Mousetrap Car

$\bullet \bullet \bullet$

Jack Yu, Thomas Jin, and Eric Son

Meet the creators

Thomas Jin

- Group Leader managed team building and overall work
- Main Builder created most of vehicle

Eric Son

- Safety Person looked over the building of the car
- Designer drew blueprints of the car and managed powerpoint work

Jack Yu

- Elgineer came up with the first design of mouse car
- Mathemetician calculated measurements so the car would work

Meet The Team

AlphaGo 1.0

- The idea behind the inital creation of the mousetrap car was to find a light and stable frame for the car allowing for a longer distance, as well as shorter time.
- As a result, we decided on using a special type of styrofoam as the frame.
- The creation of AlphaGo 1.0 went very well and things seemed promising.
- The wheels were working fine, and the lightness of the car was something we were proud to have.
- Unfortunately, the lightness of the frame would not hold up to the pressure from the mouse traps.

The Death of AlphaGo 1.0

- AlphaGo 1.0 failed to see any action due to the fragileness of the material, and it's instability
- Although the styrofoam was slightly lighter, the initial plank was very weak in comparison to AlphaGo 2.0.
- In the first test, after everything was done, the plank completely broke in the middle, deeming it unusable.
- We switched over to poster board cardboard which was much more stable and to further support it, we added an extra plank below creating the unique T-Bar.

Blue Prints of AlphaGo 2.0

 The only changes made was the stronger frame, allowing for smooth travel.

Materials Used to Create AlphaGo 2.0

- 4 CD's
- 12 small styrofoam stabilizers
- 2 planks of poster board cardboard
- 2 straws
- 2 wooden sticks
- String
- Many twist ties
- Carbon Fiber rod
- 2 mouse traps

Measurements of AlphaGo 2.0

- Length: 49.6 cm
- Width: 19.0 cm
- Height: 12.0 cm
- Mass: 0.164 kg
- Rod: 37.3 cm

Measurements of the Wheel

Radius: 12.0 cm

Circumference: 37.7 cm

Special Features

T-Bar

• Serves as stabilizer for the entire vehicle. Prevents vehicle from snapping when pulled back.

Styrofoam Wheel

• Stabalizes the wheel so that it doesn't come off during the race.

Calculations of the Measurements

Speed=distance/time = (10.95*2)/(19.85) = 1.10 m/s

Momentum = mass*velocity=(0.164)(1.10) = 0.180 kgm/s

Kinetic energy = $\frac{1}{2}$ mass velocity 2 = $\frac{1}{2}$ (0.164)(1.10) 2 = 9.92 10^-2 J

Power = $2.0*10^{-2}$ W Calculation: Start with equation: displacement = initial velocity*time+½acceleration*time^2 we get (10.95*2) = (0)(19.85)+½(a)(19.85)^2 Acceleration = 0.111 m/s^2 Force = mass*acceleration Energy(work) = force*distance Power = work/time P = mad/t = (0.164)(0.111)(10.95*2)/(19.85) = $2.0*10^{-2}$ W

Center of Gravity

Video of Balancing Car

Final Product

- This was the final product of AlphaGo 2.0.
- We were lucky enough to have to only start over once, and make minimal changes.

Video of working Car

Conclusion

- Overall we were quite satisfied with the finishing product
- Light, stable, fast, etc.

What we have learned

- Lengthy rod allows for more rotation of the wheels which grants more displacements.
- Elongate the length of string does not help in terms of creating greater distance.
- Using the original material of the car while also using the T-Bar method to turn the fragile frame to more stable.

Future Improvement

- Wheels can be better lined up so that they are 90 degrees to the ground
- Use materials with greater radius as wheels
- Connect the hammer of mouse traps with better method for easier set up
- Length the entire car and rod to allow it travel longer distance
- Use mouse trap with greater power for faster speed