MOTOR BRANCH CIRCUIT OVER-CURRENT PROTECTION

FOR HVAC PROJECT ENGINEERS

FACHGESPRACH – 9 ©WTF INSTITUTE OF HIGHER LEARNING® BY MAT ANSARI PE

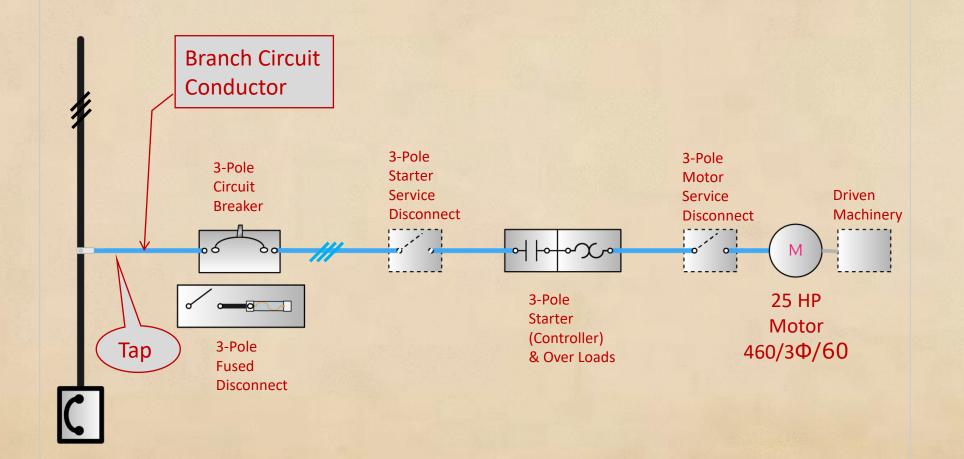
For HVAC Project Engineer's Reference Use Only

Not for Electrical Design or Construction

A Tunnel Vision Look at NEC No Code Articles Referenced

DISCONNECTS

CIRCUIT BREAKERS


MOTOR STARTERS

MOTOR OVERLOADS

MOTOR BRANCH CIRCUITS

Let us use a 480 Volt 3-Phase System for our example.

(1-Phase motors will have only one pole like below. One hot and one Neutral/Grounded. You are not allowed to switch or fuse the Grounded conductor.)

QUICK REVIEW OF OUR LAST FACHGESPRACH – WIRE SIZING

HOW MUCH CURRENT DOES THE CONDUCTOR NEED TO CARRY?

1. HVAC Equipment (Packaged, Unitary, and Split etc.)

The wire must safely carry the Manufacturer's MCA (Minimum Circuit Ampacity).

2. Stand Alone Motors (Fans and Pumps etc.)

The wire must safely carry 125% of the motor FLC per NEC Table. Do NOT use Motor Nameplate FLA.

3. Multiple Motors Served by One Branch Circuit

125% of the largest motor FLC Amps plus 100% of all others.

4. Non-Motor and Non-A/C loads (HVAC PE's viewpoint)

Like Boilers, Heaters etc.

125% of all continuous loads + 100% of all non-continuous loads

STANDARD WIRE FOR COMMERCIAL HVAC

THHN/THWN-2 COPPER 90°C		¥
Item (sold by the foot unless noted otherwise)	O.D. (inches)	Ampacity @ 90°C
14 AWG THHN, 500ft or 2500ft Spool »	0.109	15
12 AWG THHN, 500ft, 1000ft or 2500ft Spool »	0.128	20
12 AWG THHN 100ft or 200ft Coil »	0.128	20
10 AWG THHN, 500ft, 1000ft or 2500ft Spool »	0.161	30
10 AWG THHN, 100ft or 200ft Coil »	0.161	30
8 AWG THHN »	0.213	55
6 AWG THHN »	0.249	75
4 AWG THHN »	0.318	95
3 AWG THHN »	0.346	110
2 AWG THHN »	0.378	130
1 AWG THHN »	0.435	150
1/0 THHN »	0.474	170
2/0 THHN »	0.518	195
3/0 THHN »	0.568	225
4/0 THHN »	0.624	260

Wire Type THHN/THWN-2

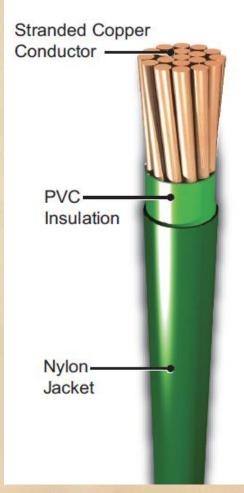


Table 310.15(B)(16) (formerly Table 310.16)

Allowable Ampacities of Insulated Conductors Rated Up to and Including 2000 Volts 60°C Through 90°C (140°F Through 194°F)

Not More Than Three Current-Carrying Conductors in Raceway, Cable, Earth (Directly Buried) Based on Ambient Temperature of 30°C (86°F)*

	60°C (140°F)	75°C (167°F)	90°C (194°F)
Size AWG or <cmil< th=""><th>Types TW, UF</th><th>Types RHW, THHW, THW, THWN, XHHW, USE, ZW</th><th>Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2</th></cmil<>	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2
18	_	[7] —	14
16	_	[10] —	18
14**	15	[15]** 20	25
12**	20	[20]** 25	30
10**	30	[30]** 35	40
8	40	50	55
6	55	65	75
4	70	85	95
3	85	100	115
2	95	115	130
1	110	130	145
1/0	125	150	170
2/0	145	175	195
3/0	165	200	225
4/0	195	230	260
* Refer to		e ampacity correctio	n factors where

WEIRD RULES - Table 310.15(B)16 Usage (Why it is misused so often.)

RULE #1

You can never use an ampacity higher than that in the 75°C Column. If you have a 90°C conductor (like we usually do), you can use the 90°C rating before applying the "corrections" and "adjustments" but the final number cannot be any higher than the 75°C value.

RULE #2

Loads < 100 Amps --- Use 60°C Loads > 100 Amps --- Use 75°C (Ignoring terminal markings.)

RULE #3

Non-Motor Loads --- Note small gage wire limits on Circuit Protection [xx]**

This terminal marked 75°C

This device marked 75°C

TERMINAL/EQUIPMENT RATINGS

WIRE SIZE

AWG

AWG

6-4 AWG

TORO

60/75°C WIRE

D824&

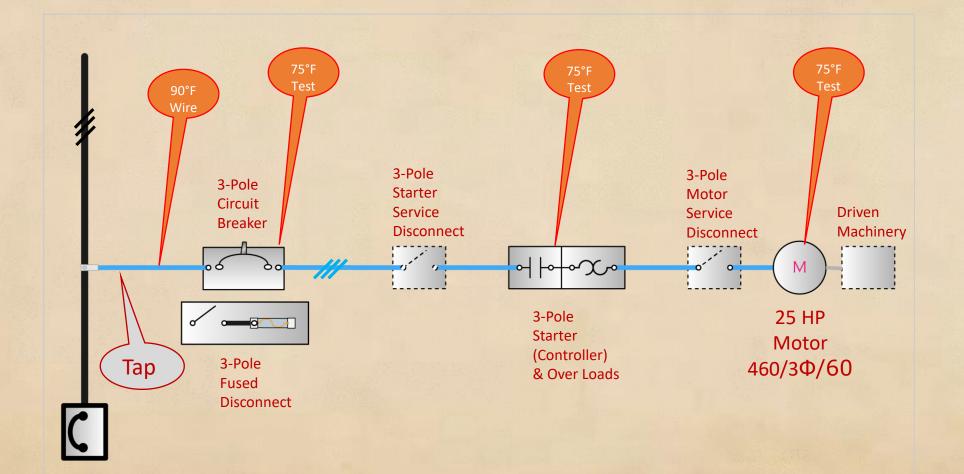
All electrical devices and terminals have temperature ratings under which they have been tested for continuous operation.

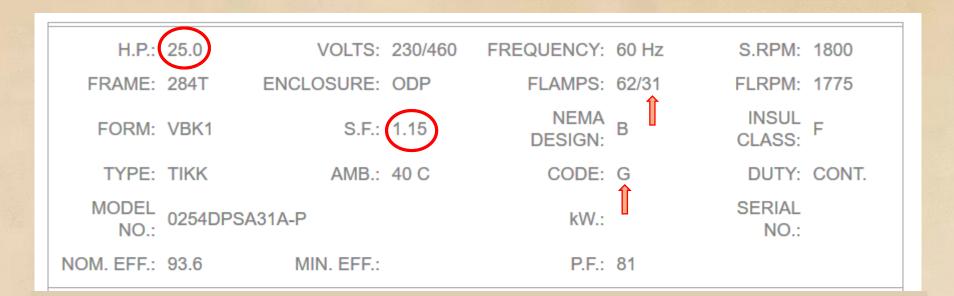
Most of the time (for larger equipment) the terminal rating is stamped on the device and is 75°C. There is no 90°C listed device under 600 Volts. (Disconnects, Circuit Breakers and Starters etc.).

Per NEC you cannot use wire ampacity from a column higher than the lowest wire/terminal/device rating (WEAKEST LINK CONCEPT).

So in this case we have to use 75°C Ampacity column even though the wire THHN is rated for 90°C. Remember you can start derating from 90°C THHN ampacity – but can never exceed the 75°C capacity.

Note that there is also a "heat rejection" factor. The testing and certification of a device might have used lower temp., larger dia. wire (more mass) to qualify.


If no rating is marked on the equipment, (or unknown at time of design) then it is assumed to be rated at 60°C. (For < 100 amps. 75°C always OK for > 100 amps). Motor Branch circuits are an exception and 75°C can always be used.


MOTOR BRANCH CIRCUITS

The "WEAKEST LINK" is 75°F

Per NEC the Conductor Ampacity cannot be more than that in 75°F Column

NAME PLATE OF A TYPICAL 25 HP MOTOR

EFFICIENCY (%)	POWER FACTOR (%)
FULL LOAD: 93.6	FULL LOAD: 81
3/4 LOAD: 93.7	3/4 LOAD: 93.7
1/2 LOAD: 92.8	1/2 LOAD: 67.5

Table 310.15(B)(16) (formerly Table 310.16)

Allowable Ampacities of Insulated Conductors Rated Up to and Including 2000 Volts 60°C Through 90°C (140°F Through 194°F)

Not More Than Three Current-Carrying Conductors in Raceway, Cable, Earth (Directly Buried) Based on Ambient Temperature of 30°C (86°F)*

	Temp	perature Rating of Co	onductor [See Table 3	310.104(A).]	
Wire		60°C (140°F)	75°C (167°F)	90°C (194°F)	
Size	Size AWG or kcmil	Max Amps Types TW, UF	Types RHW, THHW, YW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
	18		[7] —	14	
	16	_	[10]	18	
	14**	15	[15]** 20	25	
	12**	20	[20]** 25	30	
	10**	30	[30]** 35	40	
		40	50	55	
	6	55	65	75	
	4	70	85	95	
	3	85	100	115	
	2	95	115	130	
	1	110	130	145 U.	se this value
	1/0	125	150	170	for
	2/0	145	175	195 A	djustments
	3/0	165	200	225	
	4/0	195	230	260	
	the ambie	310.15(B)(2) for the other states of the sta	her than 30°C (86°F)		
	** Refer to	240.4(D) for conduct	or overcurrent prote	ection limitations.	

Table 310.15(B)(16) (formerly Table 310.16) (Table Chopped up. AL and larger wire sizes not shown.)

Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), [note:80% 4 to 6]

Based on Ambient Temperature of 30°C (86°F)*

(From Code FLC Table)

25 HP FLC = 34 Amps

 $MCA = 34 \times 1.25 = 42.5 \text{ Amps}$

Assume no corrections

From the 75°C Col. read 8 AWG Wire

END OF REVIEW SLIDES

Model	CVHE		Compressor size	500
Impeller size	230		Orifice size	500
Motor size	287 A			
Motor frequency	60 Hz		Motor voltage	460
Incoming line frequency	60 Hz BHP 385		Incoming line voltage	460
Evap shell size	050S 400 HP M	otor ??	Cond shell size	050S
Evap bundle size	390 FLA 477		Cond bundle size	450
Evap tube type	TECU		Cond tube type	TECU
Evap tube thickness	0.025"		Cond tube thickness	0.028"
Evap passes	Two pass evap wate	r box	Cond passes	Two pass co
Design Information				
Cooling capacity	400.0 tons		HCFC-123 refrigerant charge	600 lb
Primary power BHP 329	245.7 kW	- B	Shipping weight	17822 lb
Primary efficiency	0.614 kW/ton T-24?		Operating weight	19593 lb
NPLV	0.388 kW/ton		Free cooling option	No
Low voltage AFD type	Unit mounted low vo	ltage AFD	Green Seal certification	No
Unit heat rejected to ambient	4.19 MBh		Application type	Standard co
AFD heat rejected to ambient	8.62 MBh			
Evaporator Information				
Evap leaving temp	42.00 F		Evap pressure drop	14.58 ft H20
Evap flow rate	682.6 gpm		Evap fluid type	water
Evap entering temp	56.00 F		Evap fluid concentration	N/A
Evap flow/capacity	1.71 gpm/ton		Evap water box type	non-marine
Evap fouling factor	0.00010 hr-sq ft-deg	F/Btu	Evap water box pressure	150 psig
Condenser Information				
Cond entering temp	85.00 F		Cond pressure drop	20.20 ft H20
Cond flow rate	1080.0 gpm		Cond fluid type	water
Cond leaving temp	95.53 F		Cond fluid concentration	N/A
Cond flow/capacity	2.70 gpm/ton		Cond water box type	non-marine
Cond fouling factor	0.00025 hr-sq ft-deg	F/Btu	Cond water box pressure	150 psig
Electrical Information	LRA = Locke	ed Rotor Amps		
Motor LRA	2234 A	C	Compressor motor RLA	346.30 A
Primary RLA (Incoming line)	321.7 A	-D	Min circuit ampacity	411 A 🚽
Un-corrected power factor	0.89		Max overcurrent protection	700 A 🔜
	RLA = Rate	d Load Amps		

CHILLER SUBMITTAL Discussion Points:

Notor voltage ncoming line voltage Cond shell size Cond bundle size Cond tube type Cond tube thickness Cond passes	460 460 050S 450 TECU 0.028" Two pass cond	
		3. Wire sizing MCA is based on this number.
ICFC-123 refrigerant charge Shipping weight Operating weight Free cooling option Green Seal certification	600 lb 17822 lb 19593 lb No No	 TAG F: MCA = 125% of Largest RLA + 100% of other MCA = RLA x 1.25 + VA_{Xformer}/Motor_{Volts} MCA = 321.7 x 1.25 + 4000/460 = 411 Amps TAG A: This is the max. kW power OUTPUT of the motor actually used. Divide by 0.746 to get 385 BHP (or Shaft HP) Obviously this is a 400 HP Motor.
opplication type	Standard cooli	3. Now there is a Full Load Amps (and NEC FLC) value associated with this 400 HP motor and it is \approx 477 Amps. WE DON'T USE THIS VALUE.
		We use the MCA value which in turn is based on the RLA given below.4. This clearly shows the difference between FLA and RLA.
vap pressure drop	14.58 ft H2O	5. The safeties are all set to trip in relation to the RLA and way before the
vap fluid type	water	FLA is ever reached.
vap fluid concentration	N/A	5. TAG C: LRA is Locked Rotor Amps. Used in conjunction with Starter Type in
vap water box type	non-marine	determining MOCP. Gen Set Sizing.
vap water box pressure	150 psig	6. TAG G: MOCP Important for (Electrical) Cost and VE opportunity. Often over-
		sized on electrical drawings.
Cond pressure drop Cond fluid type Cond fluid concentration Cond water box type	20.20 ft H2O water N/A non-marine	 7. TAG E: What is going on? Why is it different? 1. VFD has a different (better) PF than the Compressor Motor. If you just forward the submittal to the Elec Sub, he will always use the higher number and cost you money.
Cond water box pressure	150 psig	
Compressor motor RLA fin circuit ampacity fax overcurrent protection	346.30 A 411 A 700 A	D VFD E COMP

Model CVHE Compressor size 500	
Impeller size 230 Orifice size 500	
Motor size 287	
Motor frequency 60 Hz Motor voltage 460	
Incoming line frequency 60 Hz Incoming line voltage 460	
Evap shell size 050! Verify "tube pull" Clearance Cond shell size 050S	
Evap bundle size 390 Cond bundle size 450	
Evap tube type TECU Cond tube type TECU	
Evap tube thickness0.025"Verify connection sideCond tube thickness0.028"Verify configuration	connection side
Evap passes Two pass evap water box Cond passes Two pass cond v	water box
Design Information 1.5 - 2 lbs/ton	? R134a similar
Cooling capacity 400.0 tons HCFC-123 refrigerant charge 600 lb	
Primary power 245.7 kW Shipping weight 17822 lb Riggi	ing Wt.
	rating Wt.
NPLV 0.388 kW/ton Free cooling option No	
Low voltage AFD type Unit mounted low voltage AFD Green Seal certification No	
Unit heat rejected to ambient 4.19 MBh Chiller room load Application type Standard cooling	g
AFD heat rejected to ambient 8.62 MBh	
Evaporator Information	
Evap leaving temp 42.00 F Evap pressure drop 14.58 ft H2O	CHW PP Sizing
Evap flow rate 682.6 gpm Min. Flow ? Evap fluid type water	
Evap entering temp 14°F ΔT 56.00 F Evap fluid concentration N/A	
Evap flow/capacity Coil? 1.71 gpm/ton Evap water box type non-marine	
Evap fouling factor 0.00010 hr-sq ft-deg F/Btu Evap water box pressure 150 psig Hi-R	Rise Static Check
Condenser Information	
Cond entering temp 85.00 F Note this is 10.5°F Cond pressure drop 20.20 ft H2O Cond	CDW PP Sizing
Cond flow rate Tower 1080.0 gpm AT but much Cond fluid type water	
Cond leaving tem Porformance 95 53 E	
Cond flow/capacit Spec. 2.70 gpm/ton	
Cond fouling factor 0.00025 hr-sg ft-deg E/Btu Cond water how pressure 150 psig	Rise Static Check
Electrical Information	
Motor LRA 2234 A Compressor motor RLA 346.30 A]
Primary RLA (Incoming line) 321.7 A Min circuit ampacity 411 A	
Un-corrected power factor 0.89 Max overcurrent protection 700 A	

Mechanical Discussion Points:

- Water boxes can be switched in the field but better to order them correctly. Example "facing the control panel" RHS or LHS connections
- 2. Number of Passes Even on the same end. Odd opposite ends.
- 3. Verify "tube pull" clearance
- 4. Chiller Room ventilation load
- 5. Refrigerant Charge You may need to buy separate.
- 6. Rigging Weight / Operating Weight. Make sure the rigger gets the right one and the Structural Engineer gets the right one.
- 7. Evaporator Flow Ask about min. Flow or Velocity
- 8. Chilled water ΔT . Check against Coil ΔT . Allow 1°F(?) temperature rise between chiller and airhandler.
- 9. Evaporator Water Pressure Drop Pump Sizing. Flow follows square curve.
- 10. Evaporator Working Pressure Hi-Rise design
- **11.Condenser Flows**
- 12. Condenser Water Pressure Drop Pump Sizing
- 13.Condenser Working Pressure Hi-Rise design
- 14.Condenser fouling factor way to optimistic careful when comparing 2 chiller performances.

QUICK SIZING ELECTRICAL SERVICE: CHILLER (OR ANY LARGE HVAC EQUIPMENT)

- Example 400 Ton Water Cooled Centrifugal Chiller
- To "Ball Park" water cooled centrifugal chiller electrical service:
- Title-24 mandates certain minimum efficiency levels. 0.6kw/ton is a good budget number. (T-24 See Handout)
- 400 tons x 0.6 kW/ton = 240 kW
- 3 phase kW = (V x Amps x 1.73 x PF) ÷ 1000
- Amps = (kW x 1000) ÷ (V x 1.73 x PF) = kW x 1.42 for 480v and 0.85PF
- Amps = 240 kW x 1.42 = 340 Amps RLA
- MCA = 340 x 1.25 = 425 Amps

- MCOP = 425 x 1.75 = 743 Amps. Next std. size down is 700 Amp Breaker (Compr. Rule)
- (Compare to previous slide (411 Amps). Difference due to kW/ton, PF and ignoring CT amps.)
- Need to get kW per ton from COP and EER. See next slide.

EER • COP • kW/Ton

$kW/Ton \times EER = 12$

$Kw/Ton \times COP = 3.517$

FUSES & CIRCUIT BREAKERS STANDARD AMPERE RATINGS

 15
 20
 25
 30
 35
 40
 45
 50

 60
 70
 80
 90
 100
 110

 125
 150
 175
 200
 225
 250

 300
 350
 400
 450
 500

 600
 700
 800

OVERCURRENT PROTECTION SIZING

- 1. HVAC Equipment (Packaged, Unitary, and Split etc.) At or below M(ax)OCP Listed on nameplate. Usually not more than 175% of RLA.
- 2. Stand Alone Motors (Fans and Pumps etc.) Inverse Time Breaker 250%. Time Delay Fuse 175%. (Max. Values, but next Std. size OK.)
- 3. Feeder Serving Multiple Motors Will explain by example.

There are many kinds of Circuit Breakers and Fuses – but for our discussion we will only consider Inverse Time Breakers (HACR included) and Time Delay Fuses.

MCOP - MAXIMUM OVERCURRENT PROTECTION

	1					Company	MOD	EL 3	38A	H — 054		- 501
	Co	mpres				1	SERI	AL	04()5F0357	73	
ł		Oty	Volts			Hz RLA	LR	A		rigerant/S	ystem	
ļ		1	208/2 208/2	30 30	3 3	60 67.9 60 89.7	345 446	5	ABC	103	kg	<u>R</u> - 22 22
╞	Fan	Aux N	lotors		Q	ty Volts	AC F	н на	-	FLA	up	
			itdoor itdoor		22		30 3			6.6 5.5	<u>НР</u> 1 1	<u>KW</u> 0.75
	KI	Volts		ly PH	Hz	Max Volts	Min Volts	M	CA *	MOCP	Fuse	or BRKR
	1 2	208/2	30	3	60	253	187	20	04.2	250	TIAON	DNKN
-			er Sup			Volts	PH	Hz	MC	A & MOC	P Fuse BRK	
V	*N 10CP	MCA = ' = Ma	Min C X Over	ircui Curi	t Amp ent P	os per UL rotective	1995 Device /	Amps	per l	JL 1995	DIIK	
						for Out						
						tion Inst						-

1	A second second
	SERIAL 0708E05932
	PROD 113RNA060000BGAA
	MODEL 113RNA060-G
	DEVICE INDOOR OUTDOOR
	FACTORY CHARGED D DD
	9.20 LBS 4.17 KG INDOOR TXU SUB COOLING 10 °F
	INDOOR TXU SUB COOLING 10 °F
	POWER SUPPLY 200 200 HOLTS OC
	1 PH 60 HZ PERMISSIBLE JOLTAGE AT UNIT
	253 MAX 197 MIN
	SUITABLE FOR OUTDOOR USE
	COMPRESSOR 208/230 VOLTS AC 1 PH 60 HZ
	1 PH 60 HZ
	1 PH 60 HZ 25.3 RLA 141.0 LRA FAN MOTOR 208/230 VOLTS AC 1 PH 60 HZ 1 PH 60 HZ
	1 PH CO HZ
	1 PH 60 HZ 1/4 HP 1.2 FLA
	DESTONYTEST PRESSURE GAGE
	HI 300 PSI 2068 KPA LO 150 PSI 1034 KPA
	LO 150 PSI 2068 KPA MAX DESIGN/HORKING PRESSURE
	THE PESIGN/WORKING DESCUPE
	700 PSIG 4826 KPA MINIMUM CIRCUIT AMPS 32.9
	MAX FUSE MAX CKT-BKR(#) 50 0
	50 A * HACK TYPE RECOMMENDED
	MODEL NUMBER 113RNA060000BGAA

ACTUAL NAME PLATE EXAMPLES.

For Hermetic Compressors & Across the Line Starter: 175% of MCA (Next size lower if not std. size.)

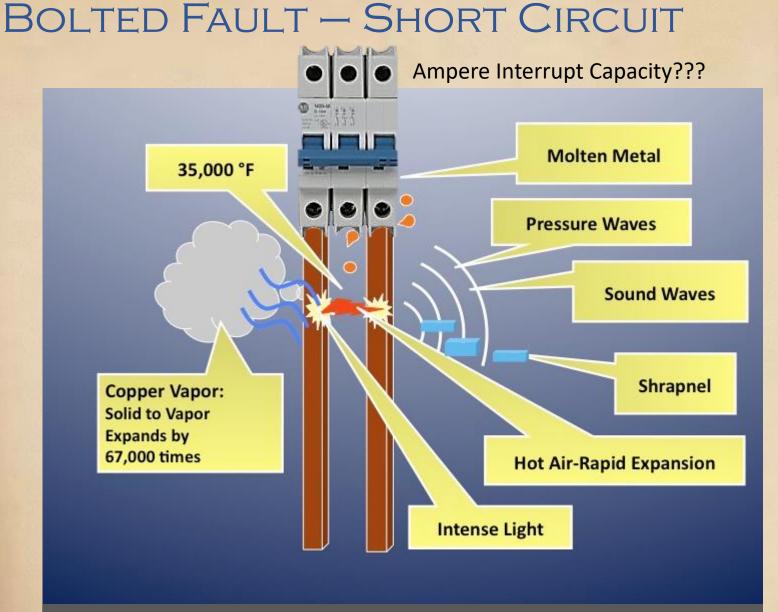
BUT - Bottom Line: Forget all the formulas – just use MOCP on Nameplate for CB sizing!

Note:

The M in MCA stands for Minimum The M in MOCP stands for Maximum

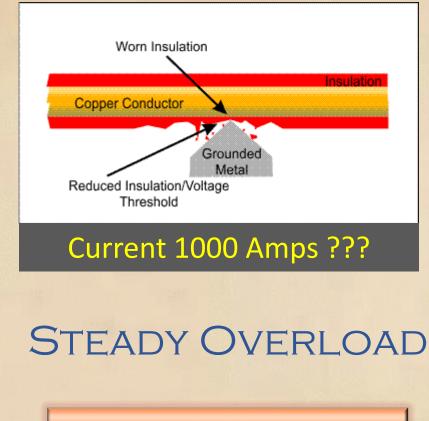
OVERCURRENT PROTECTION SIZING

- 1. HVAC Equipment (Packaged, Unitary, and Split etc.) At or below M(ax)OCP Listed on nameplate. Usually not more than 175% of RLA.
- 2. Stand Alone Motors (Fans and Pumps etc.) Inverse Time Breaker 250%. Time Delay Fuse 175%.
- **3.** Feeder Serving Multiple Motors


Will explain by example.

Before we select the CB for Stand Alone Motors, let us understand CBs a little better.

BRANCH CIRCUIT OVERCURRENT PROTECTION


OverCurrent Can Be of 3 Types:

- 1. Short Circuit (2 hot wires or 1 hot & 1 grounded.)
- 2. Ground Fault
- 3. Overload

Order of Magnitude 20,000 Amps ???

GROUND FAULT

Example:	
Motor FLC	34 Amps
Actual Draw	44 Amps

AMPERE INTERRUPTING CAPACITY [AIC]

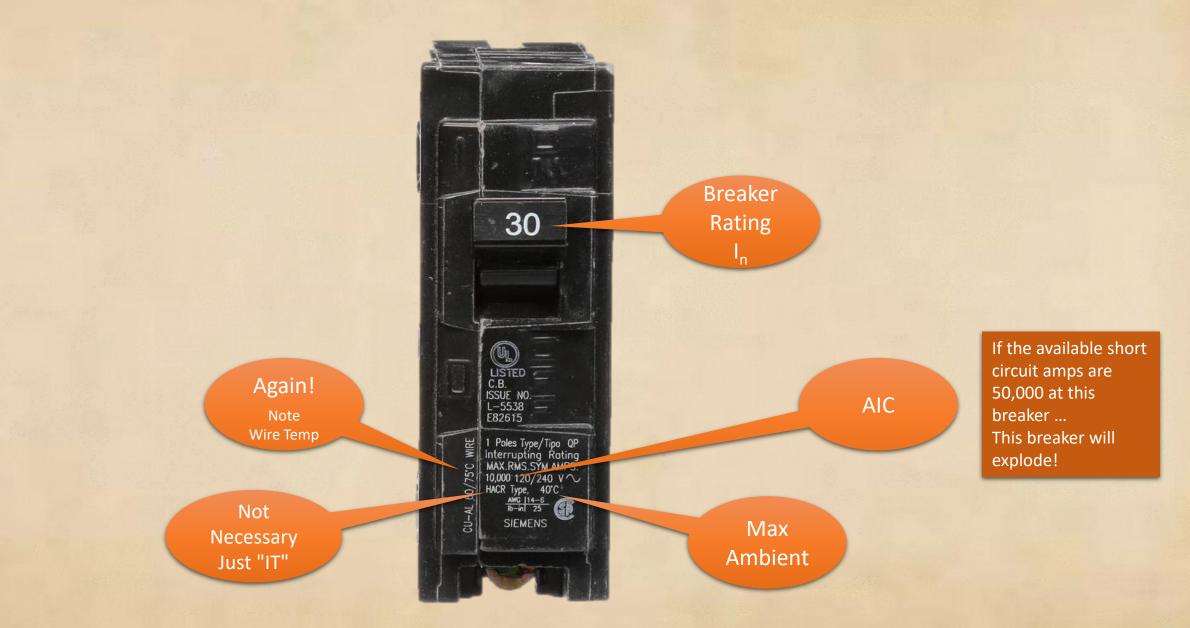


Table 310.15(B)(16) (formerly Table 310.16)

Allowable Ampacities of Insulated Conductors Rated Up to and Including 2000 Volts 60°C Through 90°C (140°F Through 194°F)

Not More Than Three Current-Carrying Conductors in Raceway, Cable, Earth (Directly Buried) Based on Ambient Temperature of 30°C (86°F)*

	Temp	perature Rating of Co	onductor [See Table 3	310.104(A).]	
Wire		60°C (140°F)	75°C (167°F)	90°C (194°F)	
Size	Size AWG or kcmil	Max Amps Types TW, UF	Types RHW, THHW, HW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
	18	_	[7] —	14	
	16	_	[10]	18	
	14**	15	[15]** 20	25	
	12**	20	[20]** 25	30	
	10**	30	[30]** 35	40	
		40	50	55	
	6	55	65	75	
	4	70	85	95	
	3	85	100	115	
	2	95	115	130	
	1	110	130	145	
	1/0	125	150	170	
	2/0	145	175	195	
	3/0	165	200	225	
	4/0	195	230	260	
	the ambie	310.15(B)(2) for the ont temperature is ot	her than 30°C (86°F)	•	
	** Refer to	240.4(D) for conduct	or overcurrent prote	ection limitations.	

OVERCURRENT PROTECTION THE BASIC INTENT OF CODE

50 Amp Breaker

8 AWG Wire Ampacity 50 Amps Must be protected by a 50 Amp Breaker

20 Amp Breaker

12 AWG Wire Ampacity 25 Amps
Must be protected by a
20 Amp Breaker.
(Small AWG Exception.)

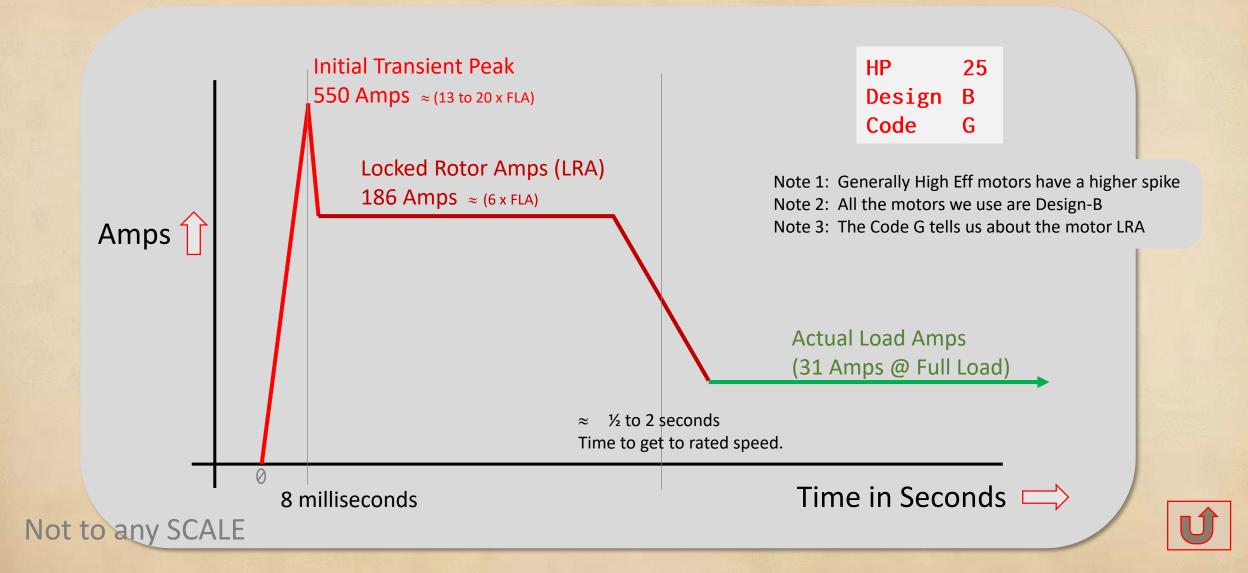
MOTORS ARE AN EXCEPTION

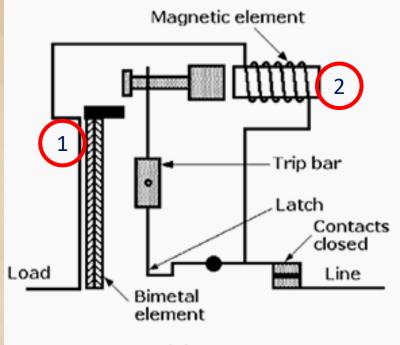
NEC FLC 34 Amps FLA 31 Amps Inrush = 31 x 6 = 186 Amps Transient = FLA x (13 to 20)??

50 Amp Inverse Time Breaker

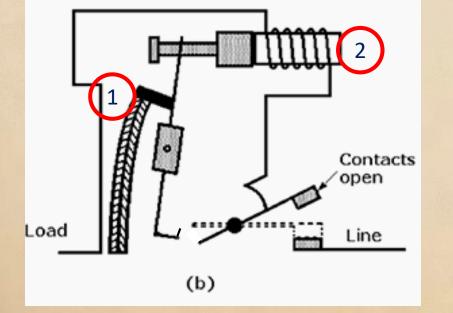
8 AWG Wire Ampacity 50 Amps

25 HP Motor 460/3Φ/60


This motor may not be able to start!

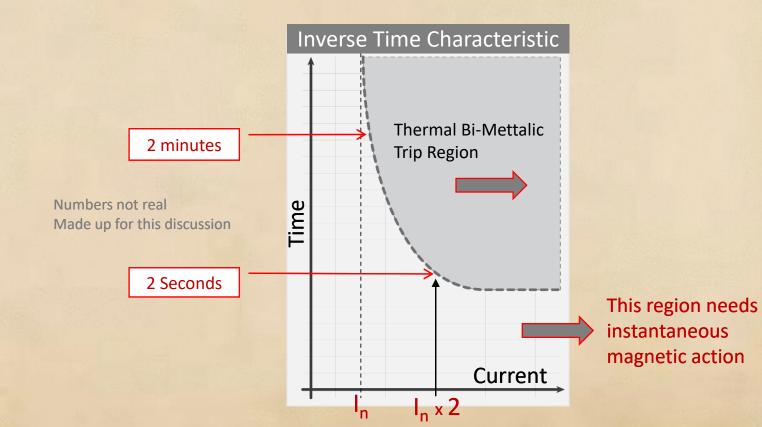

MOTOR INRUSH CURRENT TABLE

NEMA	APPROXIMATE Inrush Amperes Per HP							
LRA	Single Pha	ase (1 Φ)	Three Phase (3Φ)					
CODE	115 Volts	230 Volts	200 Volts	230 Volts	460 Volts			
D	39	19	12.5	10.8	5.4			
E	43	20	13.6	11.8	5.9			
F	48	23	15.4	13.3	6.6			
G	54	26	17.1	14.8	7.4			
Н	61	29	19.4	16.8	8.4			
J	68	33	21.8	18.8	9.4			
k	77	37	24.7	21.3	10.6			
L	86	41	27.6	23.8	11.9			
М	96	46	30.7	26.5	13.3			
Ν	107	51	34.2	29.5	14.8			

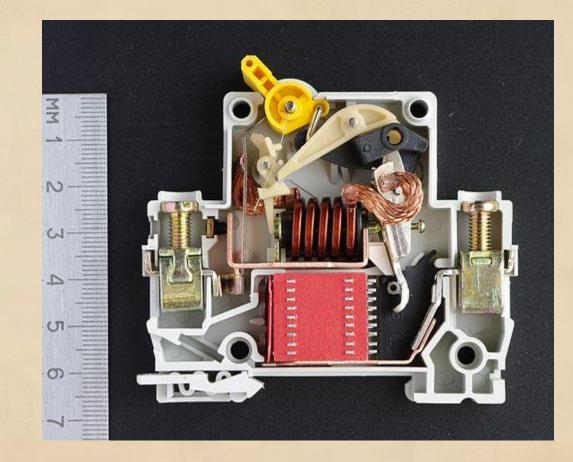


CURRENT DRAW VERSUS TIME – TYPICAL 25 HP MOTOR WHY THE 50 AMP BREAKER WILL TRIP

(a)


HOW THERMAL MAGNETIC CBS WORK

The Thermal Bi-Metallic Strip (just like in old thermostats) takes care of the OVERLOAD portion


(1)

2

The Magnetic Coil action (quick-acting) takes care of SHORT CIRCUITS and GROUND FAULTS

INSIDE A SMALL AMP CIRCUIT BREAKER

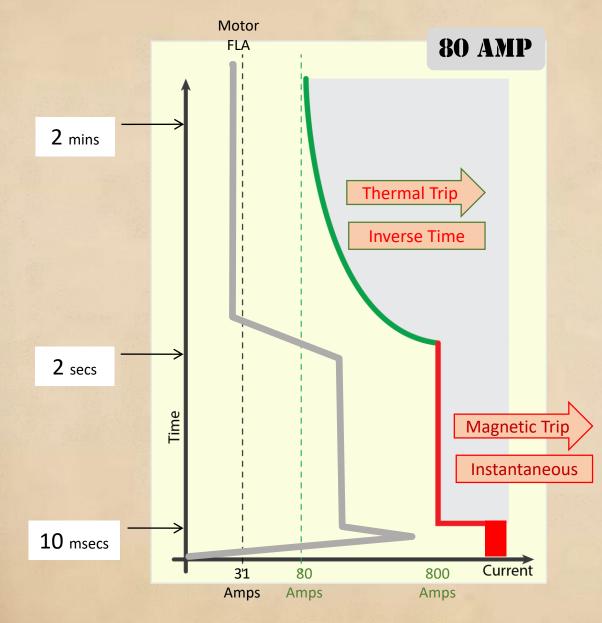
SIZING THE MOTOR BRANCH CIRCUIT BREAKER

FLA 31 Amps Inrush = 31 x 6 = 186 Amps

NEC FLC 34 Amps

90 Amp Inverse Time Breaker

8 AWG Wire - Ampacity 50 Amps


Code Allowed (Max.) CB = FLC x 250% Inverse Time Breaker ITB Size = 34 x 2.5 = 85 Amps

- Note 1: There is no 85 Amp Standard Breaker Rating. The Code allows next larger (90 Amp) Standard Breaker. If you understand ITB curves, you may find that 80 Amp will work OK.
- Note 2: If the motor will not start with the 90 Amp max. the code allows further bumping up the size. Refer to NEC for details.

25 HP Motor 460/3Φ/60

GENERIC INVERSE TIME BREAKER CURVES

Note: The Bi-Metallic trip element of the CB is set way too high to help in the case of motor Overload. For e.g. if we select a 80 Amp breaker for the 25 hp motor, then the CB thermal mechanism will not consider anything less than 80 Amps as Overload. (There are certain very special circumstances where that will work. See NEC.)

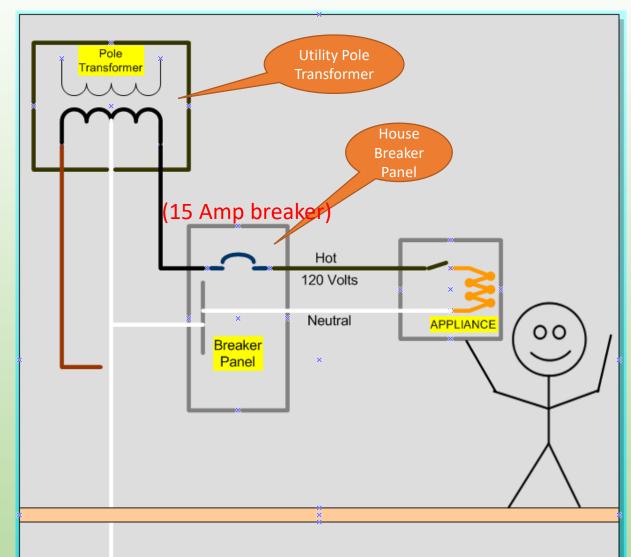
The Curve Brings Out a KEY CONCEPT

- The Circuit Breaker Is Not There To Protect The Motor (Or The Branch Circuit) Against OVERLOAD.
- It Is There To Protect The Branch Circuit In Case Of A Short Circuit Or Ground Fault.
- That Is Why The CB Can Be So Generously Sized To Accommodate the LRA
- And That Is Why You Must Have Motor Overload Protection

EQUIPMENT GROUNDING CONDUCTOR

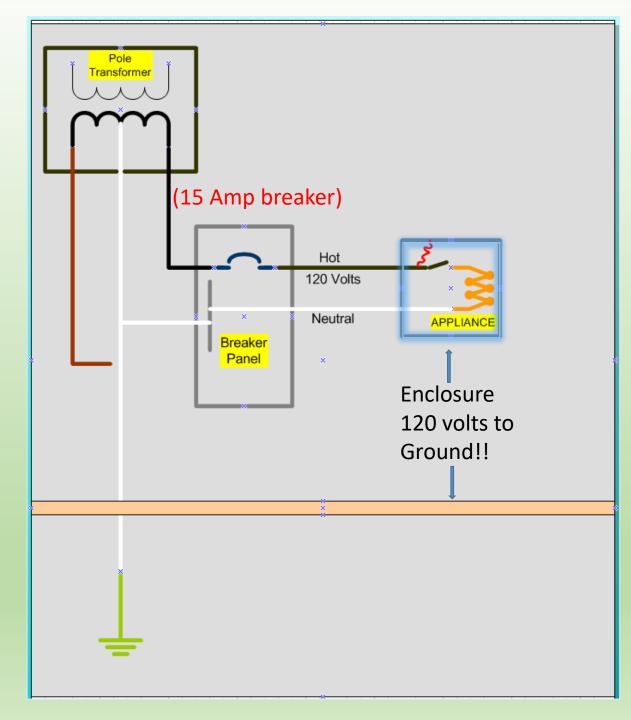
Table 250.122Minimum Size Equipment GroundingConductors for Grounding Raceway and Equipment

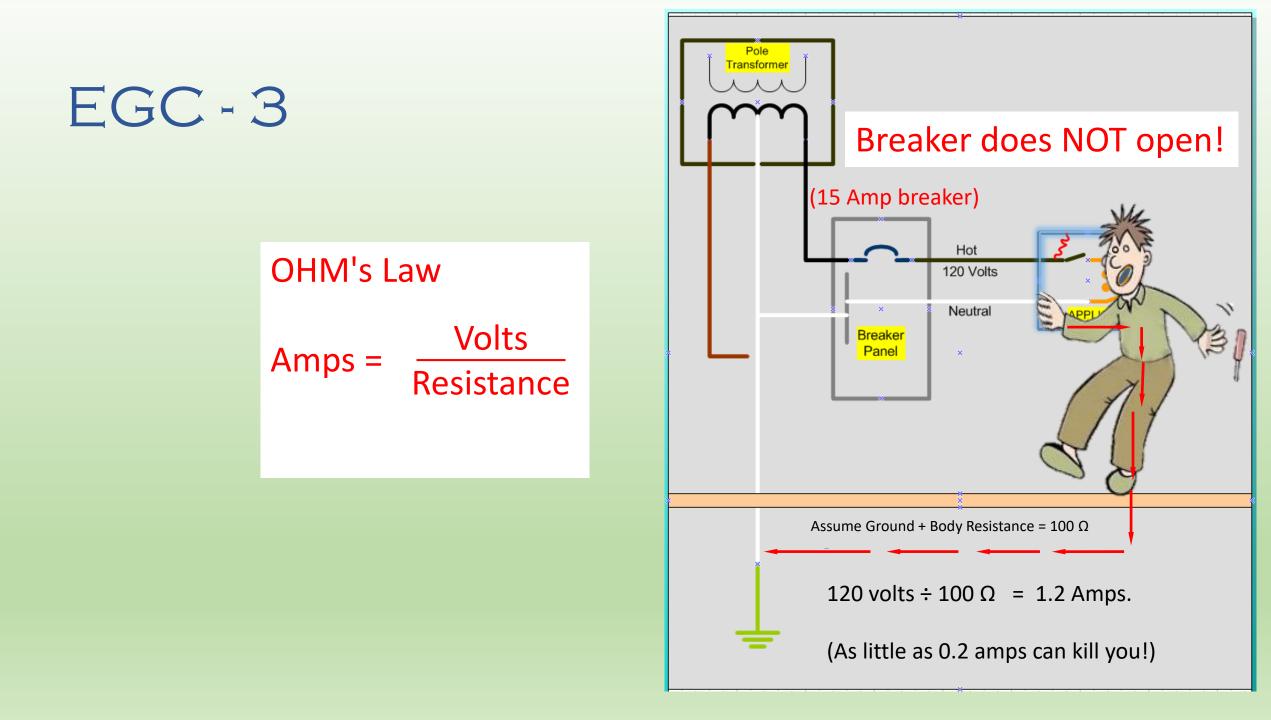
Rating or Setting of Automatic Overcurrent Device in Circuit Ahead of Equipment, Conduit, etc., Not Exceeding (Amperes)	Size (AWG or kcmil)	
	Copper	Aluminum or Copper-Clad Aluminum*
15	14	12
20	12	10
60	10	8
	8	6
200	6	4
300	4	2
400	3	1
500	2	1/0
600	1	2/0
800	1/0	3/0
1000	2/0	4/0
1200	3/0	250
1600	4/0	350

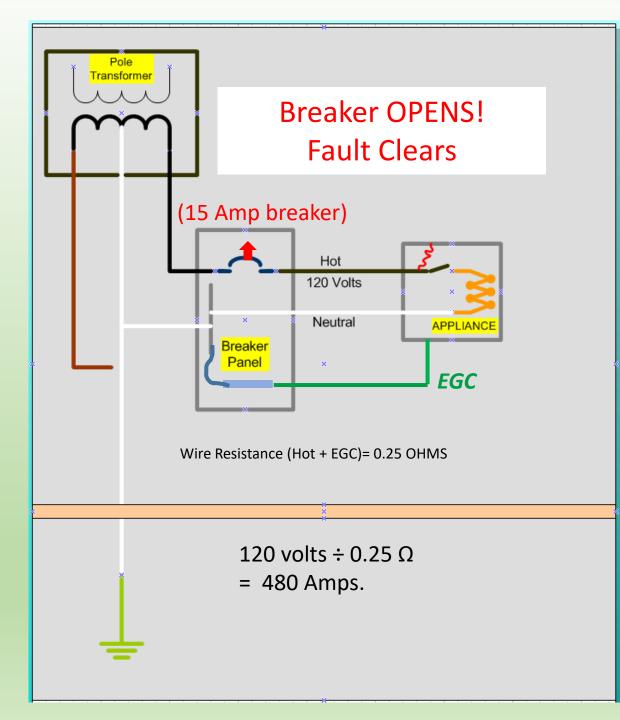

(The Green or Bare Wire)

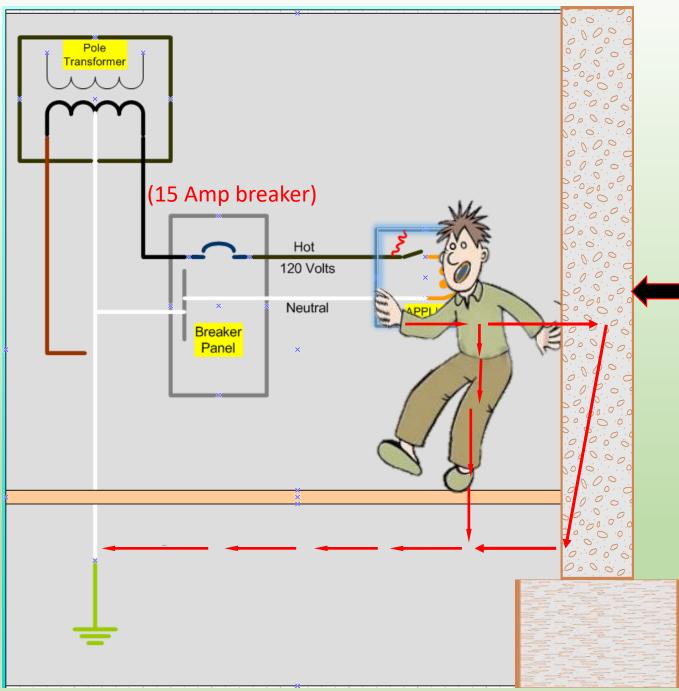
Use NEC Table 250.122.

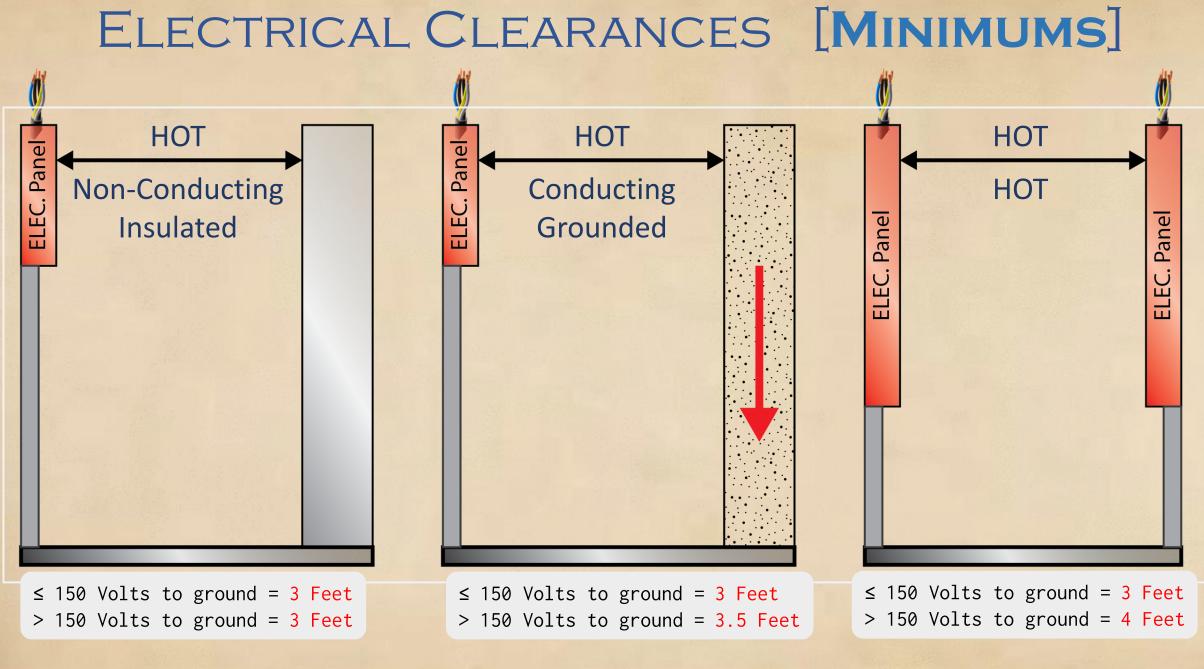
Check rule about increasing size if the current carrying conductors are increased in size due to voltage drop calculations.


Never larger than the current carrying conductors. Quite possible with motors.


EGC - 1


Side-Note: The manufacturer always disconnects the "hot" leg. (Polarized plug.) Installer swapping "hot" and "neutral" can kill!

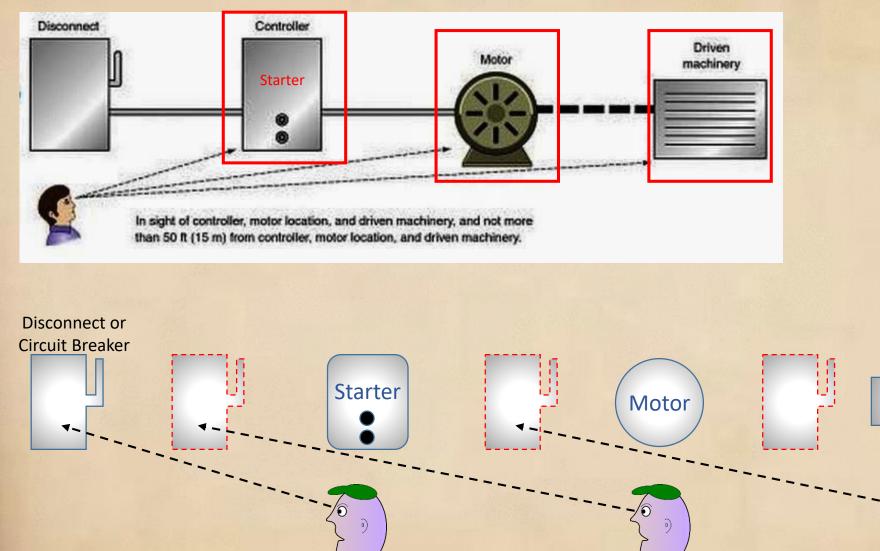

EGC - 2



EGC - 4

Grounded Wall

Note: Clear Width > of 30" or Panel Width


Terminology Not Per NEC

DISCONNECTS STANDARD AMPERE RATINGS

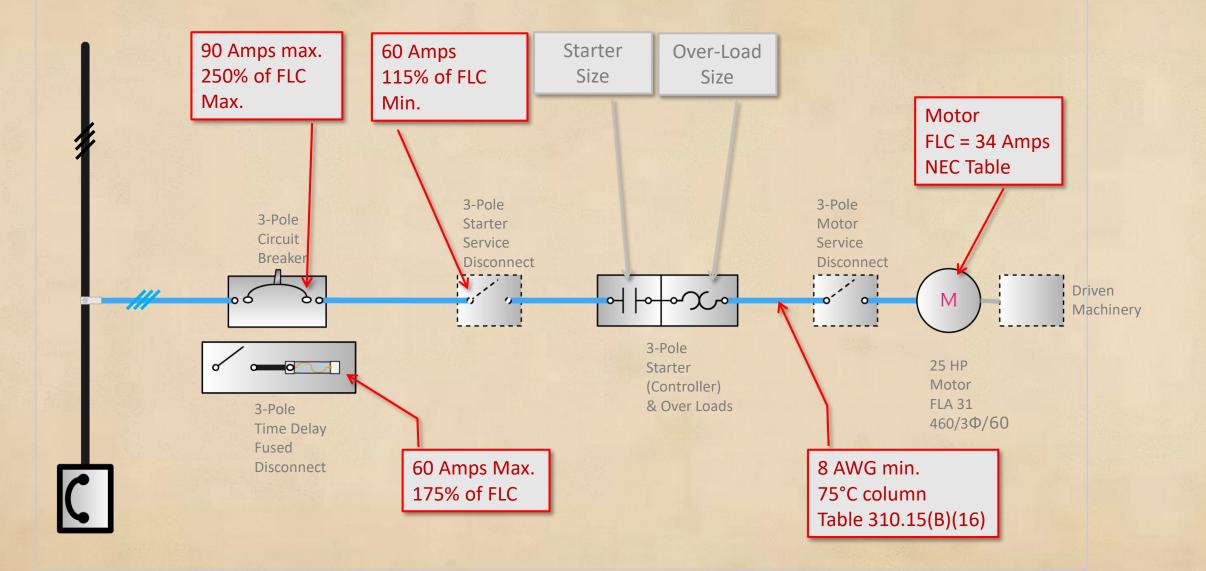
30 60 100 200 400 600 800

Size Disconnect > 115% of Motor FLC 25 Hp Motor - FLC = 34 Amps Disconnect = 34 x 1.15 = 39.1 Amps Next Larger Standard Size 60 Amps

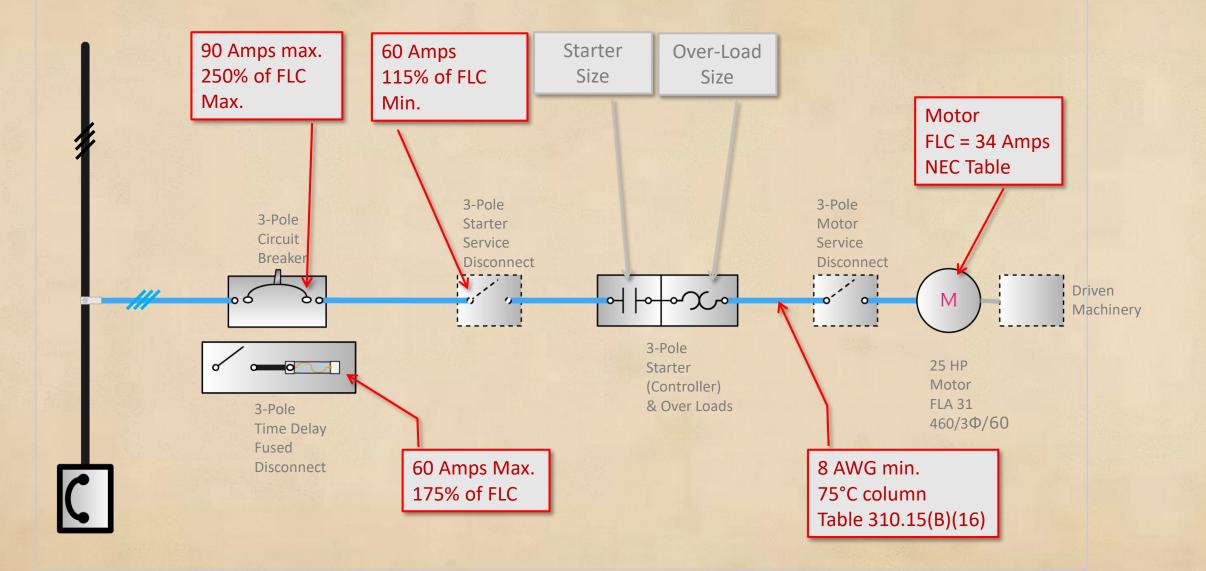
DISCONNECTS REQUIRED & SIZING

Code Requires "In Sight & < 50ft" Disconnects for: Starters (Controllers) Motors Driven Machinery

Unless an upstream one is within 50' AND in sight.


There are exceptions. DON'T USE THEM.

Driven


Machine

0)

MOTOR BRANCH CIRCUITS OVER-CURRENT PROTECTION

MOTOR BRANCH CIRCUITS OVER-CURRENT PROTECTION

SIZING MOTOR OVERLOADS

- Motors rated more than 1 hp, used in a continuous-duty application without integral thermal protection, must have an overload device sized to open at no more than 115% of the motor nameplate FLC rating [430.32(A)(1)].
- But size the overload device no more than 125% of the nameplate FLC if:
 - The nameplate service factor (SF) is 1.15 or more.
 - The nameplate temperature rise is 40°C or less.
- NOTE: Ignore Above. Always use 115% unless the motor is really loaded close to the FLA.