synchronization is well-suited for mobile applica-
tions over “challenged” networks, and is potentially su-
perior for interactivity to current approaches that use a
reliable octet-stream (such as TCP or SSH-over-TCP).
Other mobile applications with similar goals may benefit
from a similar approach.

7 Acknowledgments

We thank Nickolai Zeldovich for helpful comments on
this work, and Richard Stallman for helping us under-
stand the capabilities of SUPDUP. We also thank the
users who provided us with keystroke traces used to eval-
uate Mosh. This work was supported in part by NSF
grants 1040072 and 0721702.

References

[1] Control Functions for Coded Character Sets.
ECMA-48 (1991); ISO/IEC 6429:1992.

[2] M. Allman, H. Balakrishnan, and S. Floyd. En-
hancing tcp’s loss recovery using limited transmit.
Technical report, RFC 3042, January, 2001.

[3] H. Balakrishnan. Challenges to reliable data trans-
port over heterogeneous wireless networks. PhD

thesis, University of California, Berkeley, 1998.

[4] D. Borman. Telnet linemdoe option. RFC 1116,

1990.

[5] L Castineyra, N. Chiappa, and M. Steenstrup. Rfc

1992: The nimrod routing architecture. 1996.

[6] H. Chu. tty: Add extproc support for linemode.

Linux Git commit 26df6d13, 2010.

[7] M. Crispin. Supdup display protocol. RFC 734,

1977.
(8]

V. Jacobson. Congestion Avoidance and Control.
In SIGCOMM, 1988.

[9] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu,
D. Mazieres, and M. F. Kaashoek. REX: Secure,
Extensible Remote Execution. In Proceedings of
the 2004 USENIX Annual Technical Conference
(USENIX "04), pages 199-212, Boston, MA, June

2004.
[10]
[11]

B. Kantor. Bsd rlogin. RFC 1282, 1991.

T. Krovetz and P. Rogaway. The software perfor-
mance of authenticated-encryption modes. In Pro-
ceedings of the 18th international conference on
Fast software encryption, FSE’11, pages 306-327,
Berlin, Heidelberg, 2011. Springer-Verlag.

12

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-
manow. TCP Selective Acknowledgment Options,
1996. RFC 2018.

[13] D. Mazieres. Self-certifying File System. PhD
thesis, Massachusetts Institute of Technology, May

2000.

[14] P. Nikander, T. Henderson, C. Vogt, and J. Arkko.
End-host mobility and multihoming with the host

identity protocol. RFC 5206, April 2008.

[15] V. Paxson, M. Allman, J. Chu, and M. Sargent.
Computing tcp’s retransmission timer. RFC 6298,

2011.

[16] C. Perkins. Mobile ip. Communications Magazine,

IEEE, 40(5):66-82, 2002.

[17] C. Perkins et al. Rfc 3220: Ip mobility support for
ipv4. IETE jan, 2002.

[18] J. Postel and J. Reynolds. Telnet protocol specifi-
cation. RFC 854, 1983.

[19] E. Rescorla and N. Modadugu. Datagram transport
layer security. RFC 4347, 2006.

[20] A. Snoeren. A session-based approach to Inter-
net mobility. PhD thesis, Massachusetts Institute

of Technology, 2002.

[21] A.Snoeren and H. Balakrishnan. An end-to-end ap-
proach to host mobility. In Proceedings of the 6th
annual international conference on Mobile comput-

ing and networking, pages 155-166. ACM, 2000.

[22] A. Snoeren, H. Balakrishnan, and M. Kaashoek.
Reconsidering internet mobility. In Hot Topics
in Operating Systems, 2001. Proceedings of the

Eighth Workshop on, pages 41-46. IEEE, 2001.

[23] R. M. Stallman. The supdup protocol. Technical

report, MIT Al Memo 644, 1983.

[24] J. VanBokkelen. Telnet terminal-type option. RFC

1091, 1989.

[25] T. Ylonen. Ssh—secure login connections over the
internet. In Proceedings of the 6th USENIX Secu-

rity Symposium, pages 37-42, 1996.

[26] T. Ylonen. The secure shell (ssh) connection proto-

col. RFC 4254, 2006.

