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2
Motion and Recombination 
of Electrons and Holes

CHAPTER OBJECTIVES

The first chapter builds the necessary model for understanding semiconductors at
equilibrium. This chapter will consider how the electrons and holes respond to an
electric field and to a gradient in the carrier concentration. It is the response of charge
carriers to these disturbances that gives life to the myriad of semiconductor devices.
This chapter also introduces recombination and its opposite, generation. They are
nature’s ways of restoring the carrier concentrations to the equilibrium value by
annihilating and creating electron–hole pairs.

2.1 THERMAL MOTION

Even without an applied electric field, carriers are not at rest but possess finite
kinetic energies. The average kinetic energy of electrons, E – Ec, can be calculated
in the following manner:

(2.1.1)

The integration in Eq. (2.1.1) is to be carried out over the conduction band, and the
same approximations used in the derivation of Eq. (1.8.5) can be used here. The
result is 

(2.1.2)

●● ●

Average electron kinetic energy total kinetic energy 
number of electrons 
-----------------------------------------------------=

f E( )D E( ) E Ec–( ) Ed∫
f E( )D E( ) Ed∫

-----------------------------------------------------------=

Average kinetic energy =  3
2
---kT
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36 Chapter 2 ● Motion and Recombination of Electrons and Holes

It can be shown that Eq. (2.1.2) is true for both electrons and holes.1 The kinetic
energy in Eq. (2.1.2) may be used to estimate the thermal velocity, vth, of electrons
and holes by equating the energy with  or .

(2.1.3)

Electrons and holes move at the thermal velocity but not in a simple straight-line
fashion. Their directions of motion change frequently due to collisions or scattering
with imperfections in the crystal, more about which will be said in Section 2.2. The
carriers move in a zigzag fashion as shown in Fig. 2–1. The mean free time between
collisions is typically 10–13s or 0.1 ps (picosecond), and the distance between collisions
is a few tens of nanometers or a few hundred angstroms. The net thermal velocity
(averaged over time or over a large number of carriers at any given time) is zero. Thus,
thermal motion does not create a steady electric current, but it does introduce a
thermal noise.

1 In fact, Eq. (2.1.2) is applicable to many kinds of particles and is known as the equal-partition principle
because the kinetic energy of motion is equally partitioned among the three dimensions (x, y, z) – kT/2
for each direction. 

EXAMPLE 2–1 Thermal Velocity

What are the approximate thermal velocities of electrons and holes in silicon
at room temperature?

SOLUTION: Assume T = 300 K and recall mn = 0.26 m0.

Note that 1 J = 1 kg·m2/s2. Using mp = 0.39 m0 instead of mn , one would find
the hole thermal velocity to be 2.2 × 107cm/s. So, the typical thermal velocity of
electrons and holes is 2.5 × 107cm/s, which is about 1000 times slower than the
speed of light and 100 times faster than the sonic speed. 

mnvth
2 2⁄ mpvth

2 2⁄

vth
3kT

m
-----------=

  Kinetic energy 1
2
---mnv

th
2 3

2
---kT==

vth
3kT

m
-----------=

3 1.38 10 23–× J/K× 300 K 0.26 9.1 10 31– kg××⁄( )×( )
1 2⁄

=

2.3 105× m/s 2.3 107× cm/s==

(2.1.3) 
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2.1 ● Thermal Motion 37

FIGURE 2–1 The thermal motion of an electron or a hole changes direction frequently by 
scattering off imperfections in the semiconductor crystal.

�

�

● Hot-Point Probe, Thermoelectric Generator and Cooler ●

FIGURE 2–2 (a, b) Hot-point probe test can determine the doping type of a sample. 
(c) A thermoelectric generator converts heat into electric power.

Thermal motion can create a net current flow when there is a temperature
difference. Figure 2–2a shows an N-type semiconductor sample. A cold (room-
temperature) metal probe is placed on the sample close to a hot probe, perhaps a
soldering iron. The electrons around the hot probe have higher thermal velocity and
therefore on average move toward the cold side at a higher rate than the electrons
on the cold side move to the hot side. The imbalance causes the electrons to accumu-
late on the cold side and build up a negative voltage, which is detected with a voltmeter.
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38 Chapter 2 ● Motion and Recombination of Electrons and Holes

2.2 DRIFT  

Drift is the motion of charge carriers caused by an electric field. Clearly, drift is
usually at play when voltages are applied to a semiconductor device.

2.2.1 Electron and Hole Mobilities

The average velocity of the carriers is no longer zero when an electric field � is
applied to the semiconductor. This nonzero velocity is called the drift velocity. The
drift velocity is superimposed on the thermal motion as illustrated in Fig. 2–3. The
drift velocity is so much more important than the thermal velocity in semiconductor
devices that the term velocity usually means the drift velocity. A faster carrier velocity
is desirable, for it allows a semiconductor device or circuit to operate at a higher
speed. We can develop a model for the drift velocity using Fig. 2–3. Consider the case
for holes. Assume that the mean free time between collisions is τmp and that the
carrier loses its entire drift momentum, mpv, after each collision.2 The drift
momentum gained between collisions is equal to the force, q�, times the mean free
time. Equating the loss to the gain, we can find the steady state drift velocity, v.

 (2.2.1)

(2.2.2)

Equation (2.2.2) is usually written as 

Figure 2–2b shows that a positive voltage would be registered on the cold side if the
sample is P-type. This is a practical and simple technique of testing the doping type of
a semiconductor sample. It is called the hot-point probe test.

With engineering optimization, not only voltage but also significant electric power
can be created with a temperature difference across P- and N-type semiconductor
elements. Figure 2–2c is a schematic drawing of a thermoelectric generator. It powered
some early space satellites using the radioactive decay of radioactive materials as the
heat source. If, instead of extracting power from the device, current is fed into it, one set
of the junctions become cooler than the other. The device is then a thermoelectric
cooler. It can be used to cool a hot IC in a circuit board or beverages in a battery-
powered portable cooler.

2 Actually, it may take more than one collision for the carrier to lose its drift momentum. Another name
for τmp, the mean time for momentum relaxation, is therefore more accurate. Although we will study a
simplified analysis, be assured that a full analysis does lead to the same results as presented here.

● ●

mpv q�τmp=

v
q�τmp

mp
----------------=

v µp�=

µp
qτmp

mp
------------=

(2.2.3a)

(2.2.4a)

pp
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2.2 ● Drift 39

Equation (2.2.3a) simply says that the drift velocity is proportional to �. The
proportionality constant µp is the hole mobility, a metric of how mobile the holes
are. Similarly, electron drift velocity and electron mobility are

The negative sign in Eq. (2.2.3b) means that the electrons drift in a direction
opposite to the field �. They do so because the electron is negatively charged. We
should memorize these statements rather than the negative sign. 

Carrier mobility has the same dimension as v/�, i.e., cm2/V·s. Table 2–1 shows
some mobility values. Notice that GaAs has a much higher µn than Si (due to a
smaller mn). Thus, higher-speed transistors can be made with GaAs, which are
typically used in communications equipment. InAs has an even higher µn, but the
technology of fabricating InAs devices has not yet been fully developed.  

FIGURE 2–3 An electric field creates a drift velocity that is superimposed on the thermal 
velocity.

TABLE 2–1 • Electron and hole mobilities at room temperature of selected lightly 
doped semiconductors.

Si Ge GaAs InAs

µn (cm2/V·s) 1400 3900 8500 30, 000

µp (cm2/V·s) 470 1900 400 500

�

�

�

v µn�–=

µn
qτmn

mn
------------=

 (2.2.3b)

 (2.2.4b)

Hu_ch02v3.fm  Page 39  Thursday, February 12, 2009  12:22 PM



40 Chapter 2 ● Motion and Recombination of Electrons and Holes

2.2.2 Mechanisms of Carrier Scattering

We will now present a more detailed description of carrier collisions and show that
τmn and τmp in Eq. (2.2.4) can vary significantly with temperature and the doping
concentration. 

What are the imperfections in the crystal that cause carrier collisions or
scattering? There are two main causes: phonon scattering and ionized impurity
scattering. Phonons are the particle representation of the vibration of the atoms in
the crystal—the same sort of vibration that carries sound, hence the term phonons.
Crystal vibration distorts the periodic crystal structure and thus scatters the electron
waves. Instead of electron waves and vibration waves, it is more intuitive to think of
electron particles scattering off phonon particles. The mobility due to phonon
scattering alone, µphonon = qτph/m, is proportional to τph, the mean free time of
phonon scattering. But, what determines the phonon scattering mean free time? Let
us use the pinball machine for analogy. In a pinball machine, the mean time of
collisions between the ball and the pins is inversely proportional to the density of the
pins and the speed of the ball. Similarly, the mean free time of phonon scattering is
inversely proportional to the phonon density and the electron speed, which is
basically the thermal velocity. In addition, the phonon density is known to be
proportional to the absolute temperature, T.

So, the phonon scattering mobility decreases when temperature rises. What about
the impurity scattering mobility? The dopant ions are fixed charge in the
semiconductor crystal. They can make electrons and holes change the direction of
motion through the coulombic force. An electron can be scattered by either a
donor (positive) ion or an acceptor (negative) ion as shown in Fig. 2–4. The same is
true for a hole.

EXAMPLE 2–2 Drift Velocity, Mean Free Time, and Mean Free Path

Given µp = 470 cm2/V·s for Si, what is the hole drift velocity at � = 103 V/cm?
What is τmp and what is the average distance traveled between collisions, i.e.,
the mean free path?

SOLUTION: v = µp� = 470 cm2/V·s × 103 V/cm = 4.7 × 105cm/s

This is much lower than the thermal velocity, ~2.1 × 107cm/s.

From Eq. (2.2.4b),

τmp = µpmp/q = 470 cm2 × 0.39 × 9.1 × 10–31kg/1.6 × 10–19C

= 0.047 m2 × 2.2 × 10–12 kg/C = 1 × 10–13s = 0.1 ps

Mean free path = τmp νth ~ 1 × 10–13s × 2.2 × 107cm/s

= 2.2 × 10–6cm = 220 Å = 22 nm

µphonon τph∝

(2.2.5)
1

phonon density carrier thermal velocity×
----------------------------------------------------------------------------------------------------------- 1

T T1 2⁄⋅
-------------------- T 3 2⁄–∝ ∝ ∝
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2.2 ● Drift 41

In Fig. 2–4a, the repulsive coulombic force between the electron and the
negative ion deflects the motion of the electron. Figure 2–4b shows that an
attractive coulombic force can induce the same effect on the electron trajectory.3

The mobility due to impurity scattering is therefore inversely proportional to the
sum of the donor and acceptor ion concentrations. It is also proportional to T 3/2.
Why is the mobility higher, i.e., the scattering weaker, at a higher T? At a higher
temperature, the electron in Fig. 2–4 has a higher thermal velocity and flies by the
ion in a shorter time, and its direction of motion is thus less affected by the ion. A
sports analogy: a ball carrier that charges by a blocker at high speed gives the
blocker less of a chance to stop him.

(2.2.6)

When there is more than one scattering mechanism, the total scattering rate
(1/τ) and therefore the total mobility are determined by the sum of the inverses.

Figure 2–5 shows that the silicon hole mobility is about one-third of the
electron mobility. Part of this difference in mobility can be explained by the
difference in the effective mass (see Eq. (2.2.4)). The rest is attributable to the
difference in the scattering mean free time. The mobilities may be expressed as
(with Na and Nd in per cubic centimeter) [1, 2].

 (2.2.8)

FIGURE 2–4 An electron can be scattered by an acceptor ion (a) and a donor ion (b) in a 
strikingly similar manner, even though the ions carry opposite types of charge. The same is 
true for a hole (not shown).

3 This is how a space probe uses the attractive gravitational force of a planet to change its course in a
“slingshot” manner. 

(a) (b)

Electron

Boron ion
��

�

Electron

Arsenic
ion

�

µimpurity
T3 2⁄

Na Nd+
-------------------∝

1
τ
--- 1

τphonon
----------------- 1

τimpurity
-------------------+=

1
µ
--- 1

µphonon
------------------ 1

µimpurity
--------------------+=  (2.2.7b)

(2.2.7a)

µp cm2 V s⋅⁄( ) 420

1 Na Nd+( ) 1.6 1017×⁄[ ]
0.7

+
-------------------------------------------------------------------------- 50+=
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42 Chapter 2 ● Motion and Recombination of Electrons and Holes

(2.2.9)

You may notice that the inverse proportionality to dopant density
(Eq. (2.2.6)) is not followed in Eqs. (2.2.8) and (2.2.9) at the limit of very large Na or
Nd. The reason is free-carrier screening. When the carrier concentration is large,
the carriers can distribute themselves to partially screen out the coulombic field of
the dopant ions.

QUESTION ●  The electron mobility of an N-type silicon sample at 
room temperature is measured to be 600 cm2/V·s. Independent 
measurement shows that the electron concentration is n = 5 × 1016 cm–3.  
According to Fig. 2–5, µn should be significantly larger than 600 cm2/V·s if 
Nd = 5 × 1016 cm–3. What do you think may be responsible for the 
discrepancy? Be as quantitative as you can. Hint: Consider possible dopant 
compensation (Section 1.9).

Figure 2–6 shows a schematic plot of the temperature dependence of µn. At
small dopant concentrations, µ decreases with increasing T, indicative of the
dominance of phonon scattering (Eq. (2.2.5)). At very high dopant concentration
and low temperature, where impurity scattering is expected to dominate, µ indeed
increases with increasing T (Eq. (2.2.6)). The mobility data in Figs. 2–5 and 2–6 (and
Fig. 2–8) do not agree perfectly. This goes to show that it is not easy to measure
mobility accurately and that we should presume the existence of  uncertainties in
experimental data in general.

FIGURE 2–5 The electron and hole mobilities of silicon at 300  K. At low dopant 
concentration, the electron mobility is dominated by phonon scattering; at high dopant 
concentration, it is dominated by impurity ion scattering. (After [3].)
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2.2 ● Drift 43

FIGURE 2–6 Temperature dependence of the electron mobility in Si. (After [4], reprinted 
by permission of John Wiley & Sons, Inc.)
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● Velocity Saturation and Ballistic Transport ●

In small devices, the electric field can easily reach 105V/cm. If the electron
mobility is 103 cm2/V·s, the drift velocity, according to v = �µ, should be 108cm/s.
In reality, electron and hole velocities saturate at around 107cm/s and do not
increase beyond that, no matter how large � is (as shown in Figs. 6–20 and 6–21).
The culprit is optical phonon scattering. Optical phonons are high-energy phonons
that interact strongly with the electrons and holes. When the kinetic energy of a
carrier exceeds the optical phonon energy, Eopt , it generates an optical phonon
and loses the kinetic energy. Therefore, the velocity does not rise above saturation
velocity, vsat.

Mobility and even velocity saturation (see Section 2.2.2) are concepts that
describe the carrier motion averaged over many scattering events. These concepts
become fuzzy when we deal with devices whose sizes are smaller than the mean free
path. The motion of carriers in a nearly scattering-free environment is called ballistic
transport. Section 6.12 presents an example of this situation.

Eopt is about 40 meV, which puts vsat at around 107cm/s. Velocity saturation has
a deleterious effect on device speed as shown in Chapter 6. 

1
2
---mvsat

2 Eopt≈

vsat 2Eopt m⁄≈
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44 Chapter 2 ● Motion and Recombination of Electrons and Holes

2.2.3 Drift Current and Conductivity

Let us turn our attention to the current that flows in a semiconductor as a result of
carrier drift. The current density, J, is the charge per second crossing a unit area
plane normal to the direction of current flow. In the P-type semiconductor bar of
unit area shown in Fig. 2–7, the hole current density is

 (2.2.10)

 For example, if p = 1015cm–3 and v = 104cm/s, then Jp,drift = 1.6 × 10–19C ×
1015cm–3 × 104cm/s = 1.6 C/s·cm2 = 1.6 A/cm2.

Employing Eq. (2.2.3a), Eq. (2.2.10) can be written as 

 (2.2.11)

Similarly, the electron current density can be expressed as 

(2.2.12)

The total drift current density is the sum of the electron and the hole components:

 (2.2.13)

The quantity in the parentheses is the conductivity, σ, of the semiconductor

(2.2.14)

Usually only one of the components in Eq. (2.2.14) is significant because of
the large ratio between the majority and minority carrier densities. The resistivity,
ρ, is the reciprocal of the conductivity. The standard units of σ and ρ are A/V·cm (or
S/cm, S being siemens) and Ω·cm, respectively. ρ is shown as a function of the
dopant density in Fig. 2–8.

FIGURE 2–7 A P-type semiconductor bar of unit area is used to demonstrate the concept 
of current density.

Jp drift, qpv=
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2.2 ● Drift 45

FIGURE 2–8 Conversion between resistivity and dopant density of silicon at room 
temperature. (After [3].)

EXAMPLE 2–3 Temperature Dependence of Resistance

a. What is the resistivity, ρ, of silicon doped with 1017cm–3 of arsenic?
b. What is the resistance, R, of a piece of this silicon material 1 µm long and

0.1 µm2 in cross-sectional area?
c. By what factor will R increase (or decrease) from T = 300 K to T = 400 K?
d. What As concentration should one choose if she wishes to minimize the

change in (c)?

SOLUTION:

a. Using the N-type curve in Fig. 2–8, we find that ρ = 0.084 Ω·cm. You can
also answer this question using Fig. 2–5 and Eq. (2.2.14).

b. R = ρ × length/area = 0.084 Ω·cm × 1 µm / 0.1 µm2 
= 0.084 Ω·cm × 10–4cm /10–9cm–2 = 8.4 × 103Ω.
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46 Chapter 2 ● Motion and Recombination of Electrons and Holes

2.3 DIFFUSION CURRENT  

In addition to the drift current, there is a second component of current called the
diffusion current. Diffusion current is generally not an important consideration in
metals because of their high conductivities. The low conductivity and the ease of
creating nonuniform carrier densities make diffusion an important process in
semiconductors. 

Diffusion is the result of particles undergoing thermal motion as depicted in
Fig. 2–1. It is the familiar process by which particles move from a point of higher
particle density toward a point of lower density, as shown in Fig. 2–9. The aroma of
a cup of coffee travels across a room by the diffusion of flavor molecules through
the air. A drop of soy sauce spreads in a bowl of clear soup by diffusion, too. 

It is known that the rate of particle movement by diffusion is proportional to
the concentration gradient. If the electron concentration is not uniform, there will
be an electron diffusion current, which is proportional to the gradient of the
electron concentration.

We have introduced the proportional constant qDn. q is the elementary charge
(+1.6 × 10–19 C), and Dn is called the electron diffusion constant. The larger the Dn

c. The temperature dependent factor in σ (Eq. (2.2.14)) (and therefore in ρ)
is µn. Figure 2–6 (1017cm–3 curve) shows µn to decrease from 770 at 300 K
to 400 at 400K. We conclude that R increases by

d. The 1019cm–3 curve indicates nearly equal mobilities at 300 and 400K.
Therefore, that Nd would be a good choice. 1.1 × 1019 cm–3 would be an
even better choice.

FIGURE 2–9  Particles diffuse from high-concentration locations toward low-concentration 
locations.

770
400
--------- 1.93=

● ●

Jn diffusion,
dn
dx
------∝

Jn diffusion, qDn
dn
dx
-------=

 (2.3.1)

 (2.3.2)

Higher particle
concentration

Lower particle
concentration

Direction of diffusion
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is, the faster the electrons diffuse. In Section 2.4, we will see what determines Dn.
For holes,

(2.3.3)

Equation (2.3.3) has a negative sign, while Eq. (2.3.2) has a positive sign.
Instead of memorizing the signs, memorize Fig. 2–10. In Fig. 2–10, (a) shows a
positive dn/dx (n increases as x increases) and (b) shows a positive dp/dx. In (a),
electrons diffuse to the left (toward the lower concentration point). Because
electrons carry negative charge, the diffusion current flows to the right. In (b), holes
diffuse to the left, too. Because holes are positively charged, the hole current flows
to the left, i.e., the current is negative.

In general, both drift and diffusion may contribute to the current. Therefore,

2.4 RELATION BETWEEN THE ENERGY DIAGRAM AND V, �

When a voltage is applied across a piece of semiconductor as shown in Fig. 2–11a, it
alters the band diagram. By definition, a positive voltage raises the potential energy
of a positive charge and lowers the energy of a negative charge. It therefore lowers
the energy diagrams since the energy diagram plots the energy of an electron (a
negative charge). Figure 2–11c shows that the energy diagram is lower (at the left)
where the voltage is higher. The band diagram is higher where the voltage is lower.
(Ec and Ev are always separated by a constant, Eg.) The point to remember is that Ec
and Ev vary in the opposite direction from the voltage. Ec and Ev are higher where
the voltage is lower. That is to say 

(2.4.1)

FIGURE 2–10  A positive slope of carrier concentration produces a positive electron 
diffusion current (a), but a negative hole diffusion current (b).

Electron flow

x

n

Current flow

(a)

Hole flow
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Current flow
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Jp diffusion, q– Dp
dp
dx
-------=

Jn Jn drift, Jn diffusion, qnµn� qDn
dn
dx
-------+=+=

Jp Jp drift, Jp diffusion, qpµp� qDp
dp
dx
-------–=+=

J Jn Jp+=

        (2.3.4)

       (2.3.5)

    (2.3.6)

● ●

Ec x( ) cons ttan qV x( )–=
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48 Chapter 2 ● Motion and Recombination of Electrons and Holes

The q takes care of the difference between the units, eV and V. The “constant”
takes care of the unspecified and inconsequential zero references for Ec and V. The
“constant” drops out when one considers the electric field.

(2.4.2)

In other words, the slope of Ec and Ev indicates the electric field. The
direction of � in Fig. 2–11c is consistent with Eq. (2.4.2). Figure 2–11c suggests the
following analogies: the electrons roll downhill like stones in the energy band
diagram and the holes float up like bubbles.

2.5 EINSTEIN RELATIONSHIP BETWEEN D AND µ  

Consider a bar of semiconductor, whose band diagram is shown in Fig. 2–12. The
semiconductor is at equilibrium, and therefore the Fermi level EF is constant
(Section 1.7). The left side is more heavily doped than the right side, and so Ec is

FIGURE 2–11  Energy band diagram of a semiconductor under an applied voltage. 0.7 eV 
is an arbitrary value.
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2.5 ● Einstein Relationship Between D and µ 49

closer to EF  on the left side. Because Ec is not a constant, there is an electric field
equal to (1/q) dEc/dx, according to Eq. (2.4.2). This field is internally created and is
as real as a field created by an external voltage. Because the semiconductor is at
equilibrium, there cannot be any Jn (or Jp). From Eq. (2.3.4), 

(2.5.1)

Recall Eq. (1.8.5)

 (1.8.5)

dn/dx in Eq. (2.5.1) will now be substituted with Eq. (2.5.4)

(2.5.5)

The electron drift and diffusion currents will perfectly cancel each other out
for an arbitrary doping profile, if and only if Eq.(2.5.6a) is satisfied. This
remarkably simple relationship between the diffusion constant, Dn, and mobility
was derived by Albert Einstein. A close relationship between µ and D becomes
plausible when one realizes that all scattering mechanisms (e.g. phonon and

FIGURE 2–12 A piece of N-type semiconductor in which the dopant density decreases 
toward the right.
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            (2.5.2)

(Eq.(1.8.5) is used) (2.5.3)

(Eq.(2.4.2) is used)             (2.5.4)
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50 Chapter 2 ● Motion and Recombination of Electrons and Holes

impurity scatterings) that impede electron drift would also impede electron
diffusion. Equation (2.5.6a) and its counterpart for holes

are known as the Einstein relationship.

2.6 ELECTRON–HOLE RECOMBINATION  

The electron and hole concentrations introduced in Chapter 1 (for example, n  = Nd
and p = ni

2/Nd for an N-type sample) are the equilibrium carrier concentrations and
they will be denoted with n0 and p0 from now on. The electron and hole
concentrations can be different from n0 and p0, for example, when light shines on
the sample and generates electrons and holes (as shown in Fig. 1–12). The
differences are known as the excess carrier concentrations denoted by  and .

If  and are created by light,  and  are equal because the electrons
and holes are created in pairs. If  and  are introduced by other means, they will
still be equal to each other because of charge neutrality (Eq. (1.9.1)). Since charge
neutrality is satisfied at equilibrium when = = 0, any time a non-zero  is
present, an equal  must be present to maintain the charge neutrality, and vice
versa. Otherwise, the net charge will attract or repel the abundant majority carriers
until neutrality is restored. This conclusion for a charge neutral sample can be
written as

If the light is suddenly turned off, and  will decay with time until they
become zero and n and p return to their equilibrium values, n0 and p0. The process
of decay is recombination, whereby an electron and a hole recombine and
annihilate each other. The time constant of the decay is called the recombination
time or carrier lifetime, τ.

EXAMPLE 2–4 Diffusion Constant 

What is the hole diffusion constant in a piece of silicon doped with 3 × 1015cm–3

of donors and 7 × 1015cm–3 of acceptors at 300 K? at 400 K?

SOLUTION: Figure 2–5 shows that, for Nd + Nd = 3 × 1015 + 7 × 1015 = 1 ×
1016cm–3, µp is about 410 cm2/V·s at 300 K. Dp = (kT/q)µp = 26 mV ×
410cm2/V·s = 11cm2/s. Do you remember kT/q = 26 mV at room temperature?

For the 400 K case, we turn to Fig. 2–6, which shows for N =1016cm–3 and
T = 127oC, µp = 220 cm2/V·s. 

Dp = µp(kT/q) = 220cm2/V·s × 26 mV × (400 K/300 K) = 7.6cm2/V·s.

Dp
kT
q

-------µp=    (2.5.6b)

● ●

n′ p′

n n0 n′+≡

p p0 p′+≡

  (2.6.1a)

   (2.6.1b)

n′ p′ n′ p′
n′ p′

n′ p′ n′
p′

n′ p′≡       (2.6.2)

n′ p′
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2.6 ● Electron–Hole Recombination 51

(2.6.3)

The recombination rate (per cubic centimeter per second) is proportional to
and 

(2.6.4)

τ has the dimension of time and is typically around 1µs in Si. It may range from 1
ns to 1 ms, depending on the density of trace metal impurities such as Au and Pt, which
form traps in the band gap with several energy levels deep in the band gap. These deep
traps can capture electrons or holes to facilitate recombination (as shown in Fig. 2–13)
and thus shorten the recombination time (they are also called recombination centers).
Too small a τ is bad for device leakage current, and hence extreme cleanliness is
maintained in the semiconductor fabrication plants partly to avoid these metallic
contaminants. The other recombination process shown in Fig. 2–13, direct
recombination, or radiative recombination, is very inefficient and unimportant in
silicon because the electrons and holes at the edges of the band gap do not have the
same wave vectors (see Section 1.5.1 and Figure 4–27b). These types of semiconductors
are called indirect gap semiconductors. The radiative recombination process is very
efficient in direct gap semiconductors such as GaAs because the electrons and holes
have the same wave vectors (see Figure 4–27a) and is responsible for light emission in
light-emitting diodes and lasers, which will be presented in Chapter 4.

Echoes in a canyon eventually die out. So do ripples produced by a cast stone.
Nature provides ways to restore equilibrium. Recombination is nature’s way of
restoring and  to zero.

FIGURE 2–13 An electron–hole pair recombines when an electron drops from the 
conduction band into the valence band. In silicon, direct recombination is unimportant and 
the lifetime is highly variable and determined by the density of recombination centers.

EXAMPLE 2–5 Photoconductors

A bar of Si is doped with boron at 1015cm–3. It is exposed to light such that
electron–hole pairs are generated throughout the volume of the bar at the
rate of 1020/s·cm3. The recombination lifetime is 10 µs. What are (a) p0, (b) n0,
(c)  (d)  (e) p, (f) n, and (g) the np product? (h) If the light is suddenly
turned off at t = 0, find for t > 0.

SOLUTION:

a. p0 = Na = 1015cm–3 is the equilibrium hole concentration.

b. n0 = ni
2/p0 ≈ 105cm–3 is the equilibrium electron concentration.

dn′
dt

-------- n′
τ
-----– p′

τ
-----–= =

n′ p′.

Recombination rate n′
τ
----- p′

τ
-----= =

n′ p′

Ec

Ev

Direct
recombination Recombination through

traps

p′, n′,
n′ t( )
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52 Chapter 2 ● Motion and Recombination of Electrons and Holes

2.7 THERMAL GENERATION  

The reverse process of recombination is called thermal generation. At any nonzero
temperature, electron–hole pairs are constantly being generated and lost (by
recombination). If  =  = 0, the rate of recombination equals the rate of generation
and the net rate of change is zero. If  is positive, there is a net recombination rate as
shown in Eq. (2.6.4). If  is negative, i.e., there are fewer electrons than the equilibrium
concentration, nature sees to it that there is a net rate of thermal generation rather than
recombination. Equation (2.6.3) confirms this fact by predicting a positive d /dt. Later
we will see that thermal generation is responsible for the leakage current in diodes.

When the np product is equal to ni
2, the rate of thermal generation is equal to

the rate of recombination. Under this condition, n and p are said to be at thermal
equilibrium. When np > ni

2, there is net recombination; when np < ni
2, there is net

generation. The terms recombination and generation rates generally refer to the net
rates of recombination and generation.

2.8 QUASI-EQUILIBRIUM AND QUASI-FERMI LEVELS  

Whenever , the semiconductor is not at equilibrium. More precisely, the
electrons and holes are not at equilibrium with each other. Nonetheless, we would
like to preserve and use, as much as possible, the following equilibrium
relationships, which we have found to be very useful.

c. In steady state, the rate of generation is equal to the rate of recombination
(Eq. (2.6.4)).

1020/s·cm3 = /τ

∴  = 1020/s·cm3·t = 1020/s·cm3·10–5s = 1015cm–3 

d. = = 1015cm–3 (Eq. (2.6.2))

e. p = p0 + = 1015cm–3 + 1015cm–3 = 2 × 1015cm–3 

f. n = n0 + = 105cm–3 + 1015cm–3 ≈ 1015cm–3.  The non-equilibrium minority
carrier concentration is often much much larger than the small equilibrium
concentration.

g. np ≈ 2 × 1015cm–3 × 1015cm–3 = 2 × 1030cm–6 >> ni
2 = 1020cm–6. The np product

can be very different from ni
2.

h. The solution to Eq. (2.6.4) is 

Therefore, decays exponentially toward its equilibrium value of zero. The
characteristic time of the exponential decay is the carrier lifetime, τ.

p′

p′

n′ p′

p′

n′

n′ t( ) n′ 0( )e t τ⁄– 1015cm 3– e t τ⁄–= =

n′

● ●

n′ p′
n′

n′

n′

● ●

np ni
2≠
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2.8 ● Quasi-Equilibrium and Quasi-Fermi Levels 53

The problem is that the above equations, when multiplied together, lead to
np = ni

2. We saw in Example 2-5(g) that the presence of excess carriers can easily
make the np product much larger than ni

2. This problem can be addressed by
introducing two quasi-Fermi levels, EFn and EFp, such that

EFn and EFp are the electron and hole quasi-Fermi levels. When electrons and
holes are at equilibrium, i.e., when np = ni

2, EFn and EFp coincide and this is
known as EF. Otherwise, EFn ≠ EFp. Equations (2.8.1) and (2.8.2) indicate that
even when electrons and holes, as two groups, are not at equilibrium with each
other, the electrons (and holes) can still be at equilibrium among themselves.
Electrons and holes, as two groups of particles, can get out of equilibrium easily
because they are only loosely coupled by the recombination/generation
mechanism, which is a slow process (has a long time constant around 1 µs). In
contrast, the electrons (or holes) are strongly coupled among themselves by
exchanging positions and energy through thermal motion at high speed and by
scattering with 0.1 ps mean free time. The usefulness of this quasi-equilibrium
concept will become clear in later applications.

EXAMPLE 2–6 Quasi-Fermi Levels and Low-Level Injection 

Consider an Si sample with Nd = 1017cm–3. 

a. Find the location of EF.
b. Find the location of EFn and EFp when excess carriers are introduced such

that = = 1015cm–3.

Notice that  and are much less than the majority carrier concentration.
This condition is commonly assumed and is called low-level injection. The
opposite condition, high-level injection, is often encountered in bipolar
transistors (Section 8.4.4).

SOLUTION:

a. Using Eq. (1.8.5)

EF is below Ec by 0.15 eV.

n Nce
Ec EF–( )– kT⁄

=

p Nve
EF Ev–( )– kT⁄

=

 (1.8.5)

(1.8.8)

n Nce
Ec EFn–( )– kT⁄

=

p Nve
EFp Ev–( )– kT⁄

=

        (2.8.1)

 (2.8.2)

n′ p′
n′ p′

n Nd 1017cm 3– Nce
Ec EF–( ) kT⁄–

== =

Ec EF– kT 
Nc

1017cm 3–
------------------------ 26 meV 2.8 1019cm 3–×

1017cm 3–
------------------------------------- 0.15 eV=ln⋅=ln=
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54 Chapter 2 ● Motion and Recombination of Electrons and Holes

2.9 CHAPTER SUMMARY  

In the presence of an electric field, charge carriers gain a drift velocity and produce
a drift current density in proportion to �;

µp and µn are called the hole and electron mobility. They are determined by how
frequently the carriers collide with phonons or dopant ions and lose their drift

b.

Using Eq. (2.8.1),

EFn is basically unchanged from the EF  in (a) as illustrated in Fig. 2–14.

Using Eq. (2.8.2)

FIGURE 2–14 Location of EF, EFn, and EFp.

n n0 n′+ Nd n′+ 1.01 1017cm 3–×= = =

1.01 1017cm 3–× Nce
Ec EFn–( ) kT⁄–

=

Ec EFn– kT 
Nc

1.01 1017cm 3–×
---------------------------------------- 26 meV 2.8 1019cm 3–×

1.01 1017cm 3–×
---------------------------------------- 0.15 eV=ln⋅=ln=

p p0 p′+
ni

2

Nd
------- p′+ 103cm 3– 1015cm 3–+ 1015cm 3–= = = =

1015cm 3– Nve
EFp Ev–( )– kT⁄

=

EFp Ev– kT 
Nv

1015cm 3–
------------------------ 26 meV 1.04 1019cm 3–×

1015cm 3–
---------------------------------------- 0.24 eV=ln⋅=ln=

0.15 eV
Ec

EF

EFp 0.24 eV

EFn

Ev

● ●

vp µp�=

vn µn�–=

Jp drift, qpµp�=

Jn drift, qnµn�=

      (2.2.3a)

   (2.2.3b)

   (2.2.11)

(2.2.12)
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2.9 ● Chapter Summary 55

momentum. Mobilities are functions of temperature and the total dopant
concentration.  Measured mobility data are routinely presented in figures.

The second important transport mechanism is diffusion. Diffusion current
density is proportional to the gradient of the carrier concentration.

Dn and Dp are the electron and hole diffusion constants. Both drift and diffusion are
perturbations to the same thermal motion, and both are slowed down by the same
collisions that are responsible for the zigzag paths of the thermal motion. As a
result, D and µ are related by the Einstein relationship:

The sum of Jdrift and Jdiffusion is the total current density.
The minority carrier concentration, e.g., p in an N-type semiconductor, can

easily be increased from its equilibrium concentration p0 by orders of magnitude
with light or by another means to be presented in Chapter 4, so that

 (2.6.1b)

 is the excess hole concentration. In a charge neutral region, 

(2.6.2)

Charge nonneutrality will generate an electric field that causes the majority carriers
to redistribute until neutrality is achieved.

The electron–hole recombination rate is proportional to (= ):

τ is the recombination lifetime and ranges from nanoseconds to milliseconds for Si,
depending on the density of trace metal impurities that form deep traps.

When excess minority carriers are present, the pn product can be orders of
magnitude larger than ni

2. Clearly, electrons and holes as two groups of particles are
not at equilibrium with each other. Within each group, however, the carriers are still
at equilibrium among themselves and share one common (quasi) Fermi level at
different locations. This situation is called quasi-equilibrium and the following
relationships are useful:

EFn and EFp are the quasi-Fermi levels of electrons and holes.

Jn diffusion, qDn
dn
dx
-------=

Jp diffusion, q– Dp
dp
dx
-------=

(2.3.2)

(2.3.3)

Dn
kT
q

-------µn=

Dp
kT
q

-------µp=   (2.5.6b)

 (2.5.6a)

p p0 p′ >> p0+≡

p′

n′ p′≡

n′ p′

Recombination rate n′
τ
----- p′

τ
-----= =

n Nce
Ec EFn–( )– kT⁄

=

p Nve
EFp Ev–( )– kT⁄

=

(2.8.1)

(2.8.2)
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PROBLEMS

● Mobility ●

2.1 (a) For an electron mobility of 500 cm²/V·s, calculate the time between collisions.
(Take mn = m0 in these calculations.)

(b) For an electric field 100 V/cm, calculate the distance an electron travels by drift
between collisions. 

2.2 An electron is moving in a piece of very lightly doped silicon under an applied field
such that its drift velocity is one-tenth of its thermal velocity. Calculate the average
number of collisions it will experience in traversing by drift a region 1 µm long.   What
is the voltage across this region? 

2.3 The electron mobility is determined by collisions that come in two flavors:

(1) scattering due to phonons (lattice vibrations) and

(2) scattering due to ionized impurities.

The mobilities from phonon interactions alone, µ1, and from ionized impurities alone 
µ2, depend on the electron effective mass mn, ionized impurity density Ni, and 
temperature as follows:

Consider a uniformly doped N-type semiconductor with Nd = 1017cm–3 and mn =
0.27m0.

(a) Make a plot of log( ) and log( ) versus temperature from 100 to 700 K.

(b) What is the total electron mobility at 300 K?

(c) Calculate the electron drift current density if the sample is biased as shown in
Fig. 2–15 (T = 300 K): 

● Drift ●

2.4 Phosphorus donor atoms at a concentration of 1016cm–3 are distributed uniformly
throughout a silicon sample.

(a) What is the sample resistivity at 300 K?

(b) If 1017cm–3 of boron is included in addition to the phosphorus, what is the resulting
resistivity and conductivity type (N-type or P-type material)?

(c) Sketch the energy band diagram for part (a) and for part (b) and show the position
of the Fermi level. 

FIGURE 2–15

● ●

µ1
2.2 10 70–×
mn

5 2⁄ T3 2⁄
--------------------------kg

5 2⁄ K3 2⁄ cm2 V s⋅( )⁄=

µ2
7.45T 3 2⁄

mn
1 2⁄ Ni

-----------------------kg
1 2⁄ cm K3 2⁄ V s⋅ ⋅ ⋅( )⁄=

µ1 µ2

1 nm

1 V

N
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2.5 An N-type silicon sample has a uniform density Nd = 1017cm–3 of arsenic, and a P-type
sample has Na = 1015cm–3.  A third sample has both impurities present at the same time.

(a) Find the equilibrium minority carrier concentrations at 300 K in each sample.

(b) Find the conductivity of each sample at 300 K.

(c) Find the Fermi level in each material at 300 K with respect to either the conduction
band edge (Ec) or the valence band edge (Ev).

2.6 (a) A silicon sample maintained at T = 300 K is uniformly doped with Nd = 1016cm–3

donors.  Calculate the resistivity of the sample.

(b) The silicon sample of part (a) is “compensated” by adding Na = 1016cm–3

acceptors.  Calculate the resistivity of the compensated sample.  (Exercise caution
in choosing the mobility values to be employed in this part of the problem.)

(c) Compute the resistivity of intrinsic (Na = 0, Nd = 0) silicon at T = 300 K.  Compare
it with the result of part (b) and comment.  

2.7 A sample of N-type silicon is at the room temperature.  When an electric field with a
strength of 1000 V/cm is applied to the sample, the hole velocity is measured and found
to be 2 × 105 cm/sec.

(a) Estimate the thermal equilibrium electron and hole densities, indicating which is
the minority carrier.

(b) Find the position of EF with respect to Ec and Ev.

(c) The sample is used to make an integrated circuit resistor.  The width and height of
the sample are 10 µm and 1.5 µm, respectively, and the length of the sample is
20 µm.  Calculate the resistance of the sample. 

● Diffusion ●

2.8 A general relationship for the current density carried by electrons of density n is J = qnv,
where q is the electronic charge and v is the electron velocity.

(a) Find the velocity of electrons, v(x), that are moving only by diffusion if they have a
density distribution of .  The electric field is zero.

(b) What would be the electric field, �(x), that would lead to an electron drift velocity
equal to that of the diffusion velocity in part (a)?

(c) At 300 K, what value of  would make the field in part (b) to be 1000 V/cm? 

2.9 Figure 2–16 is a part of the energy band diagram of a P-type semiconductor bar under
equilibrium conditions (i.e., EF is constant).  The valence band edge is sloped because
doping is nonuniform along the bar.  Assume that Ev rises with a slope of 

(a) Write an expression for the electric field inside this semiconductor bar.

(b) Within the Boltzmann approximation, what is the electron concentration n(x) along
the bar? Assume that n(x = 0) is n0. Express your answer in terms of n0, ∆ , and L.

FIGURE 2–16

n x( ) n0 x λ⁄–( )exp=

λ

∆ L .⁄

EF

Ev

L
x

�

0
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58 Chapter 2 ● Motion and Recombination of Electrons and Holes

(c) Given that the semiconductor bar is under equilibrium, the total electron and hole
currents are individually zero. Use this fact and your answers to parts (a) and
(b) to derive the Einstein relation (Dn/µn = kT/q) relating electron mobility and
diffusion constant. 
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