
HOUR 3

Moving About the File System

This third hour focuses on the Unix hierarchical file system. You learn how the system is

organized, how it differs from the Macintosh and Windows hierarchical file systems, the

difference between relative and absolute filenames, and the mysterious . and .. directo-

ries. You also learn about the env, pwd, and cd commands and the HOME and PATH envi-

ronment variables.

Goals for This Hour
In this hour, you will learn

. What a hierarchical file system is all about

. How the Unix file system is organized

. How Mac and PC file systems differ from Unix

. The difference between relative and absolute filenames

. About hidden files in Unix

. About the special directories . and ..

. About the env command

. About user environment variables, PATH and HOME

. How to find where you are with pwd

. How to move to another location with cd

The preceding hour introduced many Unix commands, but this hour takes a more theoret-

ical approach, focusing on the Unix file system, how it’s organized, and how you can nav-

igate it. This hour focuses on the environment that tags along with you as you move

about, particularly the HOME and PATH variables. After that is explained, you learn about

the env command as an easy way to show environment variables, and you learn the pwd

and cd pair of commands for moving about directly.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 41

42 HOUR 3: Moving About the File System

What a Hierarchical File System Is All
About
In a nutshell, a hierarchy is a system organized by graded categorization. A familiar

example is the organizational structure of a company, where workers report to

supervisors and supervisors report to middle managers. Middle managers, in turn,

report to senior managers, and senior managers report to vice-presidents, who report

to the president of the company. Graphically, this hierarchy looks as shown in

Figure 3.1.

Senior Manager 1

Jr. Manager 1

Employee A

Jr. Manager 2

Employee B

Jr. Manager 3

Employee

Jr. Manager 4

Employee

Senior Manager 2 Senior Manager 3

Vice-President 2 Vice-President 1

President
FIGURE 3.1
A typical
organizational
hierarchy.

You’ve doubtless seen this type of illustration before, and you know that a higher

position indicates more control. Each position is controlled by the next highest posi-

tion or row. The president is top dog of the organization, but each subsequent man-

ager is also in control of his or her own small fiefdom.

To understand how a file system has a similar organization, imagine each of the

managers in the illustration as a file folder and each of the employees as a piece of

paper, filed in a particular folder. Open any file cabinet, and you probably see

things organized this way: Filed papers are placed in labeled folders, and often these

folders are filed in groups under specific topics. The drawer might then have a spe-

cific label to distinguish it from other drawers in the cabinet, and so on.

That’s exactly what a hierarchical file system is all about. You want to have your

files located in the most appropriate place in the file system, whether at the very

top, in a folder, or in a nested series of folders. With careful usage, a hierarchical file

system can contain thousands of files and still allow users to find any individual file

quickly.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 42

What a Hierarchical File System Is All About 43

On my computer, the chapters of this book are organized in a hierarchical fashion,

as shown in Figure 3.2.

Books

Teach Yourself UNIX Let Go to Grow

Day One Day Two Day Three

L1 L3 L4 L6 L7

L2 L5

FIGURE 3.2
File organization
for the chapters
of Sams Teach
Yourself Unix in
24 Hours,
Fourth Edition.

Task 3.1: The Unix File System Organization
A key concept enabling the Unix hierarchical file system to be so effective is that

anything that is not a folder is a file. Programs are files in Unix, device drivers are

files, documents and spreadsheets are files, your keyboard is represented as a file,

your display is a file, and even your tty line and mouse are files.

What this means is that as Unix has developed, it has avoided becoming an

ungainly mess. Unix does not have hundreds of cryptic files stuck at the top (this is

still a problem in DOS) or tucked away in confusing folders within the System Folder

(as with the Macintosh).

The top level of the Unix file structure (/) is known as the root directory or slash

directory, and it always has a certain set of subdirectories, including bin, dev, etc,

lib, mnt, tmp, and usr. There can be a lot more, however.

You can obtain a listing of the files and directories in your own top-level directory by

using the ls -F / command. (You’ll learn all about the ls command in the next

hour. For now, just be sure that you enter exactly what’s shown in the example.)

On a different computer system, here’s what I see when I enter that command:

% ls -F /
Mail/ export/ public/
News/ home/ reviews/
add_swap/ kadb* sbin/
apps/ layout sys@
archives/ lib@ tftpboot/
bin@ lost+found/ tmp/
boot mnt/ usr/
cdrom/ net/ utilities/
chess/ news/ var/
dev/ nntpserver vmunix*
etc/ pcfs/

04 8143 CH03.qxd 7/18/05 3:24 PM Page 43

44 HOUR 3: Moving About the File System

In this example, any filename that ends with a slash (/) is a folder (Unix calls these

directories). Any filename that ends with an asterisk (*) is a program. Anything end-

ing with the at sign (@) is a symbolic link (a pointer to another file or directory else-

where in the file system), and everything else is a normal, plain file.

As you can see from this example, and as you’ll immediately find when you try the

command yourself, there is much variation in how different Unix systems organize

the top-level directory. There are some directories and files in common, and once

you start examining the contents of specific directories, you’ll find that hundreds of

programs and files always show up in the same place from Unix to Unix.

It’s as if you were working as a file clerk at a new law firm. Although this firm

might have a specific approach to filing information, the approach can be similar

to the filing system of other firms where you have worked in the past. If you know

the underlying organization, you can quickly pick up the specifics of a particular

organization.

1. Try the command ls -F / on your computer system, and identify, as previ-

ously explained, each of the directories in your resultant listing.

The output of the previous ls command shows the files and directories in the top

level of your system. Next, you learn what the commonly found directories are.

The bin Directory
In Unix parlance, programs are considered executables because users can execute

them. (In this case, execute is a synonym for run, not an indication that you get to

wander about murdering innocent applications!) When the program has been com-

piled, it is translated from source code into what’s called a binary format. Add the

two together, and you have a common Unix description for an application—an exe-

cutable binary.

It’s no surprise that the original Unix developers decided to have a directory labeled

binaries to store all the executable programs on the system. Remember the primi-

tive teletypewriter discussed earlier? Having a slow system to talk with the computer

had many ramifications you might not expect. The single most obvious one was

that everything became quite concise. There were no lengthy words like binaries or

listfiles, but rather succinct abbreviations: bin and ls are, respectively, the Unix

equivalents.

The bin directory (pronounce it to rhyme with “tin”) is where all the executable

binaries were kept in early Unix. Over time, as more and more executables were

04 8143 CH03.qxd 7/18/05 3:24 PM Page 44

What a Hierarchical File System Is All About 45

added to Unix, having all the executables in one place proved unmanageable, and

the bin directory split into multiple parts (/bin, /sbin, /usr/bin).

The dev Directory
Among the most important portions of any computer are its device drivers. Without

them, you wouldn’t have any information on your screen (the information arrives

courtesy of the display device driver). You wouldn’t be able to enter information (the

information is read and given to the system by the keyboard device driver), and you

wouldn’t be able to use your floppy disk drive (managed by the floppy device driver).

Remember, everything in Unix is a file. Every component of the system, from the

keyboard driver to the hard disk, is a file.

Earlier, you learned how almost anything in Unix is considered a file in the file sys-

tem, and the dev directory is an example. All device drivers—often numbering into

the hundreds—are stored as separate files in the standard Unix dev (devices) directo-

ry. Pronounce this directory name “dev,” not “dee-ee-vee.”

The etc Directory
Unix administration can be quite complex, involving management of user accounts,

the file system, security, device drivers, hardware configurations, and more. To help,

Unix designates the etc directory as the storage place for all administrative files

and information.

Pronounce the directory name “ee-tea-sea,” “et-sea,” or “etcetera.” All three pronun-

ciations are common.

The lib Directory
Like your own community, Unix has a central storage place for function and proce-

dural libraries. These specific executables are included with specific programs, allow-

ing programs to offer features and capabilities otherwise unavailable. The idea is

that if programs want to include certain features, they can reference only the shared

copy in the Unix library rather than having a new, unique copy.

Pronounce the directory name “libe” or “lib” (to rhyme with the word bib).

The lost+found Directory
With multiple users running many different programs simultaneously, it’s been a

challenge over the years to develop a file system that can remain synchronized

with the activity of the computer. Various parts of the Unix kernel—the brains of the

04 8143 CH03.qxd 7/18/05 3:24 PM Page 45

46 HOUR 3: Moving About the File System

system—help with this problem. When files are recovered after any sort of problem

or failure, they are placed here, in the lost+found directory, if the kernel cannot

ascertain the proper location in the file system. This directory should be empty

almost all the time.

This directory is commonly pronounced “lost and found” rather than “lost plus

found.”

The mnt and sys Directories
The mnt (pronounced “em-en-tea”) and sys (pronounced “sis”) directories are safely

ignored by Unix users. The mnt directory is intended to be a common place to

mount external media—hard disks, removable cartridge drives, and so on—in

Unix. On many systems, though not all, sys contains files indicating the system

configuration.

The tmp Directory
A directory that you can’t ignore, the tmp directory—say “temp”—is used by many

of the programs in Unix as a temporary file-storage space. If you’re editing a file, for

example, the editor makes a copy of the file, saves it in tmp, and you work directly

with that, saving the new file back to your original only when you’ve completed

your work.

On most systems, tmp ends up littered with various files and executables left by pro-

grams that don’t remove their own temporary files. On one system I use, it’s not

uncommon to find 10–30 megabytes of files wasting space.

Even so, if you’re manipulating files or working with copies of files, tmp is the best

place to keep the temporary copies. Indeed, on some Unix workstations, tmp actual-

ly can be the fastest device on the computer, allowing for dramatic performance

improvements over working with files directly in your home directory.

The usr Directory
The last of the standard directories at the top level of the Unix file system hierarchy

is the usr—pronounced “user”—directory. Originally, this directory was intended to

be the central storage place for all user-related commands. Today, however, many

companies have their own interpretation, and there’s no telling what you’ll find in

this directory.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 46

What a Hierarchical File System Is All About 47

Other Miscellaneous Stuff at the Top Level
In addition to all the directories previously listed, various other directories and files

commonly occur in Unix systems. Some files might have slight variations in name

on your computer, so when you compare your listing to the following files and direc-

tories, be alert for possible alternative spellings.

A file you must have in order to bring up Unix at all is one usually called unix or

vmunix, or named after the specific version of Unix on the computer. The file con-

tains the actual Unix operating system. The file must have a specific name and must

be found at the top level of the file system. Hand-in-hand with the operating system

is another file called boot, which helps during initial startup of the hardware.

Notice on one of the previous listings that the files boot and dynix appear. (DYNIX

is the name of the particular variant of Unix used on Sequent computers.) By com-

parison, the listing from the Sun Microsystems workstation shows boot and vmunix

as the two files.

Another directory you might find in your own top-level listing is diag—pronounced

“dye-ag”—which acts as a storehouse for diagnostic and maintenance programs. If

you have any programs within this directory, it’s best not to try them out without

proper training!

The home directory, /home, also sometimes called users, is a central place for organiz-

ing all files owned by specific users. Listing this directory is usually an easy way to

find out what accounts are on the system, too, because by convention each individ-

ual account directory is named after the user’s account name. On one system I use,

my account is taylor, and my individual account directory is also called taylor.

Home directories are always created by the system administrator.

The net directory, if set up correctly, is a handy shortcut for accessing other comput-

ers on your network.

The tftpboot directory is a relatively new feature of Unix. The letters stand for

“trivial file transfer protocol boot.” Don’t let the name confuse you, though; this

directory contains versions of the kernel suitable for X Window System–based termi-

nals and diskless workstations to run Unix.

Some Unix systems have directories named for specific types of peripherals that can

be attached. On the Sun workstation, you can see examples with the directories

cdrom and pcfs. The former is for a CD-ROM drive and the latter for DOS-format

floppy disks.

Many more directories are in Unix, but this will give you an idea of how things are

organized.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 47

48 HOUR 3: Moving About the File System

Directory Separator Characters
If you look at the organizational chart presented earlier in this hour (refer to Figure

3.1), you see that employees are identified simply as “employee” where possible.

Because each has a unique path upward to the president, each has a unique identi-

fier if all components of the path upward are specified.

For example, the rightmost of the four employees could be described as “Employee

managed by Jr. Manager 4, managed by Senior Manager 3, managed by Vice-

President 2, managed by the President.” Using a single character, instead of “man-

aged by,” can considerably shorten the description: Employee/Jr. Manager 4/Senior

Manager 3/Vice-President 2/President. Now consider the same path specified from

the very top of the organization downward: President/Vice-President 2/Senior

Manager 3/Jr. Manager 4/Employee.

Because only one person is at the top, that person can be safely dropped from the

path without losing the uniqueness of the descriptor: /Vice-President 2/Senior

Manager 3/Jr. Manager 4/Employee.

In this example, the / (pronounce it “slash”) is serving as a directory separator charac-

ter, a convenient shorthand to indicate different directories in a path.

The idea of using a single character isn’t unique to Unix, but using the slash is

unusual. On the Macintosh, the system uses a colon to separate directories in a

pathname. (Next time you’re on a Mac, try saving a file called test:file and see

what happens.) DOS uses a backslash: \DOS indicates the DOS directory at the top

level. The characters /tmp indicate the tmp directory at the top level of the Unix file

system, and :Apps is a folder called Apps at the top of the Macintosh file system.

On the Macintosh, you rarely encounter the directory delineator because almost all

users live in the graphical interface and don’t even know that there’s a Unix sys-

tem—and command line interface—lurking beneath the Aqua environment.

Windows also offers a similar level of freedom from having to worry about much of

this complexity, although you’ll still need to remember whether “A:” is your floppy

disk or hard disk drive.

The Difference Between Relative and
Absolute Filenames
Specifying the exact location of a file in a hierarchy to ensure that the filename is

unique is known in Unix parlance as specifying its absolute filename. That is, regard-

less of where you are within the file system, the absolute filename always specifies a

particular file. By contrast, relative filenames are not unique descriptors.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 48

The Difference Between Relative and Absolute Filenames 49

To understand, consider the files shown in Figure 3.3.

/

Indiana California Washington

Bldgs Personnel

Gold,J. Palmer,S. Raab,M. Taylor,D. Dunlap,L.

Taylor,D.

Bldgs Personnel Bldgs Personnel

FIGURE 3.3
A simple hierar-
chy of files.

If you are currently looking at the information in the Indiana directory, Bldgs

uniquely describes one file: the Bldgs file in the Indiana directory. That same

name, however, refers to a different file if you are in the California or Washington

directories. Similarly, the directory Personnel leaves you with three possible choices

until you also specify which state you’re interested in.

As a possible scenario, imagine you’re reading through the Bldgs file for

Washington and some people come into your office, interrupting your work. After a

few minutes of talk, they comment about an entry in the Bldgs file in California.

You turn to your Unix system and bring up the Bldgs file, and it’s the wrong file.

Why? You’re still in the Washington directory.

These problems arise because of the lack of specificity of relative filenames. Relative

filenames describe files that are referenced relative to an assumed position in the file

system. In Figure 3.3, even Personnel/Taylor,D. isn’t unique because that can be

found in both Indiana and Washington.

To avoid these problems, you can apply the technique you learned earlier, specifying

all elements of the directory path from the top down. To look at the Bldgs file for

California, you could simply specify /California/Bldgs. To check the Taylor,D.

employee in Indiana, you’d use /Indiana/Personnel/Taylor,D., which is differ-

ent, you’ll notice, from /Washington/Personnel/Taylor,D..

Learning the difference between these two notations is crucial to surviving the com-

plexity of the hierarchical file system used with Unix. Without it, you’ll spend half

your time verifying that you are where you think you are, or, worse, not moving

about at all, not taking advantage of the organizational capabilities.

If you’re ever in doubt as to where you are or what file you’re working with in Unix,

simply specify its absolute filename. You always can differentiate between the two

04 8143 CH03.qxd 7/18/05 3:24 PM Page 49

50 HOUR 3: Moving About the File System

by looking at the very first character: If it’s a slash, you’ve got an absolute filename

(because the filename is rooted to the very top level of the file system). If you don’t

have a slash as the first character, the filename’s a relative filename.

Earlier I told you that in the /home directory at the top level of Unix, I have a home

directory called taylor. In absolute filename terms, I’d properly say that I have

/home/taylor as a unique directory.

To add to the confusion, most Unix people don’t pronounce the slashes, particu-
larly if the first component of the filename is a well-known directory. I would pro-
nounce /home/taylor as “home taylor,” but I would usually pronounce
/newt/awk/test as “slash newt awk test.” When in doubt, pronounce the slash.

As you learn more about Unix, particularly about how to navigate in the file sys-

tem, you’ll find that a clear understanding of the difference between a relative and

absolute filename proves invaluable. The rule of thumb is that if a filename begins

with /, it’s absolute.

Task 3.2: Hidden Files in Unix
One of the best aspects of living in an area for a long time, frequenting the same

shops and visiting the same restaurants, is that the people who work at each place

learn your name and preferences. Many Unix applications can perform the same

trick, remembering your preferred style of interaction, what files you last worked

with, which lines you’ve edited, and more, through preference files.

On the Macintosh, there’s a folder within each user’s home directory called Library.

Within that there’s another folder called Preferences, which is a central storage place

for preference files, organized by application. On my Macintosh, for example, I

have about 75 different preference files in this directory, enabling me to have all my

programs remember the defaults I prefer.

Unix must support many users at once, so Unix preference files can’t be stored in a

central spot in the file system. Otherwise, how would the system distinguish between

your preferences and those of your colleagues? To avoid this problem, all Unix

applications store their preference files in your home directory.

Programs want to be able to keep their own internal preferences and status stored in

your directory, but these aren’t for you to work with or alter. If you use DOS, you’re

probably familiar with how Windows solves this problem: Certain files are hidden

and do not show up when you use DIR, in DOS, or the File Manager to list files in a

directory.

By the
Way

04 8143 CH03.qxd 7/18/05 3:24 PM Page 50

The Difference Between Relative and Absolute Filenames 51

Macintosh people don’t realize it, but the Macintosh also has lots of hidden files. On

the topmost level of the Macintosh file system, for example, the following files are

present, albeit hidden from normal display: .DS_Store, Desktop DB, .VolumeIcon.icns,

NavMac8000QSFile, and my personal favorite .symSchedScanLockxz. Displaying hid-

den files on the Macintosh is very difficult, as it is with Windows.

Fortunately, the Unix rule for hiding files is much easier than that for either the Mac

or PC. No secret status flag reminds the system not to display the file when listing

directories. Instead, the rule is simple, any filename starting with a dot (.) is called

a hidden file.

A hidden file is any file with a dot as the first character of the filename.

If the filename or directory name begins with a dot, it won’t show up in normal list-

ings of that directory. If the filename or directory name has any other character as

the first character of the name, it lists normally.

1. Knowing that, turn to your computer and enter the ls command to list all the

files and directories in your home directory.

% ls -F
Archives/ Mail/ RUMORS.18Sept mailing.lists
InfoWorld/ News/ bin/ newlists
LISTS OWL/ iecc.list src/
%

2. You can see that I have 12 items in my own directory, 7 directories (the direc-

tory names have a slash as the last character because of the -F, remember),

and 5 files. Files have minimal rules for naming, too. Avoid slashes, spaces,

and tabs, and you’ll be fine.

3. Without an explicit direction to the contrary, Unix is going to let the hidden

files remain hidden. To add the hidden files to the listing, you just need to add

a -a flag to the command. Turn to your computer and try this command to

see what hidden files are present in your directory. These are my results:

% ls -aF
./ .gopherrc .oldnewsrc .sig RUMORS.18Sep
../ .history* .plan Archives/ bin/
.Agenda .info .pnewsexpert InfoWorld/ iecc.list
.aconfigrc .letter .report LISTS mail.lists
.article .login .rm-timestamp Mail/ newlists
.cshrc .mailrc .rnlast News/ src/
.elm/ .newsrc .rnsoft OWL/
%

By the
Way

04 8143 CH03.qxd 7/18/05 3:24 PM Page 51

52 HOUR 3: Moving About the File System

Many dot files tend to follow the format of a dot, followed by the name of the

program that owns the file, with rc as the suffix. In my directory, you can see

six dot files that follow this convention: .aconfigrc, .cshrc, .gopherrc,

.mailrc, .newsrc, and .oldnewsrc.

Because of the particular rules of hidden files in Unix, they are often called dot files,

and you can see that I have 23 dot files and directories in my directory.

The rc suffix tells you that this file is a configuration file for that particular utility.
For instance, .cshrc is the configuration file for the C shell and is executed every
time the C shell (/bin/csh) is executed. You can define aliases for C shell com-
mands and a special search path, for example.

Because it’s important to convey the specific filename of a dot file, pronunciation
is a little different from elsewhere in Unix. The name .lynxrc would be spoken as
“dot lynx are sea,” and .mailrc would be “dot mail are sea.” If you can’t pro-
nounce the program name, odds are good that no one else can either, so .cshrc
is “dot sea ess aitch are sea.”

Other programs create many different dot files and try to retain a consistent naming

scheme. You can see that .rnlast and .rnsoft are both from the rn program, but

it’s difficult to know simply from the filenames that .article, .letter, .newsrc,

.oldnewsrc, and .pnewsexpert are all also referenced by the rn program.

Recognizing this problem, some application authors designed their applications to

create a dot directory, with all preference files neatly tucked into that one spot. The

elm program does that with its .elm hidden directory.

Some files are directly named after the programs that use them: the .Agenda file is

used by the agenda program, and .info is used by the info program. Those almost

have a rule of their own, but it’s impossible to distinguish them from .login, from

the sh program; .plan for the finger program; .rm-timestamp from a custom pro-

gram of my own; and I frankly have no idea what program created the .report

file!

This should give you an idea of the various ways that Unix programs name and use

hidden files. As an exercise, list all the dot files in your home directory and try to

figure out which program created each file. Check by looking in the index of this

book to see whether a program by that name exists, if it’s a “.xxx” file. If you can’t

figure out which programs created which files, you’re not alone. Keep the list handy;

refer to it as you learn more about Unix while exploring Sams Teach Yourself Unix in

24 Hours, Fourth Edition, and by the time you’re done, you’ll know exactly how to

find out which programs created which dot files.

By the
Way

04 8143 CH03.qxd 7/18/05 3:24 PM Page 52

The Difference Between Relative and Absolute Filenames 53

Task 3.3: The Special Directories . and ..
I haven’t mentioned two dot directories, although they show up in my listing and

most certainly show up in your listing too. They are dot and dot dot (. and ..), and

they’re shorthand directory names that can be terrifically convenient.

The dot directory is shorthand for the current location in the directory hierarchy; the

dot-dot directory moves you up one level, to the parent directory.

Consider again the list of files shown in Figure 3.3. If you were looking at the files in

the California Personnel directory (best specified as /California/Personnel)

and wanted to check quickly an entry in the Bldgs file for California, either you’d

have to use the absolute filename and enter the lengthy ls /California/Bldgs, or,

with the new shorthand directories, you could enter ls ../Bldgs.

As directories move ever deeper into the directory hierarchy, the dot-dot notation

can save you much typing time. For example, what if the different states and relat-

ed files were all located in my home directory /home/taylor, in a new directory

called business? In that case, the absolute filename for employee Raab,M. in

California would be /home/taylor/business/California/Personnel/Raab,M.,

which is unwieldy and a great deal to type if you want to hop up one level and

check on the buildings database in Indiana!

You can use more than one dot-dot notation in a filename too, so if you’re looking

at the Raab,M. file and want to check on Dunlap,L., you could save typing in the

full filename by instead using ../../../Washington/Personnel/Dunlap,L.. Look

at Figure 3.3 to see how that would work, tracing back one level for each dot-dot in

the filename.

This explains why the dot-dot shorthand is helpful, but what about the single-dot

notation that simply specifies the current directory?

I haven’t stated it explicitly yet, but you’ve probably figured out that one ramifica-

tion of the Unix file system organization, with its capability to place applications

anywhere in the file system, is that the system needs some way to know where to

look for particular applications. Just as if you were looking for something in a public

library, in Unix, having an understanding of its organization and a strategy for

searching is imperative for success and speed.

Unix uses an ordered list of directories called a search path for this purpose. The

search path typically lists five or six different directories on the system where the

computer checks for any application you request.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 53

54 HOUR 3: Moving About the File System

The question that arises is, “What happens if your own personal copy of an applica-

tion has the same name as a standard system application?” The answer is that the

system always finds the standard application first, if its directory is listed earlier in

the search path.

To avoid this pitfall, use the dot notation, forcing the system to look in the current

directory rather than search for the application. If you wanted your own version of

the ls command, for example, you’d need to be in the same directory as the com-

mand and enter ./ls to ensure that Unix uses your version rather than the stan-

dard version.

1. Enter ./ls on your computer and watch what happens.

2. Enter ls without the dot notation, and you’ll instantly see how the computer

searches through various directories in the search path, finds the ls program,

and executes it, automatically.

When you learn about cd (change directory) later in this hour, you also will learn

other uses of the dot-dot directory, but the greatest value of the dot directory is that

you can use it to force the system to look in the current directory and nowhere else

for any file specified.

Task 3.4: The env Command
You’ve learned much about the foundations of the Unix file system and how appli-

cations remember your preferences through hidden dot files. There’s another way,

however, that the system remembers specifics about you, and that’s through your

user environment. The user environment is a collection of specially named variables,

mnemonically named values, that have specific values.

1. To view your environment, you can use the env command. Here’s what I see

when I enter the env command on my system:

% env
HOME=/home/taylor
SHELL=/bin/csh
TERM=vt100
PATH=/home/taylor/bin:/bin:/usr/bin:/usr/ucb:/usr/local/bin:
➥/usr/unsup/bin:.
MAIL=/usr/spool/mail/taylor
LOGNAME=taylor
TZ=EST5
%

04 8143 CH03.qxd 7/18/05 3:24 PM Page 54

The Difference Between Relative and Absolute Filenames 55

Try it yourself and compare your values with mine. You might find that you have

more defined in your environment than I do because your Unix system uses your

environment to keep track of more information.

Here we see some of the standard environment variables. Table 3.1 describes what

they do.

TABLE 3.1 Common Shell Environment Variables and What They Do

Variable Description

HOME The directory where you log in and store all your personal
files

SHELL The program you run as your command-line interpreter

TERM The type of terminal emulation you need to provide cursor
graphics

PATH A list of directories searched when you enter a command

MAIL The file where your incoming mail is stored

LOGNAME Your login name

TZ The time zone on your system

Many Unix systems offer the printenv command instead of env. If you enter env
and the system complains that it can’t find the env command, try using printenv
instead. All examples here work with either env or printenv.

Task 3.5: PATH and HOME
The two most important values in your environment are the name of your home

directory (HOME) and your search path (PATH). Your home directory (as it’s known) is

the name of the directory that you always begin your Unix session within.

The PATH environment variable lists the set of directories, in left-to-right order, that

the system searches to find commands and applications you request. You can see

from the example that my search path tells the computer to start looking in the

/home/taylor/bin directory, and then sequentially try /bin, /usr/bin, /usr/ucb,

/usr/local/bin, /usr/unsup/bin, and . before concluding that it can’t find the

requested command. Without a PATH, the shell wouldn’t be able to find any of the

many, many Unix commands: As a minimum, you always should have /bin and

/usr/bin.

By the
Way

04 8143 CH03.qxd 7/18/05 3:24 PM Page 55

56 HOUR 3: Moving About the File System

1. You can use the echo command to list specific environment variables too.

Enter echo $PATH and echo $HOME. If you forget the “$” then the shell doesn’t

know you are specifying that you want to know the value of the named vari-

able. Try it, you’ll see what I mean.

When I enter these two echo statements as shown above, I get the following

results:

% echo $PATH
/home/taylor/bin:/bin:/usr/bin:/usr/ucb:/usr/local/bin:/usr/unsup/
➥bin:.
% echo $HOME
/home/taylor
%

Your PATH value is probably similar, although certainly not identical, to mine,

and your HOME is /home/accountname or similar (accountname is your

account name).

Task 3.6: Find Where You Are with pwd
So far you’ve learned a lot about how the file system works but not much about how

to move around in the file system. With any trip, the first and most important step

is to find out your current location—that is, the directory in which you are currently

working. In Unix, the command pwd tells you the present working directory.

1. Enter pwd. The output should be identical to the output you saw when you

entered env HOME because you’re still in your home directory.

% echo $HOME
/home/taylor
% pwd
/home/taylor
%

Think of pwd as a compass, always capable of telling you where you are. It also tells

you the names of all directories above you because it always lists your current loca-

tion as an absolute directory name.

Task 3.7: Moving to Another Location with cd
The other half of the dynamic duo is the cd command, which is used to change

directories. The format of this command is simple, too: cd new-directory (where

new-directory is the name of the new directory you want).

04 8143 CH03.qxd 7/18/05 3:24 PM Page 56

The Difference Between Relative and Absolute Filenames 57

1. Try moving to the very top level of the file system and entering pwd to see

whether the computer agrees that you’ve moved.

% cd /
% pwd
/
%

2. Notice that cd doesn’t produce any output. Many Unix commands operate

silently like this, unless an error is encountered. The system then indicates the

problem. You can see what an error looks like by trying to change your loca-

tion to a nonexistent directory. Try the /taylor directory to see what happens!

% cd /taylor
/taylor: No such file or directory
%

3. Enter cd without specifying a directory. What happens? I get the following

result:

% cd
% pwd
/home/taylor
%

4. Here’s where the HOME environment variable comes into play. Without any

directory specified, cd moves you back to your home directory automatically.

If you get lost, it’s a fast shorthand way to move to a known location without

fuss.

Remember the dot-dot notation for moving up a level in the directory hierar-

chy? Here’s where it also proves exceptionally useful. Use the cd command

without any arguments to move to your home directory, and then use pwd to

ensure that’s where you’ve ended up.

5. Now, move up one level by using cd .. and check the results with pwd:

% cd
% pwd
/home/taylor
% cd ..
% pwd
/home
%

Use the ls -C -F command to list all the directories contained at this point in
the file system. Beware, though; on large systems, this directory could easily have
hundreds of different directories. On one system I use, almost 550 different direc-
tories are on one level above my home directory in the file system!

By the
Way

04 8143 CH03.qxd 7/18/05 3:24 PM Page 57

58 HOUR 3: Moving About the File System

% ls -F
armstrong/ christine/ guest/ laura/ matthewm/ shane/
bruce/ david/ higgins/ mac/ rank/ taylor/
cedric/ green/ kane/ mark/ shalini/ vicki/
%

Try using a combination of cd and pwd to move about your file system, and remem-

ber that without any arguments, cd always zips you right back to your home

directory.

Summary
This hour focused on the Unix hierarchical file system. You’ve learned the organiza-

tion of a hierarchical file system, how Unix differs from Macintosh and DOS sys-

tems, and how Unix remembers preferences with its hidden dot files. This hour also

explained the difference between relative and absolute filenames, and you’ve

learned about the . and .. directories. You learned four new commands: env to list

your current environment, echo to show a particular value, cd to change directories,

and pwd to find your present working directory location.

Workshop
The Workshop summarizes the key terms you learned and poses some questions

about the topics presented in this chapter. It also provides you with a preview of

what you will learn in the next hour.

Key Terms
absolute filename Any filename that begins with a leading slash (/); these

always uniquely describe a single file in the file system.

binary A file format that is intended for the computer to work with directly rather

than for humans to peruse. See also executable.

device driver All peripherals attached to the computer are called devices in Unix,

and each has a control program always associated with it, called a device driver.

Examples are the device drivers for the display, keyboard, mouse, and all hard disks.

directory A type of Unix file used to group other files. Files and directories can be

placed inside other directories, to build a hierarchical system.

directory separator character On a hierarchical file system, there must be some

way to specify which parts of a full filename are directories and which part is the

actual filename itself. This becomes particularly true when you’re working with

04 8143 CH03.qxd 7/18/05 3:24 PM Page 58

Workshop 59

absolute filenames. In Unix, the directory separator character is the slash (/), so a

filename like /tmp/testme is easily interpreted as a file called testme in a directory

called tmp.

dot A shorthand notation for the current directory.

dot dot A shorthand notation for the directory one level higher up in the hierar-

chical file system from the current location.

dot file A configuration file used by one or more programs. These files are called

dot files because the first letter of the filename is a dot, as in .profile or .login.

Because they’re dot files, the ls command doesn’t list them by default, making

them also hidden files in Unix. See also hidden file.

executable A file that has been set up so that Unix can run it as a program. This

is also shorthand for a binary file. You also sometimes see the phrase binary exe-

cutable, which is the same thing. See also binary.

hidden file By default, the Unix file-listing command ls shows only files whose

first letter isn’t a dot (that is, those files that aren’t dot files). All dot files, therefore,

are hidden files, and you can safely ignore them without any problems. Later, you

learn how to view these hidden files. See also dot file.

home directory This is your private directory and is also where you start out when

you log in to the system.

kernel The underlying core of the Unix operating system itself. This is akin to the

concrete foundation under a modern skyscraper.

preference file These are what dot files (hidden files) really are: They contain your

individual preferences for many of the Unix commands you use.

relative filename Any filename that does not begin with a slash (/) is a filename

whose exact meaning depends on where you are in the file system. For example, the

file test might exist in both your home directory and in the root directory: /test is

an absolute filename and leaves no question which version is being used, but test

could refer to either copy, depending on your current directory.

root directory The directory at the very top of the file system hierarchy, also

known as slash.

search path A list of directories used to find a command. When a user enters a

command ls, the shell looks in each directory in the search path to find a file ls,

either until it is found or the list is exhausted.

slash The root directory.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 59

60 HOUR 3: Moving About the File System

symbolic link A file that contains a pointer to another file rather than contents of

its own. This can also be a directory that points to another directory rather than

having files of its own. A useful way to have multiple names for a single program or

to allow multiple people to share a single copy of a file.

user environment A set of values that describe the user’s current location and

modify the behavior of commands.

working directory The directory where the user is working.

Exercises
1. Can you think of information you work with daily that’s organized in a hier-

archical fashion? Is a public library organized hierarchically?

2. Which of the following files are hidden files and directories according to Unix?

.test hide-me ,test .cshrc

../ .dot. dot .HiMom

3. What programs most likely created the following dot files and dot directories?

.cshrc .rnsoft .exrc .print

.tmp334 .excel/ .letter .vi-expert

4. In the following list, identify the items that are absolute filenames:

/Personnel/Taylor,D.
/home/taylor/business/California
../..
Recipe:Gazpacho

5. Referring to the list of directories found on all Unix systems (/bin, /dev, /etc,

/lib, /lost+found, /mnt, /sys, /tmp, /usr), use cd and pwd to double-check

that they are all present on your own Unix machine.

Preview of the Next Hour
In the next hour, you learn all about the ls command that you’ve been using,

including an extensive discussion of command flags. The command touch enables

you to create your own files, and du and df help you learn how much disk space is

used and how much is available, respectively. You also learn how to use a valuable

if somewhat esoteric Unix command, compress, which helps you minimize your

disk-space usage.

04 8143 CH03.qxd 7/18/05 3:24 PM Page 60

