CEE 271: Applied Mechanics II, Dynamics

 - Lecture 4: Ch.12, Sec.6-7-Prof. Albert S. Kim

Civil and Environmental Engineering, University of Hawaii at Manoa
Date: \qquad

MOTION OF A PROJECTILE (12.6)

Today's objectives: Students will be able to
(1) Analyze the free-flight motion of a projectile.

In-class activities:

- Reading Quiz
- Applications
- Kinematic Equations for
- Projectile Motion
- Concept Quiz
- Group Problem Solving
- Attention Quiz

APPLICATIONS(continued)

- A basketball is shot at a certain angle. What should the shooter consider in order for the basketball to pass through the basket?
- Distance, speed, the basket location, ... anything else ?

READING QUIZ

(1) The downward acceleration of an object in free-flight motion is
(a) zero.
(b) increasing with time.
(c) $9.81 \mathrm{~m} / \mathrm{s}^{2}$.
(d) $9.81 \mathrm{ft} / \mathrm{s}^{2}$.

ANS:
(2) The horizontal component of velocity remains \qquad during a free-flight motion.
(a) zero
(b) constant
(c) at $9.81 \mathrm{~m} / \mathrm{s}^{2}$
(d) at $32.2 \mathrm{ft} / \mathrm{s}^{2}$ ANS:

- A good kicker instinctively knows at what angle, θ, and initial velocity, v_{A}, he must kick the ball to make a field goal.
- For a given kick 'strength', at what angle should the ball be kicked to get the maximum distance?

Projectile motion can be treated as two rectilinear motions, one in the \qquad direction experiencing \qquad acceleration and the other in the \qquad direction experiencing \qquad acceleration (i.e., from).

For illustration, consider the two balls on the left. The red ball falls from rest, whereas the yellow ball is given a horizontal velocity. Each picture in this sequence is taken after the same time interval. Notice both balls are subjected to the same downward acceleration since they remain at the same elevation at any instant. Also, note that the horizontal distance between successive photos of the yellow ball is constant since the velocity in the horizontal direction is constant.

- Given: v_{0} and θ
- Find: The equation that defines y as a function of x.
- Plan: Eliminate time from the kinematic equations.
- Solution : Using $v_{x}=v_{0} \cos \theta$ and $v_{y}=v_{0} \sin \theta$ \qquad
- We can write: $x=\left(v_{0} \cos \theta\right) t$ or $t=x /\left(v_{0} \cos \theta\right)$
- By substituting for $t \mathrm{in}$:

$$
\begin{align*}
y & =\left(v_{0} \sin \theta\right) t-\frac{1}{2} g(t)^{2} \tag{4}\\
y & =\left(v_{0} \sin \theta\right) \times \frac{x}{v_{0} \cos \theta}-\frac{1}{2} g \times\left(\frac{x}{v_{0} \cos \theta}\right)^{2} \tag{5}
\end{align*}
$$

KINEMATIC EQUATIONS: HORIZONTAL MOTION

- Since \qquad , the velocity in the horizontal direction remains constant $\left(v_{x}=v_{0 x}\right)$ and the position in the x-direction can be determined by:
- Why is $a_{x}=0$ (assuming movement through the air)?

KINEMATIC EQUATIONS: VERTICAL MOTION

EXAMPLE I (continued)

- Simplifying the last equation, we get:

$$
y=
$$

- The above equation is called the \qquad which describes the path of a particle in projectile motion.
- The equation shows that the path is \qquad .
- Since the positive y-axis is directed upward,
- Application of the \qquad acceleration equations yields:

$$
\begin{align*}
& =v_{0 y}-g t \tag{1}\\
& =y_{0}+\left(v_{0 y}\right) t-\frac{1}{2} g t^{2} \tag{2}\\
& =v_{0 y}^{2}-2 g\left(y-y_{0}\right) \tag{3}
\end{align*}
$$

- For any given problem, only two of these three equations can be used. Why?

EXAMPLE II

- Plan:
(1) Establish a fixed x, y coordinate system (in this solution, the origin of the coordinate system is placed at A).
(2) Apply the kinematic relations in x - and y-directions
- Given : Projectile is fired with $v_{A}=150 \mathrm{~m} / \mathrm{s}$ at point A.
- Find: The horizontal distance it travels (R) and the time in the air.

EXAMPLE II (continued)

Solution:

- Motion in x-direction:

$$
\begin{align*}
x_{B} & =x_{A}+v_{0 x}\left(t_{A B}\right) \tag{6}\\
(4 / 5) 100 & = \tag{7}\\
t_{A B} & =\frac{80}{v_{A}\left(\cos 25^{\circ}\right)}= \tag{8}
\end{align*}
$$

- Motion in y-direction:

$$
\begin{align*}
y_{B} & =y_{A}+v_{0 y}\left(t_{A B}\right)-\frac{1}{2} g\left(t_{A B}\right)^{2} \tag{9}\\
-64 & = \tag{10}\\
v_{A} & =\mathrm{m} / \mathrm{s} \tag{11}
\end{align*}
$$

ATTENTION QUIZ

1. A projectile is given an initial velocity v_{0} at an angle ϕ above the horizontal. The velocity of the projectile when it hits the slope is the initial velocity v_{0}.

(a) less than
(b) equal to
(c) greater than
(d) None of the above.

ANS:
2. A particle has an initial velocity v_{0} at angle θ with respect to the horizontal. The maximum height it can reach is when
(a) $\theta=30^{\circ}$
(b) $\theta=45^{\circ}$
(c) $\theta=60^{\circ}$
(d) $\theta=90^{\circ}$

ANS: \qquad

- Given: A skier leaves the ski jump ramp at $\theta_{A}=25^{\circ}$ and hits the slope at B.
- Find: The skier's initial speed v_{A}.

Plan: Establish a x, y coordinate system (in this solution, the origin of the coordinate system is placed at A). Apply the \qquad relations in x - and y-directions.

Today's objectives: Students will be able to
(1) Determine the normal and tangential components of velocity and acceleration of a particle traveling along a curved path.

In-class activities:

- Reading Quiz
- Applications
- Normal and Tangential Components of Velocity and Acceleration
- Special Cases of Motion
- Concept Quiz
- Group Problem Solving
- Attention Quiz

- A roller coaster travels down a hill for which the path can be approximated by a function
- The roller coaster starts from rest and increases its speed at a
\qquad rate.
- How can we determine its velocity and acceleration at the bottom?
- Why would we want to know these values?

READING QUIZ

(1) If a particle moves along a curve with a constant speed, then its tangential component of acceleration is
(a) positive.
(b) negative.
(c) zero.
(d) constant.

ANS:
(2) The normal component of acceleration represents
(a) the time rate of change in the magnitude of the velocity.
(b) the time rate of change in the direction of the velocity.
(c) magnitude of the velocity.
(d) direction of the total acceleration.

ANS: \qquad

APPLICATIONS

- Cars traveling along a clover-leaf
 interchange experience an acceleration due to a change in velocity as well as due to a change in \qquad of the velocity.
- If the car's speed is increasing at a known rate as it travels along a curve, how can we determine the magnitude and direction of its total acceleration?
-Why would you care about the total acceleration of the car?

NORMAL AND TANGENTIAL COMPONENTS (continued)

Radius of curvature

- The positive n and t directions are defined by the unit vectors \hat{u}_{n} and \hat{u}_{t}, respectively.
- The center of curvature, O^{\prime}, always lies on the concave side of the curve.
- The \qquad , ρ, is defined as the perpendicular distance from the curve to the center of curvature at that point.
- The position of the particle at any instant is defined by the distance, s, along the curve from a fixed reference point.
- In the $n-t$ coordinate system, the origin is located on the particle (the origin moves with the particle).
- The t-axis is tangent to the path (curve) at the instant considered, $\overline{\text { positive }}$ in the direction of the particle's motion.
- The n-axis is perpendicular to the t-axis with the positive direction toward the center of curvature of the curve.

NORMAL AND TANGENTIAL COMPONENTS (Section 12.7)

- When a particle moves along a \qquad
path, it is sometimes convenient to describe its motion using coordinates other than Cartesian. When the path of motion is known, \qquad and coordinates are often used.

\qquad
- The velocity vector is always ___ to the path of motion $\overline{(t \text {-direction).. }}$

Velocity

- The magnitude is determined by taking the time derivative of the path function, $s(t): \boldsymbol{v}=v \hat{u}_{t}$ where $v=\dot{s}=d s / d t$
- Here v defines the magnitude of the velocity (speed) and \hat{u}_{t} defines the direction of the velocity vector.

ACCELERATION IN THE $n-t$ COOR. SYSTEM

- Acceleration is the time rate of change of velocity:

- Here \dot{v} represents the change in the magnitude of velocity and $\dot{\hat{u}}_{t}$ represents the rate of change in the direction of \hat{u}_{t}.

- After mathematical manipulation, the acceleration vector can be expressed as:

$$
\boldsymbol{a}=\dot{v} \hat{u}_{t}+\quad \hat{u}_{n}=a_{t} \hat{u}_{t}+a_{n} \hat{u}_{n}
$$

There are some special cases of motion to consider.
(1) The particle moves along a straight line:

The tangential component represents the time rate of change in the magnitude of the velocity.
(2) The particle moves along a curve at constant speed:

The normal component represents the time rate of change in the direction of the velocity.

SPECIAL CASES OF MOTION (continued)

(1) The tangential component of acceleration is constant, $a_{t}=\left(a_{t}\right)_{c}$. In this case,

$$
\begin{align*}
s & =s_{o}+v_{o} t+\left(\frac{1}{2}\right)\left(a_{t}\right)_{c} t^{2} \tag{12}\\
v & =v_{o}+\left(a_{t}\right)_{c} t \tag{13}\\
v^{2} & =\left(v_{o}\right)^{2}+2\left(a_{t}\right)_{c}\left(s-s_{o}\right) \tag{14}
\end{align*}
$$

As before, s_{o} and v_{o} are the initial position and velocity of the particle at $t=0$. How are these equations related to motion equations? Why?
(2) The particle moves along a path expressed as $y=f(x)$. The radius of curvature, ρ, at any point on the path can be calculated from

ACCELERATION IN THE $n-t$ COOR. SYSTEM (continued)

- So, there are two components to the acceleration vector: $a=a_{t} \hat{u}_{t}+a_{n} \hat{u}_{n}$

Acceleration

- The tangential component is tangent to the curve and in the direction of increasing or decreasing velocity. or
- The normal or centripetal component is always directed of curvature of the curve:
- The magnitude of the acceleration vector is

$$
a=\sqrt{\left(a_{t}\right)^{2}+\left(a_{n}\right)^{2}}
$$

THREE-DIMENSIONAL MOTION

- If a particle moves along a space curve, the n and t axes are defined as before. At any point, the t-axis is tangent to the path and the n-axis points toward the center of curvature. The plane containing the n and t axes is called the osculating plane.
- A third axis can be defined, called the binomial axis, b. The binomial unit vector, \hat{u}_{b}, is directed perpendicular to the osculating plane, and its sense is defined by the cross product $\hat{u}_{b}=\hat{u}_{t} \times \hat{u}_{n}$.
- There is __ motion, thus __ velocity or acceleration, in the binomial direction.

- Given: A boat travels around a circular path, $\rho=40 \mathrm{~m}$, at a speed that increases with time, $v=\left(0.0625 t^{2}\right) \mathrm{m} / \mathrm{s}$.
- Find: The magnitudes of the boat's velocity and acceleration at the instant $t=10 \mathrm{~s}$.
- Plan:

The boat starts from rest ($v=0$ when $t=0$).
(1) Calculate the speed at $t=10 \mathrm{~s}$ using $v(t)$.
(2) Calculate the tangential and normal components of acceleration and then the magnitude of the acceleration vector.

EXAMPLE (continued)

Solution:
(1) The velocity vector is $\boldsymbol{v}=v \hat{u}_{t}$, where the magnitude is given by $v=0.0625 t^{2} \mathrm{~m} / \mathrm{s}$.
At $t=10 \mathrm{~s}: v=0.0625 t^{2}=0.0625(10)^{2}=\quad \mathrm{m} / \mathrm{s}$
(2) The acceleration vector is
$\boldsymbol{a}=a_{t} \hat{u}_{t}+a_{n} \hat{u}_{n}=$
a. Tangential component:
$a_{t}=\dot{v}=d\left(.0625 t^{2}\right) / d t=\quad \mathrm{m} / \mathrm{s}^{2}$
At $t=10 \mathrm{~s}: a_{t}=0.125 t=0.125(10)=1.25 \mathrm{~m} / \mathrm{s}^{2}$
b. Normal component: $a_{n}=\quad \mathrm{m} / \mathrm{s}^{2}$

At $t=10 \mathrm{~s}: a_{n}=(6.25)^{2} /(40)=0.9766 \mathrm{~m} / \mathrm{s}^{2}$
c. The magnitude of the acceleration is
$a=\left[\left(a_{t}\right)^{2}+\left(a_{n}\right)^{2}\right]^{0.5}=\left[(1.25)^{2}+(0.9766)^{2}\right]^{0.5}=\quad \mathrm{m} / \mathrm{s}^{2}$

CHECK YOUR UNDERSTANDING QUIZ

(1) A particle traveling in a circular path of radius 300 m has an instantaneous velocity of $30 \mathrm{~m} / \mathrm{s}$ and its velocity is increasing at a constant rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. What is the magnitude of its total acceleration at this instant?
(a) $3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4 \mathrm{~m} / \mathrm{s}^{2}$
(c) $5 \mathrm{~m} / \mathrm{s}^{2}$
(d) $-5 \mathrm{~m} / \mathrm{s}^{2}$

ANS:
(2) If a particle moving in a circular path of radius 5 m has a velocity function $v=4 t^{2} \mathrm{~m} / \mathrm{s}$, what is the magnitude of its total acceleration at $t=1 \mathrm{~s}$?
(a) $8 \mathrm{~m} / \mathrm{s}^{2}$
(b) $8.6 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3.2 \mathrm{~m} / \mathrm{s}^{2}$
(d) $11.2 \mathrm{~m} / \mathrm{s}^{2}$ ANS:
\qquad

ATTENTION QUIZ

(1) The magnitude of the normal acceleration is
(a) proportional to radius of curvature.
(b) inversely proportional to radius of curvature.
(c) sometimes negative.
(d) zero when velocity is constant.

ANS:
(2) The directions of the tangential acceleration and velocity are always
(a) perpendicular to each other.
(b) collinear.
(c) in the same direction.
(d) in opposite directions. ANS: \qquad

