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Abstract—Dictionary encoding, or domain encoding, is an
important form of compression that uses a bijective mapping to
replace attributes from a large domain (i.e. strings) with a finite
domain (i.e. 32 bit integers). This encoding both reduces data
storage and allows for more efficient query execution. Traditional
dictionary encoding only supports efficient equality queries, while
range queries require that encoded values are decoded for
evaluating the predicates. An order preserving dictionary allows
for range queries without decoding by ensuring that encoded keys
follow the same order as the values in the dictionary. While this
approach enables efficient queries it requires that the full set of
values is known to create the mappings. In this work we bridge
this gap by introducing mostly ordered dictionaries that use a
best effort dictionary generation based on sampling the input
dataset. Query evaluation on a mostly ordered dictionary avoids
decoding when possible and gracefully degrades performance as
the ratio of ordered values decreases.

I. INTRODUCTION

Database compression is critical for current data-intensive

systems where the rate of data growth is outstripping growth

of processing speeds, memory capacity, and I/O bandwidth.

Columnar databases enable efficient compression in two pri-

mary ways. First, the ability to organize data by attributes

reduces entropy and thereby improves compression effective-

ness. Second, through use of columnar encoding [1] (i.e. run-

length encodings, delta encoding, and dictionary encoding) the

database supports efficient in-situ query processing, whereas

prior use of byte-oriented compression (i.e. gzip, snappy)

requires decompression as a blocking step before query ex-

ecution [2], which can be CPU-intensive [3].
While all columnar encodings offer compression benefits

over unencoded data, query benefits can be limited given

the value domain and data distribution [1]. For non-numeric

data types, such as dates and strings, dictionary encoding can

translate a large and near infinite domain to a smaller finite

and dense domain, often integers [4]. Dictionary encoding,

or domain encoding, creates a bijective mapping from an

arbitrary infinite source domain (value domain) to a fixed size

target domain (code domain). The translated codes as well as

the mapping are stored as the encoded result. Since the domain

is smaller, it allows values further compression using methods

such as bit-packed encoding (e.g. truncating unnecessary bits,

such as using 3 bits to represent integers 0-7) [4], [5], as

well as supporting fast query execution via efficient hardware

instructions [5]. As a result, dictionary encoding is widely

supported in many analytic platforms systems [4], [6]–[10],

and offers significant benefits for string data types that are

common in many domains, such as enterprise data [11] and

open data initiatives [5]. Note that we limit our focus to

global dictionaries that maintain a single mapping for an entire

column, instead of a local per-block dictionary.

For query filtering with equality predicates, dictionary en-

coding allows the query to translate the predicate value(s)

to the code domain and evaluate the predicates directly on

the encoded data. Prior work studies variations of dictionary

encoding algorithms on their trade-off between compression

ratios and decoding speed [12]. However, for query range

predicates, the system must decode encoded values to evaluate

the predicates. To avoid this expensive translation, the use

of order-preserving dictionaries can allow range predicates to

be evaluated without decoding [13]. Here, order-preserving

dictionaries work by ensuring that encoded keys maintain the

same order as values (e.g. for mappings k1 = v1 and k2 = v2,

k1 < k2 iff v1 < v2). Note that we refer to order-preserving

dictionaries as OP for short.

Generating the mapping to support OP dictionaries comes

at a cost. If the code domain is a finite domain, such as 32-

bit integers, then the entire set of values must be known and

fixed before the dictionary encoding can occur, as preserving

the order requires sorting the values first [13]. If the code

domain is an infinite domain, such as double values, an order

preserving scheme can be generated for a set of unknown

values using a Dewey Decimal style coding, where new values

can be inserted using increasing precision [14]. While this

approach works when the domain is unknown or not-fixed,

it suffers from reduced compression (e.g. larger code domain

values and no bit-packing), less efficient CPU operations, and

lacks the ability for dense SIMD operations that depend on

small key values [5].

Therefore, we propose a conjecture for dictionary encodings

that is impossible to simultaneously provide more than two

out of the three properties: the dictionary is order preserving

(i.e. OP), the encoded keys have a finite domain (i.e. integer

codes), and if the encoding tolerates an unknown value domain

(i.e. unknown values). For example, if we support an unknown

value domain and OP, the integer code domain property can be
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violated when there is no more “code space” for new values,

and a more complex code domain must be used to keep the

OP property. Otherwise, if we require OP and integer codes,

recoding (e.g. redoing the encoding with a known domain) is

needed when there is no valid code space to maintain ordering.

While many applications know the domain of values to

encode a priori, several important scenarios exist where the

values are unknown when the encoding occurs. First, for data

that is continuously being loaded into a data warehouse or

lake, the entire set of values may not ever be known or known

before analysis must begin – either of which could prevent use

of an OP dictionary if integer codes are desired. Second, for

massive static datasets, generating an OP dictionary requires

taking a full pass on the dataset before encoding to learn the

full value set. Given the potential costs of scanning and parsing

the dataset, this extra pass may be prohibitive for scenarios that

want to begin analysis quickly.

Observe that if a dictionary encoding supports unknown

values and an integer code domain, we may achieve the OP

goal by pre-allocating a huge code space for a dictionary,

but at the cost of larger bit representation for each value.

Despite this, one cannot guarantee there will be no code space

conflicts in the future, especially in the presence of skewed

data distributions. This inability to guarantee ordering though,

leads to the key research questions of this paper which are

can a database system leverage a dictionary encoding that is
partially ordered and given the ability to sample a dataset,
what is the ideal pre-allocation key allocation?

In this paper, we present a best-effort order preserving

dictionary encoding: a mostly order preserving dictionary

encoding (MOP). It pre-allocates a code space for an order

preserving dictionary based on estimated statistics, such as

record count and cardinality. A backup code space is reserved

to handle potential code space conflicts, which we explore

both with unordered and cascading ordered variations. For

distributed generation, MOP leverages a leader protocol to

synchronize and update local dictionary views of its writers.

For a MOP that has 90% of the keys ordered, we are able

to reduce query filtering latency by up to 47% compared to

decoding a standard dictionary, and 9% slower than a order

preserving dictionary according to our experiments. In addition

we propose a nested MOP, Cascade-MOP or C-MOP, that

minimizes the amount of disordered data at the cost of more

complex query evaluation.

To evaluate the effectiveness of MOP, we implement a

prototype within the open-source columnar format Parquet [7].

With this prototype we consider how to construct a MOP

without knowing the value domain a priori and demonstrate

how to leverage MOP to accelerate range queries and sort

operators. The rest of the paper is organized as follows.

Section II discusses related work. Section III overviews MOP

and key definitions. Sections IV and V cover MOP generation

and query execution respectively. Section VI evaluates MOP

for both range filtering and generation.

II. RELATED WORK

Dictionary encoding creates a bijective mapping between

values of variable length to compact integer codes, and re-

places the original data entries with corresponding codes.

Dictionary encodings are information-lossless as described by

Lempel and Ziv, and such encodings can achieve the theo-

retical lower bound of compression ratio defined by Shannon

entropy [15], [16].

Compression techniques help reduce I/O operations and

data storage, and therefore are prevalent for analytic systems.

Many byte-oriented or block-oriented compression techniques

require data to be decompressed before querying [17]. These

compression techniques, such as GZip and Lempel-Ziv [18],

typically require expensive CPU cycles. Columnar encoding

schemes, such as run-length encoding or dictionary encoding,

trade-off CPU overhead for larger storage and the ability to

directly query on the encoded data [1].

Research has explored optimizing dictionary encoding for

database systems. Chen et al. [19] proposes a hierarchical

dictionary encoding scheme for string attributes, support-

ing encoding at different granularities (attribute level, word

level, prefix level, etc.). Paradies et al. [20] demonstrates an

entropy-based approach that is adaptive to user query patterns.

Column-oriented databases, such as MonetDB [21] and C-

Store [6], use dictionary encoding to allow arbitrary types

to be converted to consecutive integer codes; this enabling

other encoding schemes, such as bit-packing (i.e. truncating

unnecessary bits), run-length encoding, and delta encoding to

be applied, further reducing storage size.

In addition to the encoded data storage, the dictionary itself

can have substantial contribution to storage space. Muller

et al. [12] make a thorough comparison between various

dictionary compression algorithms regarding decoding speed

and space consumption, and propose an empirical decision

tree based approach to select a dictionary algorithm that is

either optimized for access speed or storage space on a given

dataset. Zukowski et al. [22] propose PDICT compression

scheme that allows infrequent values to be exceptions from

the dictionary in order to reduce dictionary size on skewed

frequency distributions, thus better compression performance.

In addition to compression, research explores how dictio-

nary encodings affect query performance. Chen et al. [19]

design a compression-aware optimizer to estimate overhead

brought by accessing compressed data. Ray et al. [23] and

Abadi et al. [1] show that by rewriting query predicates, one

can efficiently skip the decoding step and execute queries

directly on encoded data, which is beneficial to query per-

formance due to reduced I/O requests and leverage in MOP.

Jiang et al. [5] demonstrates how a SIMD-based algorithm

can filter up to 18 billions entries per second on dictionary

encoded data that is bit-packed.

While standard dictionary encodings only support querying

directly on encoded data for equality predicates, an order-

preserving dictionary [24] can support direct evaluation for

range queries. For non-supported queries, either the encoded
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values must be decoded using the dictionary and evaluated

against the predicates, or the predicates must be evaluated

against the entire dictionary and passing keys are recorded.

Antoshenkov et al. [25] propose an order-preserving data

structure for DBMS and Binnig et al. [13] adapt the idea for

in-memory analytic databases. Order preserving dictionaries

require that the entire value space is known before encoding

the dataset.

Dictionaries can be implemented using various data struc-

tures, such as an array, hash table, or trie [26] and different

compression strategies, such as Huffman coding, Hu-Tucker

coding [27], front coding [28], and RE-PAIR [29]. These

compression strategies have full access to entire value corpus

and thus can achieve better compression ratio, they all suffer

from higher latency and low throughput [30], rendering them

unsuitable for many database applications. In this paper, we

focus our discussion on hash table-based dictionary with no

compression strategy applied on the dictionary.

III. MOP OVERVIEW

Here we introduce the MOP organization, necessary data

structures, and how query execution works with a MOP.

A. MOP Definitions

A Mostly Order Preserving Dictionary (MOP) is a bijective

mapping of keys K and values V consisting of two sections.

As shown in Figure 1 the first section is order preserving

and the second is not. Key space is pre-allocated for the

ordered section and the disordered section grows as needed,

such that after initialization the MOP specifies at most m keys

are ordered, while the dictionary can grow to n keys (with

n ≥ m).

The initialization phase looks at a sample (or head) of

records from the dataset to be loaded by collecting statistics

and a set of values (B) to bootstrap the ordered section. These

values are distributed evenly throughout the ordered section.

Our allocation strategy determines how much space to use

for the ordered section and how keys should be spaced in

the section. During the generation phase, when inserting a

value v ∈ V into the MOP to get its corresponding key k,

we distribute the incoming items into the ordered section.

When code space conflicts happen (e.g., cannot insert the

value without violating ordering), the unsettled items will be

appended to the end of code space in the disordered section

sequentially (e.g., v’s key k will be m < k ≤ n). We refer to

this as a spillover. Given a MOP dictionary, ordered ratio r
is defined to indicate the proportion of ordered entries in the

dictionary:

r = 1− n−m+ 1

|V |
A padding ratio p is defined to indicate the proportion of

empty keys in the ordered space:

p =
n− |V |

n

We use r and p for query and storage evaluation respectively.

Therefore, the goal of MOP is to maximize the ordered ratio

r as much as possible, while trying to avoid excessive “bloat”

of the key space by minimizing p. In Section IV we discuss

how MOP allocates keyspace and assigns keys.

Given that it is impossible to guarantee that the ordered ratio

of a MOP = 1, there will be some records that cannot fit into

the ordered section. A natural extension to explore is instead of

a single ordered section, is cascading ordered sections before

defaulting to a disordered section.

B. Cascade-MOP

With a Cascade-MOP (C-MOP), we nest multiple levels of

order-preserving sections before a single disordered-section.

By default we limit nesting to eight levels, but this is config-

urable. Here, when spilling a value to the disordered section

we instead treat it as a new order-preserving section. Rather

than appending to the end of the key space, we allocate a new

nested ordered key space for those unsettled items. For this

new zone we allow for refinement in our allocation strategy,

in particular how much space to allocate. We call each order-

preserving section an OP zone. Figure 2 shows the layout of

a C-MOP with k levels. The first zone runs from keys (0,e0),

the next from (e0 + 1, e1), and so on until the number of

OP zones grows until it reaches the user-defined limit (8 by

default). A final disordered section exists after the OP zones.

IV. MOP GENERATION

In this section we discuss the steps of MOP and C-MOP

generation. This is broken into three main steps: initial-

ization, encoding, and finalization. For C-MOP, we explain

how spillover differs. For exposition we assume there is a

coordinator managing the dictionary and multiple workers

encoding values and requesting keys from the coordinator.

We assume a shared-nothing architecture with workers starting

with a distinct partition of the input dataset. Other approaches,

such as threads with locks, are valid with minimal changes.

A. Initialization

When generating a new dictionary all workers notify a co-

ordinator about the attribute to encode, which may come from

a file containing multiple attributes. This message includes the

worker’s coarse estimation about the data to encode (i.e. file

size). The leader responds by requesting from each worker a

sample of the dictionary to bootstrap the MOP. We refer to the

percentage of records as lookahead ( i.e. a lookahead of 0.10
is a 10% a sample). The worker preprocesses the sample of

records before sending out a sample of the dictionary, which

includes a set of records and several features (i.e. sortedness,

estimated cardinality). These features help the coordinator

understand the values to encode. By default, workers use the

head of the file to sample unless otherwise specified. In rare

cases, the leader will force workers to redo sampling using a

uniform sampling strategy. This occurs if the features collected

from workers indicate a high probability the attribute is sorted.

To determine sortedness of an attribute, we use Kendall’s τ
which generates a real number in [−1, 1]. An output of 1
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Fig. 1: Key space for MOP dictionary

� ### ��� ���� ### ��� ����� 	 
�� 
 
�� 	 


��
�
��������������
��
��� ���!��� ����"#

��$���$���"���


��������	

%����$���$���"���


��
�
��
��������


��
�
�� ���
������

���������
�###

Fig. 2: Key space for C-MOP dictionary
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Fig. 3: MOP generation example

denotes a fully sorted attribute and −1 denotes a fully inverse-

sorted attribute.

Once the sample is collected, the number of unique values

in the sample data is counted and divided by the lookahead

proportion to determine the estimated cardinality of the unique

values in the data. The size of the order preserving section’s

key space is pre-allocated based on the estimated cardinality

and a slack parameter which determines slack space between

keys. The sample values are then uniformly distributed over

the key space as shown in Figure 3. It is worth noting

that this process could leverage more advanced sample-based

distinct value estimators [31]; however, our experiments in

Section VI-B5 show these approaches add limited value to

MOP performance.

The space left between two ordered keys allows new input

unique values to be ingested if encountered later in order

to retain the overall ordering. We calculate this slack space

by dividing a controlled parameter pitch by the lookahead

proportion. By adjusting pitch, the slack space can be scaled

to allow for more or less key space available for new unique

value batches. A higher pitch gives a larger initial dictionary

with more space between the bootstrapped values. Too much

slack may result in a dictionary to be sparse or padded (e.g.

many empty cells), and too little slack results in the inability to

order keys properly. As we later show, C-MOPs can achieve a

high ordered ratio with a pitch of 1, and single layer MOPs can

benefit from a pitch of 3, but this increases the key space. Once

the initial bootstrapped dictionary is generated, the coordinator

sends it to all workers, and the encoding process begins.

B. MOP Encoding

In the encoding stage, the remaining unique values get

inserted into the MOP in groups of values, or batches. Each

worker can batch a configured number of values (worker

batch) then send them to the coordinator, which in turn can

batch a set of requests (coordinator batch) to insert into the

MOP. In addition to amortizing message overhead, batching

multiple values for insertion can help with proper spacing of

values and reduce spillover.

For every value in each batch, if there is space in the

order preserving section, the value is inserted there uniformly

between the two already inserted ordered values that the new

value’s ordering falls between. If multiple values in this batch

fall in the same range, they will be evenly spaced. Figure 3

shows a sample key insertion for the first batch values.

If no space is left for inserting a value in the ordered section,

the value will be spillover either to a disordered section for

MOPs or to a cascading ordered section for C-MOPs.

1) MOP Spillover: With MOP, when values spillover they

are added sequentially to the end of the dictionary in the

disordered section. For example, in Figure 3 in the second

batch, no space exists for carrot between bean and cherry.

The carrot value then gets appended to the end of the ordered

key space in the disordered section. This batching process

repeats until all data has been processed.

2) C-MOP Spillover: The C-MOP encoding process works

in a similar fashion, with the difference being when there is

no space left in an order preserving section for inserting new

values, the spillover(s) may create another order preserving

zone. Here, the process will add any pending requests to the
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current set of values to encode. All spilled-over values will be

used to seed the next OP zone. Spillover can result in creating

a final disordered section if we believe the encoding is nearing

completion or we hit a prescribed maximum number of OP

zones, which is the strategy we use.

When creating the next OP zone, we determine how large

to make the zone based on the prior zone’s size multiplied

by a MOP zone ratio, which is set between 0.20 and 2.0. To

determine the ratio we examine the estimated cardinality for

the prior zone (scaled by estimated progress of the dataset),

and the observed cardinality for the prior zone(s). If the

observed cardinality is less than the estimated cardinality, we

set the MOP zone ratio to 0.2 with the expectation that the

spillover is due to the distribution being slightly deviated. If

the observed cardinality is much higher than the estimated

cardinality, we set the ratio closer to 2.0 as we assume our

estimates were way off or that the distribution in the dataset

has changed and we should account for larger capacity to avoid

introducing an additional OP zone.

C. Finalization

Once all values are encoded, the process is finalized. For

each OP zone and the disordered section we create a zone

map of min and max values for query evaluation and record

the starting position of this zone (i.e. the first key). Figures 1

and 2 respectively show the final organization for MOP and

C-MOP. The generated dictionary is written to the output file.

V. MOP QUERIES

In this section, we describe how MOP/C-MOP supports

query operator execution efficiently. MOP is optimized for

equality predicates, range predicates, and sorting. These op-

erators can work directly on encoded data with little or

no decoding overhead. For other operators, data needs to

be decoded and materialized, just as when using a normal

dictionary. The goal of our query evaluation is to rewrite any

query q that filters or sorts on a MOP encoded attribute x,

such that it minimizes decode operations and evaluates as

much of the query directly on the encoded keys, as opposed

to evaluating predicates against decoded values.

A. Equality Operator

An equality operator (x = va, x �= va) can be performed

efficiently on MOP just as on a normal dictionary. When taking

x = va, for example, we first check if there exists a key k
in MOP satisfying MOP (k) = va. A miss means no value

in the column matches the predicate and the execution can

return prematurely. Otherwise, we scan the encoded entries ki,
looking for ki = k. This operation skips decoding operations

on the encoded entries and thus saves CPU overhead.

B. Range Operator

Without loss of generality, we discuss in this section how to

execute an inclusive range operator (x ∈ (va, vb)) on a MOP

encoded column; the approach can be generalized to a compare

operator, exclusive ranges, and like predicates with constant

prefixes, as well as conjunctive and disjunctive combinations

of these operators.

MOP and C-MOP can both be viewed as a combination of

multiple order-preserving dictionaries (OP) and an unordered

dictionary (DIS), where MOP contains only one OP, and C-

MOP can have multiple OP sections. We first discuss the

execution of a range operator on OP and DIS separately, then

show how to combine the results to obtain the final result. An

inclusive range operator for an OP can be easily extracted from

a query q via query rewriting. To evaluate x ∈ (va, vb), we first

find the corresponding key range ka = min({k|OP (k) ≥ va})
and kb = max({k|OP (k) ≤ vb}), then perform a scan on the

encoded column, looking for entries satisfying k ∈ (ka, kb).
This process involves no decoding operations.

When executing a range operator on DIS, we compare the

zone map (vmin, vmax) of DIS against the query range and

consider three cases.

Type 1 (vmin, vmax) ∩ (va, vb) = ∅. In this case, DIS does

not contain any value within the query range, and can

be safely skipped for the query.

Type 2 Here, the query range and zone map overlap. In

this case, for the keys in DIS we perform a decode

operation and compare the decoded result against

the range. Let ks be the starting key in DIS. For

each encoded entry k, we check k ≥ ks to make

sure the key belongs to DIS, and, if so, we decode

v = DIS(k) and check if v ∈ (va, vb). This

operation only involves decoding keys belonging to

DIS, which is relatively small compared to decoding

the entire column.

Type 3 (vmin, vmax) ⊆ (va, vb). In this case, all keys in DIS

are included in the query range. Let ks be the starting

key in DIS; we can rewrite the range query to be

k ≥ ks and execute it on the encoded column. This

involves no decoding operations.

As a MOP contains two sections, OP and DIS, with disjoint

key ranges, executing a range operator on MOP is equivalent

to first applying the operator to OP and DIS separately then

performing a disjunction of the results. As an example, we

consider a query x ∈ (apple, cherry) on the MOP shown

in Figure 3. The operator on OP is rewritten as k ∈ (0, 4).
As “cherry” is within the zone map of DIS, we also need

to perform decoding for keys belonging to DIS, which yields

k ≥ 14 ∧ decode(k) ∈ (apple, cherry). The result, as the

disjunction of the two parts, is then

k ∈ (0, 4) ∨ (k ≥ 14 ∧ decode(k) ∈ (apple, cherry))

Similarly, query x ∈ (apple,mango) will be translated to

k ∈ (0, 11) on OP, and, as “mango” is larger than vmax of

DIS, it is translated on DIS as k ≥ 14, and the result is

k ∈ (0, 11) ∨ k ≥ 14

C-MOP is comprised of multiple OP sections and a DIS

section, with their key ranges non-overlapping, and thus can

be processed in a similar manner as described above in MOP.
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Fig. 4: Steps for range filtering with C-MOP

More precisely, we first execute the operator on each section

independently and perform a disjunction of the result. To

further optimize query evaluation, we utilize a zone map for

each ordered section, or zone, to minimize unnecessary zone

look ups. To further optimize the result, we also perform

range merging. If the final result contains range clauses that

are adjacent to each other, e.g., k ∈ (k1, k2] ∨ k ∈ (k2, k3),
they will be merged together as a larger range k ∈ (k1, k3).
This step reduces the number of ranges to be evaluated and

potentially improves efficiency. This is shown in Figure 4.

Evaluating a range operator for a C-MOP works as follows:

Check the zone map for the disordered section to decide
the query type: As with a MOP, step (1) is to check the type

of query to determine if the disordered section is needed.

Check the zone map for each OP zone to see if skipping
is possible: For each OP zone, step (2) checks its zone map

before getting the appropriate keys in that zone. If the query

range is disjoint with zone map, this zone is skipped.

Range query translation per OP zone: If skipping a zone

is not feasible, for step (3) the range query is translated

into the qualified key range for this OP zone (i.e. ka =
min({k|OP (k) ≥ va}) and kb = max({k|OP (k) ≤ vb})).
After query translation, each OP zone outputs either skipped

or a qualified key range that is added a disjunctive predicate.

Qualified range merging: A large number of qualified ranges

adds more integer operations for verification on each record. In

order to eliminate unnecessary compare operations, we merge

key ranges into a larger one if they are adjacent in step (4).

C. Sort Operator

A sort operator for a MOP shares similar logic with range

filtering, by leveraging the orderedness of the MOP dictionary.

To avoid decoding the disordered section, we temporarily

expand the key space to sort disordered keys in relation to the

sorted section. The MOP sort operator pre-scans the dictionary

and temporarily assigns dictionary entries in the disordered

section with a float key that follows the orderedness in the

ordered section and new float keys. We then build a mapping

from the old integer code to the new float code for entries

in the disordered section. We apply a sorting algorithm on

encoded integer values and translated float values, without

decoding any values.

VI. EVALUATION

The goal of our experimental evaluation is twofold. The

first section evaluates MOP’s and C-MOP’s ability to improve

query performance for range filtering and sorting. We compare

these against order preserving and dictionaries that require de-

coding (e.g. non-order preserving). We evaluate across varied

ordered ratios and selectivity ratios with a synthetic and real-

world dataset. The second section evaluates MOP’s and C-

MOP’s ability to generate highly ordered dictionaries and to

understand what are the critical factors in doing so.

All experiments were performed on servers with 2 Intel(R)

Xeon(R) CPUs E5-2670 v3 @ 2.30GHz, 128GB memory,

250GB HDD, Gigabit Ethernet, and Ubuntu 14.04. Experi-

ments use a real-world dataset of taxi rides from New York

City [32], the lineitem table from TPC-H, and two synthetic

datasets derived from an English word dictionary based on

uniform and zipf distributions. Unless otherwise stated we

use scale factor 30 for TPC-H and 15 million rides from the

taxi dataset. The default MOP configuration has a lookahead

of 0.1, pitch size of 1, and a worker batch size of 20. The

default C-MOP layer ratio is 0.2.

A. Range Filtering Evaluation

In this section, we encode the given dataset under different

MOP or C-MOP configurations in order to generate various or-

dered ratios. Order preserving and standard dictionary encoded

datasets are generated for comparison. All encoded datasets

are stored in Parquet’s file format.

Using a stand-alone Java query execution framework, we

evaluate the three types of range queries discussed in Section V

by decoding dictionary keys (decoded) and directly evaluating

queries on keys via query rewriting (direct). In the following

experiments, we use MOP Decoded for cases where we use the

MOP organization but fully decode every value for checking

the predicate, and we use MOP Direct to indicate best-effort
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Fig. 5: Range filter overview on taxi

dataset

Fig. 6: Percent of records encoded by

ordered keys.

Fig. 7: Type-2 filter on taxi dataset

filtering on encoded keys when possible (i.e. types 1, 2, and 3).

Dict Decoded represents filtering on a dense dictionary (e.g. no

padding) when decoding every value for a predicate evaluation.

OP Direct indicates a dense sorted dictionary with predicate

evaluation without any decoding on an OP encoded dataset.

For all filtering evaluation, we do not materialize the output

values and instead evaluate as a filter for late materialization

that creates a bitmap indicating the records that satisfy the

predicates [6]. Unless otherwise stated, we run each query 15
times and report the average running time.

1) Taxi Dataset Filtering: We evaluate query performance

on the taxi ride dataset. We encode column pickup latitude
from the trip data table with OP and MOP dictionary encod-

ing respectively and use Parquet’s default encoding for other

attributes [32]. With MOP’s default configuration, we can

achieve a 94.2% ordering. We manually tune MOP parameters

to get dictionaries with different ordered ratios.

Figure 5 shows the range query performance on the default

MOP encoded dataset compared with the OP encoded dataset.

MOP Direct performs similarly to OP Direct in terms of

range filters for Type-1 and Type-3. The two counterparts have

similar performance as neither decode the value during query

processing. However, MOP Decoded is about 10% slower than

Dict Decoded for all types of range queries as there are more

entries in the MOP dictionary due to dictionary padding. For

Type-2 range filters, MOP Direct is slightly slower than OP

Direct but is still far more efficient than decoded filtering. We

have a detailed analysis on Type-2 range queries with varying

ordered proportions in following experiments.

Figure 6 shows the percentage of records encoded by

ordered key versus MOP ordered ratio. Unlike the linear trend

for TPC-H, which has a uniform distribution, the percentage

of records encoded by ordered key grows rapidly on the Taxi

dataset. This is typical for skewed distributions as it is more

likely to capture the frequent records early. Therefore, Type-

2 range queries can still perform efficiently with small MOP

sorted ratios (i.e. 30%).

As shown in Figure 7, Type-2 direct filtering on MOP en-

coded datasets takes more time as the ordered ratio decreases,

as more values need to be decoded. MOP Decoded performs

better at the same time due to fewer entries being present in the

MOP dictionary. Regardless, MOP Direct always outperforms

the best decoded filter, even on datasets with low ordered

ratios.

2) TPC-H Dataset Filtering: Using a TPC-H dataset of

scale 30, we encode the table lineitem into a Parquet file

with different dictionary encodings for the shipdate column

and Parquet’s default encoding for other columns. We apply a

range filter on the shipdate column with varying selectivity.

We achieve a 100% ordered ratio on the shipdate attribute

with the MOP default space allocation strategy. Therefore, we

manually adjusted our space allocation strategy to get MOP

encoded files with different ordered ratios. In the following

experiments, we fix slack to 5 and change the lookahead.

In Figure 8, we show the performance of three types of

range queries on datasets with different dictionary encoding

variations. We generate a MOP encoded file with an ordered

ratio of 90.1% by manually setting the lookahead to 0.00001.

These results show that direct query on MOP performs 1.5 to

2.2 times better than the regular decoded query version but 7%
to 14% slower than a direct query on OP encoded datasets.

The two direct queries perform quite similar to each other

on Type-1 range queries, while they have a relatively greater

performance difference on Type-2 and Type-3 queries. MOP

direct Type-2 queries are slower as they decode records with

keys from the disordered section before verifying the records.

It is also slower than OP direct query on Type-3 queries as

one more integer operation is needed to verify the records with

disordered key. Even though disordered section decoding is not

eliminated for Type-2 range queries, the MOP Direct query is

still quite efficient because decoding is avoided on more than

90% of records. MOP direct query performance for Type-2

range queries varies as the proportion of records encoded by

the ordered section changes, which is further dependent on

the MOP ordered ratio. Again, Figure 6 shows the percentage

of records encoded by the MOP ordered section increases

uniformly as the MOP ordered ratio increases. This trend

is typical for most uniformly distributed workloads as every

value has relatively similar frequencies. Therefore, the MOP

direct query performance on Type-2 range queries should be
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Fig. 8: Range query on TPC-H dataset Fig. 9: TPC-H type 2 range filter with

selectivity 0.00001

Fig. 10: TPC-H Type-2 range filter with

selectivity 0.27869

proportional to the MOP ordered ratio.

As we decrease the lookahead from 0.0001 to 0.000001, the

MOP ordered ratio decreases from 99.8% to 25.9%. Figures 9

and 10 show the query performance for Type-2 queries on a

dataset with different MOP ordered ratios. The dashed lines

show the baseline query times for the regular decoded query

and direct query on an OP encoded file, and the bars show

the query time on a MOP encoded file with corresponding

ordered ratios. Overall, the decoded query becomes more

efficient as the ordered ratio decreases as less key space is

used for the MOP dictionary, resulting in more efficient value

decoding. However, it does not offset the overhead caused by

an increased decoding workload in the MOP direct query. As

more values need to be decoded for a direct query, the query

time increases proportionally as the ordered ratio decreases.

Please note that the datasets we are using are tuned to show

the Type-2 query performance on different ordered ratios.

However, we can achieve 100% ordered ratio using MOP

default settings, where MOP’s performance is almost identical

to that of OP.

3) C-MOP Filtering: Figure 11 shows range filter perfor-

mance for a C-MOP with an increasing number of cascading

levels for the Taxi dataset; TPC-H results are not included as it

does not benefit from cascading due to its uniform distribution

and low cardinality. Three sub-figures correspond to types of

range filters respectively. In this experiment set, there are 1
qualified key range and 2 qualified key ranges on C-MOP

datasets for queries of Type-1 and Type-3 respectively after

range merging. For Type-2 queries, the number of qualified

key ranges is always equal to the number of OP Zones after

range merging. With deeper cascading levels, there will be

more OP Zones thus more qualified key ranges need to be

checked, resulting in more integer operations for each record.

However, the overhead from checking multiple qualified key

ranges is alleviated by qualified range merging and offset by

fewer disordered keys needing to be decoded. Therefore, the

increasing cascading level shows minimal impact on filtering

performance overall and in the next section we demonstrate

space savings gained by cascading.

4) SORT Evaluation: In this experiment, we implement a

MOP sort operator based on a recursive quick sort algorithm

as described in Section V-C. Figure 12 shows the sort perfor-

mance on the Taxi dataset. The bars indicate end-to-end sorting

time for a MOP encoded dataset with different ordered ratios,

and the dashed lines show the baseline query time for regular

decoded sorting and direct sorting on an OP encoded file.

Overall, MOP sorting is slightly worse than OP direct sorting,

but outperforms a decoded sorting. In spite of some inevitable

translation overhead for entries from the disordered section,

sorting operations primarily on integers and some floats are

far more efficient than that of strings. MOP sorting takes more

time as the ordered ratio decreases as there is more encoded

value translation needed from entries in the disordered section.

However, MOP sorting is still superior to decoded, even with

a relatively low ordered ratio.

B. MOP Generation

In this section, we analyze the effects of changing each

of the MOP generation parameters: lookahead, pitch, number

of layers, and MOP layer ratio. We also look at the MOP’s

ability to dynamically adjust the number of keys allocated

and the way values are distributed based on incoming data.

We measure MOP generation performance by looking at the

runtime of the generation and the ordered percentage of the

resulting dictionary when using different datasets. Given the

results of the prior section, for many workloads an ordered

ratio of at least 70% gives the largest filtering performance

improvement, which is trivial to achieve for most cases. As

the ordered ratio nears 90%, filtering performance nears that of

order preserving dictionaries. For many of these experiments,

we highlight a trade-off between space and orderedness to

allow the reader to understand how the impact of generation

parameters. Based on these observations we believe a pitch

size of 1, lookahead of 10%, worker batch size of 20, and

at least 3 cascading layers with an auto layer-ratio set to 0.2

results in a good compromise of orderedness and performance.

Therefore, unless otherwise stated, the experiments use this

configuration. The default setup uses one server for the coor-
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Fig. 11: C-MOP range filter on taxi dataset with increasing the number of cascading levels.

Fig. 12: SORT Operator Runtime

dinator and one for all workers, with experiments including

network latency in runtimes.

(a) Encoding time on TPC-H (b) Encoding time on Taxi

Fig. 13: Average generation time.

As shown in Figure 13, we evaluate MOP, C-MOP and OP

generation performance with scaling the number of workers.

We also show a local non-ordered dictionary as a performance

baseline. For MOPs, we use a configuration with lookahead

of 10%, worker batch size of 100. For C-MOP, we use

a cascading level of 4. In Figure 13a, the dictionaries are

generated on the shipdate of the lineitem table with TPC-

H scale 30. In Figure 13b, the dictionaries are generated on

the pickup latitude of the full taxi dataset, which is roughly

30 GB and 125,000 values spread over 173 million records.

This experiment parses the input CSV file and writes out the

entire Parquet file. The leader and workers are co-located on

a single machine that has 16 HDDs striped via RAID 0. Note

that for a single OP worker, one process reads the file, sorts

the keys, and then writes the file. For multiple workers, each

worker reads their segment and sends values to the leader,

who after sends the updated dictionary for workers to encode

with. MOP is faster than OP in most cases and preforms close

to local dictionary encoding in TPC-H due to the relatively

low cardinality. When the cardinality for the target column is

relatively high, as with taxi, MOP has overhead for frequent

coordination with the leader. MOP outperforms OP in most

cases due to not learning the domain first (i.e., OP 1st scan),

except for occasional cases with few workers where one

worker blocks more than others when waiting for keys (i.e.

2 workers on Taxi). C-MOP performs quite close to MOP in

terms of generation time as C-MOP only applies more key

allocation for the spillover values, whose number is usually

small.

(a) Ordered Percentage (b) Runtime (ms)

Fig. 14: Evaluating the effect of lookahead on MOP generation

performance (Runtime and Ordered Percentage).

1) Lookahead: For these MOP generation experiments, we

test MOP performance when changing lookahead (sampling

rate of the first X% of the file). Here, all datasets use

approximately 173 million records. Figure 14a shows resulting

ordered percentages and speeds of generating MOPs with

different data skews. Skewed datasets have more repeated

values, so key allocation costs are reduced leading to lower

runtimes. Skewed workloads are also more predictable, leading

to higher ordered percentages.

In Figure 14b, we also show the costs of different lookahead

percentages. As expected there is a linear growth for the

datasets due to sampling from the head of the file, and the

Taxi dataset is slower due to parsing 14 attributes to encode

a single attribute. The Zipf and Uniform workload each only

has one attribute per record, reducing the CPU intensive task
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Fig. 15: Evaluating the effect of pitch on MOP ordered

percentages using uniform, zipf, and taxi workloads.

of parsing and validating [3]. This result shows that high

lookahead percentages can come with a high cost.

2) Pitch: Here we discuss the impact of scaling the key

space with the pitch parameter. Figure 15 shows that larger

pitch values increase the amount of room left for encoded

values in the ordered section, resulting in more ordered dic-

tionaries. However, this incurs the cost of a larger key space

which can result in a larger file (Sec. VI-B8) and worse query

performance [5].

3) Impact of C-MOP Layers’ Size and Spacing: These

experiments show how additional C-MOP layers affect ordered

percentages, where all values within any C-MOP layer are

considered ordered. The tests in Figure 16 show that increasing

the layer count increases ordered percentage as each successive

layer creates more space for encoded values to be inserted

into. Figure 16 also shows that increasing the MOP layer ratio

Fig. 16: Evaluating the effect of MOP layer ratio on MOP

ordered percentages using uniform, zipf, and taxi workloads.

parameter increases the ordered percentage of the dictionary.

As successive layer sizes are set by multiplying the previous

layer size by the MOP layer ratio, larger ratios result in larger

key spaces of the new layers, so more space exists in the

ordered part of the dictionary for new values. Given these

results and the minimal query overhead, we believe at least

three layers should be used. In the following experiments we

further analyze the impact of sizing the layers.

4) Handling Distribution Changes: In this section, we

will discuss the C-MOP’s ability to correct for a worst-case

scenario of large changes in incoming data distributions. By

recalculating the estimated cardinality when new layers are

being created, the C-MOP can dynamically grow the MOP

layer ratio if the number of distinct incoming values was

underestimated initially. This ratio will be set between 0.20
and 2.0 as previous experimental data showed that a too small

ratio would not sufficiently increase ordered percentage and a

too large ratio would over-inflate the key space.

Fig. 17: Evaluating the effect of dynamic MOP layer ratios

when correcting for data distribution changes.

To demonstrate how C-MOP can correct for large distribu-

tion changes, we ran an experiment on a synthetic file where

the first 20% of the file had a zipf distributed workload and the

remaining 80% was uniform. When varying lookahead from

10% to 50%, Figure 17 shows how 1, 2, 4 8, and 16 layer C-

MOPs using both a static MOP layer ratio percentage of 0.20
and the dynamic MOP layer ratio handles distribution changes

based on the amount of data collected on the new distribution.

For lookaheads less than or equal to 0.20, both single

layer MOPs and static ratio C-MOPs performed poorly as

they had no information of the distribution change. However,

dynamic ratio C-MOPs expect to need more space after seeing

the distribution change, and work to correct initial estimated

cardinality mispredictions. Furthermore, as each successive

layer will have more time to learn, adding additional layers

will greatly improve ordered percentages. This shows that

adaptively changing the MOP layer ratio allows for robustness

in the presence of adverse datasets.

5) Cardinality Estimation: Table I compares our simple

cardinality estimator that divides the number of distinct values

in the sample by the lookahead and a more advanced adaptive

estimator [31] that separately estimates high frequency and low

frequency cardinalities based on the sample. As the simple

estimator generally overestimates the actual cardinality, it

generates MOPs/C-MOPs with more padding and a higher

ordered ratio than the adaptive estimator which generally has

lower and more accurate cardinality predictions. However, as

described in the next experiment, the ordered ratio-padding

ratio trade-off results in no padding ratio benefit when using

one estimator over another.

6) Key Space: Here we compare key space sizes between

single-layered MOPs and multi-layered C-MOPs with both

the simple and adaptive estimators. For each experiment, we

adjusted the pitch until dictionaries were 70%, 80%, and
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Method Pitch
Ordered 
Ratio

Padding 
Ratio

Ordered 
Ratio

Padding 
Ratio

Ordered 
Ratio

Padding 
Ratio

1 0.711 0.699 0.662 0.457 0.910 0.850
2 0.818 0.840 0.802 0.688 0.950 0.924
4 0.891 0.918 0.896 0.837 0.975 0.962
8 0.945 0.956 0.950 0.959 0.988 0.981
1 0.470 0.265 0.686 0.501 0.755 0.356
2 0.582 0.481 0.813 0.711 0.796 0.540
4 0.698 0.677 0.902 0.848 0.868 0.755
8 0.806 0.823 0.953 0.923 0.919 0.868
1 0.960 0.740 0.743 0.532 0.979 0.879
2 1.000 0.868 0.890 0.741 1.000 0.939
4 1.000 0.933 0.973 0.867 1.000 0.970
8 1.000 0.966 1.000 0.933 1.000 0.984
1 0.621 0.302 0.771 0.573 0.821 0.445
2 0.779 0.529 0.903 0.761 0.865 0.615
4 0.934 0.720 0.975 0.877 0.932 0.800
8 1.000 0.853 1.000 0.938 0.985 0.893

C-MOP 
Adaptive

Zipf Uniform Taxi

MOP 
Simple

MOP 
Adaptive

C-MOP 
Simple

TABLE I: Evaluating cardinality estimation techniques.

90% ordered. The average key space needed to achieve these

ordered percentages are shown in Figure 18. All MOPs were

generated using the same sets of zipf, uniform, and taxi data.

C-MOP generation can better leverage key space in several,

smaller order preserving sections than one large one as new

layers can correct for distribution changes and help correct

mispredictions made while sampling.

The choice of estimator is also shown to have no effect on

the padding ratio as reaching a target ordered ratio requires

adjusting pitch until a specific slack value is reached. MOP

generation performance with regard to padding is dependent

on the distribution of values, so we do not see any padding

benefit when using different estimators. We therefore use a

simple estimator as it is less computationally expensive.

Fig. 18: Evaluating the space saving benefit of C-MOP with

regard to padding ratio.

7) Column Sortedness: As described in Section IV-A, MOP

draws the sample from the file head by default and falls back

to a uniform sampling strategy if the file appears sorted (i.e.

Kendall’s Tau [33] ≥ 0.8 or ≤ −0.8). In Figure 19 we observe

generating a MOP on sorted columns to justify this approach.

Experiments are run on both a sorted and randomized version

of three different columns, one with a zipf distribution, one

with a uniform distribution, and one from the taxi dataset.

The MOPs for the randomized columns were generated using

a head sample, and the MOPs for the sorted columns were

generated using both a head sample and a uniform sample.

Each sampling strategy for each column was then used to

generate both a 1-layer MOP and an 8-layer C-MOP.

When using head sampling on sorted columns, MOPs have

poor ordered percentages. All batch values being inserted after

the sample will be greater than the largest already inserted

value, so the only available room in the ordered section is in

the remaining space after the last sample value.
When forced to resample uniformly, the sample values will

reflect the overall column distribution, so ordered percentages

increase. However, generation then incurs the costs of taking

a uniform sample. To read and parse the file sequentially, the

entire column may have to be read before the batching process.

In certain cases, sampling may be cheap, such as a large file

stored on a distributed block store, and uniform sampling is

then preferred. For this work we target head-based samples,

as we assume that random access is expensive and reading

random records is expensive due to string escape characters

(e.g. line breaks occurring outside of record delimiters).

Fig. 19: Evaluating the impact of sorted data and sampling

strategy on a MOP’s ordered ratio.

8) Overall Compression Performance: In this experiment

set, we mainly focus on dictionary and bit-packing hybrid

encoding compression performance. With dictionary encoding

only, there is no storage overhead difference for MOP regard-

less of the key space used, as each record always takes exactly

4 bytes, which is not the case when bit-packing is introduced.

Here, we use bit-packing encoding to further encode the

targeted attributes in the previous experiment and report the

column size. We use bit-packing locally in each partition of a

Parquet file (called row groups) that truncates the keys to use

the fewest bits to represent the largest key in the partition (i.e.

3 bits needed for keys 0–7).

(a) TPC-H (b) Taxi

Fig. 20: Encoded Column Size and Dict Padding

As is shown in Figure 20a, the dashed line indicates the col-

umn size for the order preserving dictionary encoded dataset
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and the bars show the column size for MOP encoded datasets.

The blue line corresponding to the right vertical coordinate

represents the padding ratio in the MOP dictionary. For certain

ordered ratios there is the same storage cost compared with

OP. Even though the key space used for MOP increases, the

number of bits to represent the max value does not change.

For TPC-H one more bit is added on each record for the

dataset with ordered ratio from 72.0% to 90.1%, and two

more bits are needed if we want achieve MOP ordered ratio

99.8%. Three more bits are needed to get MOP ordered ratio

> 90% on targeted attribute of the Taxi dataset. According

to our experiment, 9.9% and 11.3% extra storage (compared

with OP encoded column size) are required respectively for

targeted attribute in the TPC-H and Taxi dataset to achieve a

MOP ordered ratio > 90%.

Figure 21 shows the impact of padding ratios on scanning

and decoding. Here, we take TPC-H lineitem shipdate and

generate various MOPs with varied padding ratios (via ordered

ratios). We then do a full scan of the column and decode every

encoded key sequentially. These results show that a larger

dictionary negatively impacts decoding performance.

Fig. 21: Scanning and decoding 180 million values.

VII. CONCLUSION

In this paper we introduce mostly order preserving dictio-

naries (MOP) for supporting efficient range queries on encoded

datasets. We present a technique for generating a MOP with

a limited sample of the input dataset while minimizing the

size of the dictionary. In addition, we introduce a variation

that uses cascading MOPs (C-MOP) that has multiple levels

of ordered keys. We present query rewriting rules to minimize

decoding of keys to minimize predicate evaluation latency.

We implement MOP and C-MOP in the open-source colum-

nar framework, Parquet, and evaluate query and generation

performance. Our results demonstrate that MOPs are able to

accelerate range filtering and sorting, and achieve high order

ratios with small samples.
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